您当前的位置:首页 > 发表论文>论文发表

变频器原理及应用论文

2023-12-11 11:22 来源:学术参考网 作者:未知

变频器原理及应用论文

  随着我国电力技术和科技的快速发展,电力变频器广泛的应用于工业生产以及人类日常生活中。这是我为大家整理的变频器应用技术论文参考 范文 ,仅供参考!
  变频器应用技术论文参考范文篇一:《变频器节能技术应用与研究》
  【摘 要】本文根据水泵、风机轴功率与转速的平方成正比的特点,阐述变频调速节能原理,提出泵与风机应采用变频技术,已降低成本,延长设备使用寿命,提高经济效益。

  【关键词】变频器;节能;水泵;风机

  0 引言

  锅炉是比较常见的用于集中供热设备,通常情况下,由于气温和负荷的变化,需对锅炉燃烧情况进行调节,传统的调节方式其原理是依靠增加系统的阻力,水泵采用调节阀门来控制流量,风机采用调节风门挡板开度的大小来控制风量。但在运行中调节阀门、挡板的方式,不论供热需求大小,水泵、风机都要满负荷运转,拖动水泵、风机的电动机的轴功率并不会改变,电动机消耗的能量也并没有减少,而实际生产所需要的流量一般都比设计的最大流量小很多,因而普遍存在着“大马拉小车”现象。锅炉这样的运行方式不仅损失了能量,而且增大了设备损耗,导致设备使用寿命缩短,维护、维修费用高。把变频调速技术应用于水泵(或风机)的控制,代替阀门(或挡板)控制就能在控制过程中不增加管路阻力,提高系统的效率。变频调速能够根据负荷的变化使电动机自动、平滑地增速或减速,实现电动机无级变速。变频调速范围宽、精度高,是电动机最理想的调速方式。如果将水泵、风机的非调速电动机改造为变频调速电动机,其耗电量就能随负荷变化,从而节约大量电能。

  1 变频器应用在水泵、风机的节能原理

  图1为水泵(风机)的H-Q关系曲线。图1中,曲线R2为水泵(风机)在给定转速下满负荷时,阀门(挡板)全开运行时阻力特征曲线;曲线 R1为部分负荷时,阀门(挡板)部分开启时的阻力特性曲线;曲线H(n1)和H(n2)表示不同转速时的Q=f(H)曲线。采用阀门(挡板)控制时,流(风)量从Q2减小到Q1,阻力曲线从R2移到R1,扬程(风压)从HA移到HB。采用调速控制时,H(n2)移到H(n1),流(风)量从Q2减小到Q1,扬程(风压)从HA移到HC。

  图1 水泵(风机)的H-Q关系曲线

  图2为水泵(风机)的P-Q的关系曲线。由图2可以看出,流(风)量Q1时,采用阀门(挡板)控制的功率为PB。采用变频调速控制的功率为 PC。ΔP=PB-PC就是节省的功率。

  图2 为水泵(风机)的P-Q的关系曲线

  如果不计风机的效率η,则采用阀门(挡板)时的功率消耗在图中由面积OHBBQ1所代表,而采用调速控制时的功率消耗由面积OHCCQ1所代表,后者较前者面积相差为HCHBBC,即采用调速控制流(风)量比采用阀门(挡板)控制可节约能量。

  2 水泵、风机的节能计算和分析

  通常转速n与频率f成正比,若将电动机的运行频率由原来的50Hz降至40Hz时,其实际转速则降为额定转速的80%,即实际转速nsn和额定转速nn:nsn=(■)nn=0.4nn。设K为电机过载系数,则电动机额定功率Pn=Kn■■。因此电动机运行在40Hz时,实际功率为:

  Psn=Kn■■=K(0.4nn)3=0.064Kn■■=0.064Pn

  节能率 =■=■=■=93.6%

  表1 电动机节能率

  供热公司胜利锅炉房将电动机改为变频调速,其中:

  表2 补水泵电动机在定速和变速不同情况下测出的数据

  根据表2的数据,一个采暖期按190天计算,工业电费单价为0.37元/kWh。加装变频器后补水泵电动机节约电费:

  (11-1.73)×24×190×0.37=15640.344元

  表3 鼓风机电动机在定速和变速不同情况下测出的数据

  根据表3的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为0.37元/kWh。加装变频器后鼓风机电动机节约电费:

  (18.5-3.95)×24×190×0.37×5=122743.8元

  表4 引风机电动机在定速和变速不同情况下测出的数据

  根据表4的数据,胜利车间有5台鼓风机电动机。一个采暖期按190天计算,工业电费单价为0.37元/kWh。加装变频器后引风机电动机节约电费:

  (37-32.9)×24×190×0.37×5=34587.6元

  综上所述,胜利车间安装变频后,一个保温期合计节约电费:

  15640.344+122743.8+34587.6=172971.744元

  节能效果明显。

  通过上述分析和实际应用,锅炉水泵、风机采用变频调速后具有以下优点。

  (1)水泵、风机的电动机工作电流下降,温升明显下降,同时减少了机械磨损,维修工作量大大减少。

  (2)保护功能可靠,消除了电动机因过载或单相运行而烧坏的现象,延长了使用寿命,能长期稳定运行。

  (3)电动机实现软起动,实现平滑地无级调速,精度高,调速范围宽(0-100%)。频率变化范围大(O-50Hz)。效率可高达(90%-95%)以上。减小了对电网的冲击。

  (4)安装容易,调试方便,操作简便,维护量小。

  (5)节能省电,燃煤效率提高。

  (6)变频器可采用软件与计算机可编程控制器联机控制的功能,容易实现生产过程的自动控制。

  3 结束语

  引进变频器可以实现能源的有效利用,避免过多的能源消耗。使用变频器节能主要是通过改变电动机的转速实现流量和压力的控制,来降低管道阻力,减少了阀门半开的能源损失。其次变频状态下的水泵(风机)运行转速明显低于工频电源之下,这样能尽量减少由于摩擦带来的电力损耗。最后变频技术是一种先进的现代自动化技术,自动化的运行能增加电力运行的可靠性,节省人力投入,从而实现了成本的节约。

  【参考文献】

  [1]赵斌,莫桂强.变频调速器在锅炉风机节能改造中的应用[J].广西电力.

  [2]吴民强.泵与风机节能技术问答[M].北京:中国电力出版社,1998.

  [3]梁学造,蔡泽发.异步电动机的降损节能 方法 [Z].湖南省电力工业局.
  变频器应用技术论文参考范文篇二:《变频器技术改造实践与应用》
  【摘要】介绍了锅炉风机电机以及补水泵、循环泵电机等设备变频器技术改造实例及应用,并对变频器调速改造中应注意的一些技术问题进行了论述。

  【关键词】自动化控制;变频器;技术改造

  1 锅炉风机电机应用变频器调速控制

  以DHL141.57/150/90AⅡ热水锅炉为例,每台锅炉配置引风机和鼓风机各六台,各电机主要技术参数如下:

  型号 容量(KW) 电压(V) 额定电流(A)

  引风机 Y280S4 75 380 139.7

  鼓风机 Y200L4 30 380 57

  在进行变频器改造以前,各风机在正常情况下的运行数据统计如下:

  平均电流 最大电流 最小电流

  引风机 142 145 139

  鼓风机 59 63 57

  首先选择在1#5#炉的鼓、引风机上进行改造尝试,并考虑到风机电机功率设计时配置,选择相匹配功率的变频器来控制电机,变频器的型号为ABB ACS51001157A4(引风机)、ZXBP30(鼓风机),电压等级为380V,通过一段时间的运行测试,引风机工频电流由原来的平均140(A)下降到现在的平均95―110(A),鼓风机工频电流由原来的平均57(A)下降到现在的平均30(A)节能效果相当显著,并且变频器技术性能完全满足锅炉运行工艺的要求(主要是风压、风量、加减风的速率等),电机在启动、运行调节、控制操作等方面都得到极大的改善。变频调速由安装在锅炉操作台上的启动、停机、转速调整开关进行远程控制,并可同DCS系统接口,通过DCS实现变频器的调速控制,变频调速装置还提供报警指示、故障指示、待机状态、运行状态、连锁保护等保护信息以及转速给定值和风机实际转速值等必要指示,以便操作人员进行操作控制。

  2 补水泵、循环泵电机应用变频器进行调节控制

  以2台补水泵、4台循环泵实际应用为例,其电动机的技术参数分别为:

  序号 型号 功率 额定电流 流量

  补水泵 1#泵 Y180M4 18.5 35.9 25

  2#泵 Y180M4 18.5 35.9 25

  循环泵 1#泵 Y315M14 132 237 630

  2#泵 Y315M14 132 237 630

  3#泵 Y315M14 132 237 630

  4#泵 Y2315M4 132 240.4 630

  正常补水时泵出力太大,紧急补水时一台泵又不能满足耗水需要,同时启动时出力又太大,连续供水补水效率高,效果也好。补水泵改用变频器调节补水,不仅仅在于考虑它对电机的节能效益,更重要的是从生产设备运行安全角度考虑,变频器选用富士FRN132P11S―4CX,电压等级为380V。

  为充分利用变频器,采用1台变频器来实现两台电机的调速控制;2台补水泵均可实现变速、定速两种方式运行,变频器在同一时间只能作一台电机的变频电源,所以每台电机启动、停止必须相互闭锁,用逻辑电路控制,保证可靠切换,出口采用双投闸刀切换;2台补水泵工作时,其中一台由工频供电作定速运行,另一台由变频器供电作变速运行,同一台电机的变速、定速运行由交流接触器相互闭锁,即在变速运行时,定速合不上,如下图中,1C1与1C2及2C1与2C2不允许同时合上;为确保工艺控制安全、可靠,变频器及两台电机的控制、保护、测量单元全部集中在就地控制柜内,控制调节通过屏蔽信号电缆引接到控制室;

  图1 补水泵电机变频器接线,虚框内为改造增加部分3 变频器调速改造中应注意的一些技术问题

  锅炉的安全运行是全队动力的根本保证,虽然变频调速装置是可靠的,但一旦出现问题,必须确保锅炉安全供热,所以,必须实现工频――变频运行的切换系统(旁路系统),在生产过程中,采用手工切换如能满足设备运行工艺要求,建议尽量不要选用自动旁路,对一般的小功率电机,采用双投闸刀方式作为手动、自动切换手段也是比较理想的方法。

  对于大惯量负荷的电机(如锅炉引风机),在变频改造后,要注意风机可能存在扭曲共振现象,运行中,一旦发生共振,将严重损坏风机和拖动电机。所以,必须计算或测量风机――电机连接轴系扭振临界转速以及采取相应的技术 措施 (如设置频率跳跃功能避开共振点、软连接及机座加震动吸收橡胶等)。

  采用变频调速控制后,如果变频器长时间运行在1/2工频以下,随着电机转速的下降,电机散热能力也下降,同时电机发热量也随之减少。所以电机的本身温度其实是下降的,仍旧能够正常运行而不至温度过高。

  变频器不能由输出口反向送电,在电气回路设计中必须注意,如在补水泵和循环泵变频器改造接线图中,要求1C1与1C2及2C1与2C2不允许同时合上,不仅要求在电气二次回路中实现电气的连锁,同时要求在机械上实现机构互锁,以确保变频器的运行安全。

  低压变频器,由于体积较小,在改造中的安装地点选择比较容易些。选择变频器室位置,既要考虑离电机设备不能太远,又要考虑周围环境对变频器运行可能造成的影响。变频器的安装和运行环境要求较高,为了使变频器能长期稳定和可靠运行,对安装变频器室的室内环境温度要求最好控制在0-40℃之间,如果温度超过允许值,应考虑配备相应的空调设备。同时,室内不应有较大灰尘、腐蚀或爆炸性气体、导电粉尘等。

  要保证变频器柜体和厂房大地的可靠连接,保证人员和设备安全。为防止信号干扰,控制系统最好埋设独立的接地系统,对接地电阻的要求不大于4Ω。到变频器的信号线,必须采用屏蔽电缆,屏蔽线的一端要求可靠接地。

  随着电力电子技术的发展,变频器的各项技术性能也得到拓宽和提高,在热电行业中,风机水泵类负荷较多,充分应用变频器进行节能改造已经逐渐被大家所接受。对于目前低压变频器,投资较低、效益高,一年左右就可以收回投资而被广泛应用。随着目前国产变频器的迅速发展,使得变频器的性能价格比大大提高,为利用变频器进行节能技术改造提供了更加广阔的前景。

  参考文献:

  [1]王占奎.变频调速应用百例.北京:科学出版社出版,1999.4

  [2]吴忠智,吴加林.变频器应用手册.北京:机械工业出版社,2002.7
  变频器应用技术论文参考范文篇三:《浅议变频调速技术的应用》
  摘要:调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(IntelligentPowerModule)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。

  关键词:变频器,控制技术,应用

  电力电子技术诞生至今已近50年,他对人类的文明起了巨大的作用.近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。交流电机变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其有益的

  调速和起制动性能、高效率、高功率因数的节电效果、适用范围广等优点,而被国内外公认为最有发展前途的调速方式。

  1.变频调速技术的现状

  电气传动控制系统通常由电动机、控制装置和信息装置三部分组成。电气传动可分为调速和不调速两大类,调速又分为交流调速和直流调速两种方式。不调速电动机直接由电网供电。但是,随着电力电子技术的发展,原本不调速的机械越来越多地改用调速传动以节约电能,改善产品质量,提高产量。以我国为例,60%的发电量是通过电动机消耗的。因此,调速传动有着巨大的节能潜力,变频调速是交流调速的基础和主干内容,变频调速技术的出现使频率变为可以充分利用的资源。近年来。变频调速技术已成为交流调速中最活跃、发展最快的技术。

  1.1国外现状

  采用变频的方法,实现对电机转速的控制,大约已有40年的历史,但变频调速技术的高速发展,则是近十年的事情,主要是由下面几个因素决定:

  1.1.1市场有大量需求

  随着工业自动化程度的不断提高和能源全球性短缺,变频器越来越广泛地应用在冶金、机械、石油、化工、纺织、造纸、食品等各个行业以及风机、水泵等节能场合,并取得了显著的经济效益。

  1.1.2功率器件发展迅速

  变频调速技术是建立在电力电子技术基础之上的。近年来高电压、大电流的SCR,GTO,IGBT,IG-GT以及智能模块IPM(Intelligent Power Module)等器件的生产以及并联、串联技术的发展应用,使高电压、大功率变频器产品的生产及应用成为现实。在大功率交—交变频(循环交流器)调速技术方面,法国阿尔斯通已能提供单机容量达30000kW的电器传动设备用于船舶推进系统。在大功率无换向器电机变频调速技术方面,意大利ABB公司提供了单机容量为60000kW的设备用于抽水蓄能电站;在中功率变频调速技术方面,德国西门子公司Simovert A电流型晶闸管变频调速设备单机容量为10-2600kVA和Simovert PGTOPWM变频调速设备单机容量为100-900kVA,其控制系统已实现全数字化,用于电机风车,风机,水泵传动;在小功率变频调速技术方面,日本富士BJT变频器最大单机容量可达700kVA,IGBT变频器已形成系列产品,其控制系统也已实现全数字化。

  IPM投入应用比IGBT约晚二年,由于IPM包含了1GBT芯片及外围的驱动和保护电路,有的甚至还把光耦也集成于一体,是一种更为适用的集成型功率器件。目前,在模块额定电流10-600A范围内,通用变频器均有采用IPM的趋向。IPM除了在工业变频器中被大量采用之外,经济型的IPM在近年内也开始在一些民用品,如家用空调变频器,冰箱变频器,洗衣机变频器中得到应用。IPM也在向更高的水平发展,日本三菱电机最近开发的专用智能模块ASIPM将不需要外接光耦,通过内部自举电路可单电源供电,并采用了低电感的封装技术,在实现系统小型化、专用化、高性能、低成本方面又推近了一步。

  1.1.3控制理论和微电子技术的支持

  在现代自动化控制领域中,以现代控制论为基础,融入模糊控制、专家控制、神经控制等新的控制理论,为高性能变频调速提供了理论基础;16位、32位高速微处理器以及信号处理器(DSP)和专用集成电路(ASIC)技术的快速发展,则为实现变频调速的高精度、多功能提供了硬件手段。

  1.2国内现状

  从整体上看我国电气传动系统制造技术水平较国际先进水平差距10-15年。在大功率交-交,无换向器电动机等变频技术方面,国内只有少数科研单位有能力制造,但在数字化及系统可靠性方面与国外还有相当差距。而这方面产品在诸如抽水蓄能电站机组启动及运行、大容量风机、压缩机和轧机传动、矿井卷扬机方面有很大需求。在中小频率技术方面,国内学者做了大量变频理论的基础研究。早在80年代,已成功引入矢量控制的理论,针对交流电机具有多变量、强耦合、非线性的特点,采用了线性解耦和非线性解耦的方法,探讨交流电机变频调速的控制策略。

  进入90年代,随着高性能单片机和数字信号处理的使用,国内学者紧跟国外最新控制策略,针对交流电机感应特点,采用高次谐波注入SPWM和空间磁通矢量PWM等方法,控制算法采用模糊控制,神经网络理论对感应电机转子电阻、磁链和转矩进行在线观测,在实现无速度传感器交流变频调速系统的研究上作了有益的基础研究。在新型电力电子器件应用方面,由于GTR,GTO,IGBT,IPM等全控制器件的使用,使得中小功率的变流主电路大大简化,大功率SCR,GTO,IG-BT,IGCT等器件的并联、串联技术应用,使高电压、大电流变频器产品的生产及应用成为现实。在控制器件方面,实现了从16位单片机到32位DSP的应用。国内学者一直致力于变频调速新型控制策略的研究,但由于半导体功率器件和DSP等器件依赖进口,使得变频器的制造成本较高,无法形成产业化,与国外的知名品牌相抗衡。国内几乎所有的产品都是普通的V/f控制,仅有少量的样机采用矢量控制,品种与质量还不能满足市场需要,每年需大量进口高性能的变频器。

  因此,国内交流变频调速技术产业状况表现如下:(1)变频器控制策略的基础研究与国外差距不大。(2)变频器的整机技术落后,国内虽有很多单位投入了一定的人力、物力,但由于力量分散,并没形成一定的技术和生产规模。(3)变频器产品所用半导体功率器件的制造业几乎是空白。(4)相关配套产业及行业落后。(5)产销量少,可靠性及工艺水平不高。

  2.变频调速技术未来发展的方向

  变频调速技术主要向着两个方向发展:一是实现高功率因数、高效率、无谐波干扰,研制具有良好电磁兼容性能的“绿色电器”;二是向变频器应用的深度和广度发展。随着变流器应用领域深度和广度的不断开拓,变频调速技术将越来越清楚地展示它在一个国家国民经济中的重要性。可以预料,现代控制理论和人工智能技术在变频调速技术的应用和推广,将赋予它更强的生命力和更高的技术含量。其发展方向具有如下几项:(1)实现高水平的控制;(2)开发清洁电能的变流器;(3)缩小装置的尺寸;(4)高速度的数字控制;(5)模拟与计算机辅助设计(CAD)技术。论文检测。

  3变频调速技术的应用

  纵观我国变频调速技术的应用,总的说来走的是一个由试验到实用,由零星到大范围,由辅助系统到生产装置,由单纯考虑节能到全面改善工艺水平,由手动控制到自动控制,由低压中小容量到高压大容量,一句话,由低级到高级的过程。论文检测。我国是一个能耗大国,60%的发电量被电动机消耗掉,据有关资料统计,我国大约有风机、水泵、空气压缩机4200万台,装机容量约1.1亿万千瓦,然而实际工作效率只有40%-60%,损耗电能占总发电量的40%,已有 经验 表明,应用变频调速技术,节电率一般可达10%-30%,有的甚至高达40%,节能潜力巨大。

  有关资料表明,我国火力发电厂有八种泵与风机配套电动机的总容量为12829MW,年总用电量为450。2亿千瓦小时。还有总容量约为3913MW的泵与风机需要进行节能改造,完成改造后,估计年节电量可达25。论文检测。69亿千瓦小时;冶金企业也是我国的能耗大户,单位产品能耗高出日本3倍,法国4。9倍,印度1。9倍,冶金企业使用的风机泵类非常多,实施变频改造,不仅可以大幅度节约电能,还可改善产品质量。

  参考文献

  [1]何庆华,陈道兵. 变频器常见故障的处理及日常维护[J]. 变频器世界, 2009, (04) .

  [2]龙卓珉,罗雪莲. 矩阵式变频调速系统抗干扰设计[J]. 变频器世界, 2009, (04) .

猜你喜欢:

1. 电气类科技论文

2. 电子应用技术论文

3. 电气控制与plc应用技术论文

4. 变频器应用技术论文

5. 变电运行技术论文

6. 光伏应用技术论文

求一篇3000字左右的论文,变频器的应用或发展这2个内容的。好文更多分

十大关键词 回顾变频器辉煌60年 
六十,这是最近每个中国人心里默念的一个数字。是啊,六十年,新中国崛起的六十年,一头连着满目疮痍的旧社会,一头连着繁荣兴旺的新中国!
  六十一甲子,历史长河中的一小簇浪花,在中国五千年的历史中,也不过是短暂的一瞬,新中国却完成了从一片废墟到世界强国过渡,一个看似不可能完成的任务。
  关键词一:增长
  根据本刊调查统计,中国变频器市场2008年为120多亿,品牌数量达220多家,装机容量为3000多万kW。在过去的十几年中,国内变频器市场保持着12%~15%的增长率,虽然2008年全球经济遭受了严重的冲击,中国的变频器市场仍然保持了10%左右的增长。
  关键词二:国产化
  进入21世纪,国产变频器得到了前所未有的发展,国产变频企业到现在已超过100多家,并且在技术上也有了很大的进步。
  关键词三:本土化
  过去十几年的中国变频器行业,外资企业大面积抢滩中国,在本土化上作了很多卓有成效的努力。国内变频器行业的飞速发展与外资企业的本土化战略密不可分。
  关键词四: 矢量控制
  矢量控制是将交流电机空间磁场矢量的方向作为坐标轴的基准方向,通过坐标变换将电机定子电流正交分解为与磁场方向一致的励磁电流分量和与磁场方向垂直的转矩电流分量,然后就可以像直流电机一样控制。矢量控制理论的提出为交流调速开辟了广阔的空间。
  关键词五:直接转矩控制
  直接转矩控制结构简单、控制信号处理的物理概念明确、系统的转矩响应迅速且无超调,是一种具有高性能的新型交流调速控制方式。直接转矩控制完成了交流调速的又一次飞跃。
  关键词六:高压变频器
  在变频器业界内有这样一种说法,谁拥有高压变频器技术优势,谁就将在变频器行业乃至工控领域占有一席之地。目前,国内已经有十几家企业有能力生产高压变频器,国产品牌约占市场的50%以上。
  关键词七:矩阵变频器
  矩阵式交-交变频器能实现功率为1,输入电流为正弦且能四象限运行,系统的功率密度大,并能实现轻量化。然而舆论却认为:尽管矩阵变频器具有非常诱人的前景,但由于成本太大,目前无法进行商业化应用。
  关键词八:并购与整合
  国外巨头将目光锁定在一些竞争力较强的国内变频器制造商,通过并购的方式快速进入中国市场或巩固其在亚太地区乃至全球产业链中的地位。国内部分变频器企业也通过构筑联盟等方式,扩大其在产业中的竞争力。
  关键词九:节能
  2008年4月1日,新的能源法正式施行,它在法律层面将节约资源确定为中国的基本国策。作为节能的最直接产品,变频器的发展遇到了一个难得的良好机遇。
  关键词十:国际化
  随着经济全球化、一体化的深入发展,中国变频器行业在积极“引进来”的同时,一批优秀企业也在积极地“走出去”。2008年的经济危机使全球的经济都受到了重创,用户越来越注重产品性价比,这为中国变频器企业“走出去”创造了前所未有的机会。
可能没有三千字哦

变频器原理

变频器的工作原理

1、基本概念
(1) VVVF
� 改变电压、改变频率(Variable Voltage and Variable Frequency)的缩写。
�(2) CVCF
�� 恒电压、恒频率(Constant Voltage and Constant Frequency)的缩写。
�� 各国使用的交流供电电源,无论是用于家庭还是用于工厂,其电压和频率均200V/60Hz(50Hz)或100V/60Hz(50Hz)。通常,把电压和频率固定不变的交流电变换为电压或频率可变的交流电的装置称作“变频器”。为了产生可变的电压和频率,该设备首先要把三相或单相交流电变换为直流电(DC)。然后再把直流电(DC)变换为三相或单相交流电(AC),我们把实现这种转换的装置称为“变频器”(inverter)。
变频器也可用于家电产品。使用变频器的家电产品中不仅有电机(例如空调等),还有荧光灯等产品。用于电机控制的变频器,既可以改变电压,又可以改变频率。但用于荧光灯的变频器主要用于调节电源供电的频率。汽车上使用的由电池(直流电)产生交流电的设备也以“inverter”的名称进行出售。变频器的工作原理被广泛应用于各个领域。例如计算机电源的供电,在该项应用中,变频器用于抑制反向电压、频率的波动及电源的瞬间断电。

2. 电机的旋转速度为什么能够自由地改变? ��
(1) r/min电机旋转速度单位:每分钟旋转次数,也可表示为rpm。例如:4极电机 60Hz 1,800 [r/min],4极电机 50Hz 1,500 [r/min],电机的旋转速度同频率成比例。

本文中所指的电机为感应式交流电机,在工业领域所使用的大部分电机均为此类型电机。感应式交流电机(以后简称为电机)的旋转速度近似地取决于电机的极数和频率。电机的极数是固定不变的。由于极数值不是一个连续的数值(为2的倍数,例如极数为2,4,6),所以不适合改变极对数来调节电机的速度。另外,频率是电机供电电源的电信号,所以该值能够在电机的外面调节后再供给电机,这样电机的旋转速度就可以被自由的控制。因此,以控制频率为目的的变频器,是做为电机调速设备的优选设备。
n = 60f/p,n: 同步速度,f: 电源频率 ,p: 电机极数,改变频率和电压是最优的电机控制方法 。如果仅改变频率,电机将被烧坏。特别是当频率降低时,该问题就非常突出。为了防止电机烧毁事故的发生,变频器在改变频率的同时必须要同时改变电压,例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。�例如:为了使电机的旋转速度减半,变频器的输出频率必须从60Hz改变到30Hz,这时变频器的输出电压就必须从200V改变到约100V。

3、关于散热的问题
如果要正确的使用变频器, 必须认真地考虑散热的问题。变频器的故障率随温度升高而成指数的上升。使用寿命随温度升高而成指数的下降。环境温度升高10度,变频器使用寿命减半。因此,我们要重视散热问题啊!在变频器工作时,流过变频器的电流是很大的, 变频器产生的热量也是非常大的,不能忽视其发热所产生的影响。
通常,变频器安装在控制柜中。我们要了解一台变频器的发热量大概是多少,可以用以下公式估算: 发热量的近似值= 变频器容量(KW)×55 [W]在这里, 如果变频器容量是以恒转矩负载为准的(过流能力150% * 60s) 如果变频器带有直流电抗器或交流电抗器, 并且也在柜子里面, 这时发热量会更大一些。 电抗器安装在变频器侧面或测上方比较好。这时可以用估算: 变频器容量(KW)×60 [W]因为各变频器厂家的硬件都差不多, 所以上式可以针对各品牌的产品. 注意: 如果有制动电阻的话,因为制动电阻的散热量很大, 因此最好安装位置最好和变频器隔离开, 如装在柜子上面或旁边等。那么, 怎样采能降低控制柜内的发热量呢? 当变频器安装在控制机柜中时,要考虑变频器发热值的问题。根据机柜内产生热量值的增加,要适当地增加机柜的尺寸。因此,要使控制机柜的尺寸尽量减小,就必须要使机柜中产生的热量值尽可能地减少。如果在变频器安装时,把变频器的散热器部分放到控制机柜的外面,将会使变频器有70%的发热量释放到控制机柜的外面。由于大容量变频器有很大的发热量,所以对大容量变频器更加有效。还可以用隔离板把本体和散热器隔开, 使散热器的散热不影响到变频器本体。这样效果也很好。变频器散热设计中都是以垂直安装为基础的,横着放散热会变差的! 关于冷却风扇一般功率稍微大一点的变频器, 都带有冷却风扇。同时,也建议在控制柜上出风口安装冷却风扇。进风口要加滤网以防止灰尘进入控制柜。 注意控制柜和变频器上的风扇都是要的,不能谁替代谁。

另外,散热问题还要注意以下两个问题:
(1)在海拔高于1000m的地方,因为空气密度降低,因此应加大柜子的冷却风量以改善冷却效果。理论上变频器也应考虑降容,1000m每-5%。但由于实际上因为设计上变频器的负载能力和散热能力一般比实际使用的要大, 所以也要看具体应用。 比方说在1500m的地方,但是周期性负载,如电梯,就不必要降容。 ��
(2)开关频率:变频器的发热主要来自于IGBT,IGBT的发热有集中在开和关的瞬间。 因此开关频率高时自然变频器的发热量就变大了。有的厂家宣称降低开关频率可以扩容, 就是这个道理。��

4、矢量控制是怎样使电机具有大的转矩的? ��
(1) 转矩提升:此功能增加变频器的输出电压,以使电机的输出转矩和电压的平方成正比的关系增加,从而改善电机的输出转矩。改善电机低速输出转矩不足的技术,使用"矢量控制",可以使电机在低速,如(无速度传感器时)1Hz(对4极电机,其转速大约为30r/min)时的输出转矩可以达到电机在50Hz供电输出的转矩(最大约为额定转矩的150%)。对于常规的V/F控制,电机的电压降随着电机速度的降低而相对增加,这就导致由于励磁不足,而使电机不能获得足够的旋转力。为了补偿这个不足,变频器中需要通过提高电压,来补偿电机速度降低而引起的电压降。变频器的这个功能叫做"转矩提升"(*1)。转矩提升功能是提高变频器的输出电压。然而即使提高很多输出电压,电机转矩并不能和其电流相对应的提高。 因为电机电流包含电机产生的转矩分量和其它分量(如励磁分量)。"矢量控制"把电机的电流值进行分配,从而确定产生转矩的电机电流分量和其它电流分量(如励磁分量)的数值。"矢量控制"可以通过对电机端的电压降的响应,进行优化补偿,在不增加电流的情况下,允许电机产出大的转矩。此功能对改善电机低速时温升也有效。 ���

5、变频器制动的有关问题
(1) 制动的概念:指电能从电机侧流到变频器侧(或供电电源侧),这时电机的转速高于同步转速.负载的能量分为动能和势能. 动能(由速度和重量确定其大小)随着物体的运动而累积。当动能减为零时,该事物就处在停止状态。机械抱闸装置的方法是用制动装置把物体动能转换为摩擦和能消耗掉。对于变频器,如果输出频率降低,电机转速将跟随频率同样降低。这时会产生制动过程. 由制动产生的功率将返回到变频器侧。这些功率可以用电阻发热消耗。在用于提升类负载,在下降时, 能量(势能)也要返回到变频器(或电源)侧,进行制动.这种操作方法被称作"再生制动",而该方法可应用于变频器制动。在减速期间,产生的功率如果不通过热消耗的方法消耗掉,而是把能量返回送到变频器电源侧的方法叫做"功率返回再生方法"。在实际中,这种应用需要"能量回馈单元"选件。��

(2)怎样提高制动能力? ��
为了用散热来消耗再生功率,需要在变频器侧安装制动电阻。为了改善制动能力,不能期望靠增加变频器的容量来解决问题。请选用"制动电阻"、"制动单元"或"功率再生变换器"等选件来改善变频器的制动容量

6、当电机的旋转速度改变时,其输出转矩会怎样? �
(1): 工频电源由电网提供的动力电源(商用电源) ��
(2): 起动电流当电机开始运转时,变频器的输出电流变频器驱动时的起动转矩和最大转矩要小于直接用工频电源驱动。 ��
我们经常听到下面的说法:"电机在工频电源供电时(*1)时,电机的起动和加速冲击很大,而当使用变频器供电时,这些冲击就要弱一些"。如果用大的电压和频率起动电机,例如使用工频电网直接供电,就会产生一个大的起动冲击(大的起动电流 (*2) )。而当使用变频器时,变频器的输出电压和频率是逐渐加到电机上的,所以电机产生的转矩要小于工频电网供电的转矩值。所以变频器驱动的电机起动电流要小些。通常,电机产生的转矩要随频率的减小(速度降低)而减些�减小的实际数据在有的变频器手册中会给出说明。通过使用磁通矢量控制的变频器,将改善电机低速时转矩的不足,甚至在低速区电机也可输出足够的转矩。当变频器调速到大于60Hz频率时,电机的输出转矩将降低。通常的电机是按50Hz(60Hz)电压设计制造的,其额定转矩也是在这个电压范围内给出的。因此在额定频率之下的调速称为恒转矩调速. (T=Te,P<=Pe) 变频器输出频率大于50Hz频率时,电机产生的转矩要以和频率成反比的线性关系下降。当电机以大于60Hz频率速度运行时,电机负载的大小必须要给予考虑,以防止电机输出转矩的不足。举例,电机在100Hz时产生的转矩大约要降低到50Hz时产生转矩的1/2。因此在额定频率之上的调速称为恒功率调速(P=Ue*Ie)。

三晶 S350系列是新一代高性能矢量变频器,有如下特点:
■采用最新高速电机控制专用芯片DSP,确保矢量控制快速响应
■硬件电路模块化设计,确保电路稳定高效运行
■外观设计结合欧洲汽车设计理念,线条流畅,外形美观
■结构采用独立风道设计,风扇可自由拆卸,散热性好
■无PG矢量控制、有PG矢量控制、转矩控制、V/F控制均可选择
■强大的输入输出多功能可编程端子,调速脉冲输入,两路模拟量输出
■独特的“挖土机”自适应控制特性,对运行期间电机转矩上限自动限制,有效抑制过流频繁跳闸
■宽电压输入,输出电压自动稳压(AVR),瞬间掉电不停机,适应能力更强
■内置先进的 PID 算法 ,响应快、适应性强、调试简单 ; 16 段速控制,简易PLC 实现定时、定速、定向等多功能逻辑控制,多种灵活的控制方式以满足各种不同复杂工况要求
■内置国际标准的 MODBUS RTU ASCII 通讯协议,用户可通过PC/PLC控制上位机等实现变频器485通讯组网集中控制

求转差频率控制的变频调速系统设计毕业论文。。

摘 要
现在流行的异步电动机的调速方法可分为两种:变频调速和变压调速,其中异步电动机的变频调速应用较多,它的调速方法可分为两种:变频变压调速和矢量控制法,前者的控制方法相对简单,有二十多年的发展经验。因此应用的比较多,目前市场上出售的变频器多数都是采用这种控制方法。

关键词: 交流调速系统, 异步电动机, PWM技术.....

目录
摘 要 1
前言 3
1.1 设计的目的和意义 3
1.2变频器调速运行的节能原理 3
第二章 变频器 4
2.1变频器选型: 4
2.2变频器控制原理图设计: 4
2.3变频器控制柜设计 6
2.4变频器接线规范 7
2.5变频器的运行和相关参数的设置 8
2.6 常见故障分析 8
第三章 交流调速系统概述 10
3.1 交流调速系统的特点 10
第四章变频电动机的特点 14
4.1电磁设计 14
4.2结构设计 14
第五章 变频电机主要特点和变频电机的构造原理 15
5.1 变频专用电动机具有如下特点: 15
5.2变频电机的构造原理 15
第六章 交流异步电动机 16
6.1交流异步电动机变频调速基本原理 16
6.2 变频变压(VVVF)调速时电动机的机械特性 18
6.3变压变频运行时机械特性分折 19
第七章 PWM技术原理 24
7.1 正弦波脉宽调制(SPWM) 25
7.2单极性SPWM法 ..................................................................................................................26
结论 31
致 谢 32
参 考 文 献 33
前言
1.1 设计的目的和意义
近年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,交流传动与控制技术成为目前发展最为迅速的技术之一,电气传动技术面临着一场历史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节电效果,广泛的适用范围及其它许多优点而被国内外公认为最有发展前途的调速方式。深入了解交流传动与控制技术的走向,具有十分积极的意义.
1.2变频器调速运行的节能原理
实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近正弦波的交变电压下运行,转矩脉冲小,调速范围宽。

采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/rain。而采用PAM控制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速增速和减速能力。同时,由于PAM在调整电压时具有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性,可抑制高次谐波的生成,减小对电网的污染。采用该控制方式的变频调速技术后,电机定子电流下降64% ,电源频率降低30% ,出胶压力降低57% 。由电机理论可知,异步电机的转速可表示为:n=60•f 8(1—8)/p
第二章 变频器
变频器是利用电力半导体器件的通断作用将工频电源变换为另一频率的电能控制装置。我们现在使用的变频器主要采用交—直—交方式(VVVF变频或矢量控制变频),先把工频交流电源通过整流器转换成直流电源,然后再把直流电源转换成频率、电压均可控制的交流电源以供给电动机。变频器的电路一般由整流、中间直流环节、逆变和控制4个部分组成。整流部分为三相桥式不可控整流器,逆变部分为IGBT三相桥式逆变器,且输出为PWM波形,中间直流环节为滤波、直流储能和缓冲无功功率。
2.1变频器选型:
变频器选型时要确定以下几点:
1) 采用变频的目的;恒压控制或恒流控制等。
2) 变频器的负载类型;如叶片泵或容积泵等,特别注意负载的性能曲线,性能曲线决定了应用时的方式方法。
3) 变频器与负载的匹配问题;
I.电压匹配;变频器的额定电压与负载的额定电压相符。
II. 电流匹配;普通的离心泵,变频器的额定电流与电机的额定电流相符。对于特殊的负载如深水泵等则需要参考电机性能参数,以最大电流确定变频器电流和过载能力。
III.转矩匹配;这种情况在恒转矩负载或有减速装置时有可能发生。
4) 在使用变频器驱动高速电机时,由于高速电机的电抗小,高次谐波增加导致输出电流值增大。因此用于高速电机的变频器的选型,其容量要稍大于普通电机的选型。
5) 变频器如果要长电缆运行时,此时要采取措施抑制长电缆对地耦合电容的影响,避免变频器出力不足,所以在这样情况下,变频器容量要放大一档或者在变频器的输出端安装输出电抗器。
6) 对于一些特殊的应用场合,如高温,高海拔,此时会引起变频器的降容,变频器容量要放大一挡。
2.2变频器控制原理图设计:
1) 首先确认变频器的安装环境;
I.工作温度。变频器内部是大功率的电子元件,极易受到工作温度的影响,产品一般要求为0~55℃,但为了保证工作安全、可靠,使用时应考虑留有余地,最好控制在40℃以下。在控制箱中,变频器一般应安装在箱体上部,并严格遵守产品说明书中的安装要求,绝对不允许把发热元件或易发热的元件紧靠变频器的底部安装。
II. 环境温度。温度太高且温度变化较大时,变频器内部易出现结露现象,其绝缘性能就会大大降低,甚至可能引发短路事故。必要时,必须在箱中增加干燥剂和加热器。在水处理间,一般水汽都比较重,如果温度变化大的话,这个问题会比较突出。
III.腐蚀性气体。使用环境如果腐蚀性气体浓度大,不仅会腐蚀元器件的引线、印刷电路板等,而且还会加速塑料器件的老化,降低绝缘性能。
IV. 振动和冲击。装有变频器的控制柜受到机械振动和冲击时,会引起电气接触不良。淮安热电就出现这样的问题。这时除了提高控制柜的机械强度、远离振动源和冲击源外,还应使用抗震橡皮垫固定控制柜外和内电磁开关之类产生振动的元器件。设备运行一段时间后,应对其进行检查和维护。
V. 电磁波干扰。变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰。因此,柜内仪表和电子系统,应该选用金属外壳,屏蔽变频器对仪表的干扰。所有的元器件均应可靠接地,除此之外,各电气元件、仪器及仪表之间的连线应选用屏蔽控制电缆,且屏蔽层应接地。如果处理不好电磁干扰,往往会使整个系统无法工作,导致控制单元失灵或损坏。
2) 变频器和电机的距离确定电缆和布线方法;
I.变频器和电机的距离应该尽量的短。这样减小了电缆的对地电容,减少干扰的发射源。
II. 控制电缆选用屏蔽电缆,动力电缆选用屏蔽电缆或者从变频器到电机全部用穿线管屏蔽。
III.电机电缆应独立于其它电缆走线,其最小距离为500mm。同时应避免电机电缆与其它电缆长距离平行走线,这样才能减少变频器输出电压快速变化而产生的电磁干扰。如果控制电缆和电源电缆交叉,应尽可能使它们按90度角交叉。与变频器有关的模拟量信号线与主回路线分开走线,即使在控制柜中也要如此。
IV. 与变频器有关的模拟信号线最好选用屏蔽双绞线,动力电缆选用屏蔽的三芯电缆(其规格要比普通电机的电缆大档)或遵从变频器的用户手册。
3) 变频器控制原理图;
I.主回路:电抗器的作用是防止变频器产生的高次谐波通过电源的输入回路返回到电网从而影响其他的受电设备,需要根据变频器的容量大小来决定是否需要加电抗器;滤波器是安装在变频器的输出端,减少变频器输出的高次谐波,当变频器到电机的距离较远时,应该安装滤波器。虽然变频器本身有各种保护功能,但缺相保护却并不完美,断路器在主回路中起到过载,缺相等保护,选型时可按照变频器的容量进行选择。可以用变频器本身的过载保护代替热继电器。
II. 控制回路:具有工频变频的手动切换,以便在变频出现故障时可以手动切工频运行,因输出端不能加电压,固工频和变频要有互锁。
4) 变频器的接地;
变频器正确接地是提高系统稳定性,抑制噪声能力的重要手段。变频器的接地端子的接地电阻越小越好,接地导线的截面不小于4mm,长度不超过5m。变频器的接地应和动力设备的接地点分开,不能共地。信号线的屏蔽层一端接到变频器的接地端,另一端浮空。变频器与控制柜之间电气相通。
2.3变频器控制柜设计
变频器应该安装在控制柜内部,控制柜在设计时要注意以下问题
1) 散热问题:变频器的发热是由内部的损耗产生的。在变频器中各部分损耗中主要以主电路为主,约占98%,控制电路占2%。为了保证变频器正常可靠运行,必须对变频器进行散热我们通常采用风扇散热;变频器的内装风扇可将变频器的箱体内部散热带走,若风扇不能正常工作,应立即停止变频器运行;大功率的变频器还需要在控制柜上加风扇,控制柜的风道要设计合理,所有进风口要设置防尘网,排风通畅,避免在柜中形成涡流,在固定的位置形成灰尘堆积;根据变频器说明书的通风量来选择匹配的风扇,风扇安装要注意防震问题。
2) 电磁干扰问题:
I.变频器在工作中由于整流和变频,周围产生了很多的干扰电磁波,这些高频电磁波对附近的仪表、仪器有一定的干扰,而且会产生高次谐波,这种高次谐波会通过供电回路进入整个供电网络,从而影响其他仪表。如果变频器的功率很大占整个系统25%以上,需要考虑控制电源的抗干扰措施。
II.当系统中有高频冲击负载如电焊机、电镀电源时,变频器本身会因为干扰而出现保护,则考虑整个系统的电源质量问题。
3) 防护问题需要注意以下几点:
I.防水防结露:如果变频器放在现场,需要注意变频器柜上方不的有管道法兰或其他漏点,在变频器附近不能有喷溅水流,总之现场柜体防护等级要在IP43以上。
II. 防尘:所有进风口要设置防尘网阻隔絮状杂物进入,防尘网应该设计为可拆卸式,以方便清理,维护。防尘网的网格根据现场的具体情况确定,防尘网四周与控制柜的结合处要处理严密。
III.防腐蚀性气体:在化工行业这种情况比较多见,此时可以将变频柜放在控制室中。
2.4变频器接线规范
信号线与动力线必须分开走线:使用模拟量信号进行远程控制变频器时,为了减少模拟量受来自变频器和其它设备的干扰,请将控制变频器的信号线与强电回路(主回路及顺控回路)分开走线。距离应在30cm以上。即使在控制柜内,同样要保持这样的接线规范。该信号与变频器之间的控制回路线最长不得超过50m。
信号线与动力线必须分别放置在不同的金属管道或者金属软管内部:连接PLC和变频器的信号线如果不放置在金属管道内,极易受到变频器和外部设备的干扰;同时由于变频器无内置的电抗器,所以变频器的输入和输出级动力线对外部会产生极强的干扰,因此放置信号线的金属管或金属软管一直要延伸到变频器的控制端子处,以保证信号线与动力线的彻底分开。
1) 模拟量控制信号线应使用双股绞合屏蔽线,电线规格为0.75mm2。在接线时一定要注意,电缆剥线要尽可能的短(5-7mm左右),同时对剥线以后的屏蔽层要用绝缘胶布包起来,以防止屏蔽线与其它设备接触引入干扰。
2) 为了提高接线的简易性和可靠性,推荐信号线上使用压线棒端子。
2.5变频器的运行和相关参数的设置
变频器的设定参数多,每个参数均有一定的选择范围,使用中常常遇到因个别参数设置不当,导致变频器不能正常工作的现象。
控制方式:即速度控制、转距控制、PID控制或其他方式。采取控制方式后,一般要根据控制精度,需要进行静态或动态辨识。
最低运行频率:即电机运行的最小转速,电机在低转速下运行时,其散热性能很差,电机长时间运行在低转速下,会导致电机烧毁。而且低速时,其电缆中的电流也会增大,也会导致电缆发热。
最高运行频率:一般的变频器最大频率到60Hz,有的甚至到400 Hz,高频率将使电机高速运转,这对普通电机来说,其轴承不能长时间的超额定转速运行,电机的转子是否能承受这样的离心力。
载波频率:载波频率设置的越高其高次谐波分量越大,这和电缆的长度,电机发热,电缆发热变频器发热等因素是密切相关的。
电机参数:变频器在参数中设定电机的功率、电流、电压、转速、最大频率,这些参数可以从电机铭牌中直接得到。
跳频:在某个频率点上,有可能会发生共振现象,特别在整个装置比较高时;在控制压缩机时,要避免压缩机的喘振点。
2.6 常见故障分析
1) 过流故障:过流故障可分为加速、减速、恒速过电流。其可能是由于变频器的加减速时间太短、负载发生突变、负荷分配不均,输出短路等原因引起的。这时一般可通过延长加减速时间、减少负荷的突变、外加能耗制动元件、进行负荷分配设计、对线路进行检查。如果断开负载变频器还是过流故障,说明变频器逆变电路已环,需要更换变频器。
2) 过载故障:过载故障包括变频过载和电机过载。其可能是加速时间太短,电网电压太低、负载过重等原因引起的。一般可通过延长加速时间、延长制动时间、检查电网电压等。负载过重,所选的电机和变频器不能拖动该负载,也可能是由于机械润滑不好引起。如前者则必须更换大功率的电机和变频器;如后者则要对生产机械进行检修。
3) 欠压:说明变频器电源输入部分有问题,需检查后才可以运行。

第三章 交流调速系统概述
3.1 交流调速系统的特点

  对于可调速的电力拖动系统,工程上往往把它分为直流调速系统和交流调速系统两类。这主要是根据采用什么电流制型式的电动机来进行电能与机械能的转换而划分的,所谓交流调速系统,就是以交流电动机作为电能—机械能的转换装置,并对其进行控制以产生所需要的转速。
  纵观电力拖动的发展过程,交、直流两大调速系统一直并存于各个工业领域,虽然由于各个时期科学技术的发展使得它们所处的地位有所不同,但它们始终是随着工业技术的发展,特别是随着电力电子元器件的发展而在相互竞争。在过去很长一段时期,由于直流电动机的优良调速性能,在可逆、可调速与高精度、宽调速范围的电力拖动技术领域中,几乎都是采用直流调速系统。然而由于直流电动机其有机械式换向器这一致命的弱点,致使直流电动机制造成本高、价格昂贵、维护麻烦、使用环境受到限制,其自身结构也约束了单台电机的转速,功率上限,从而给直流传动的应用带来了一系列的限制。相对于直流电动机来说,交流电动机特别是鼠笼式异步电动机具有结构简单,制造成本低,坚固耐用,运行可靠,维护方便,惯性小,动态响应好,以及易于向高压、高速和大功率方向发展等优点。因此,近几十年以来,不少国家都在致力于交流调速系统的研究,用没有换向器的交流电动机实现调速来取代直流电动机,突破它的限制。
  随着电力电子器件,大规模集成电路和计算机控制技术的迅速发展,以及现代控制理论向交流电气传动领域的渗透,为交流调速系统的开发研究进一步创造了有利的条件。诸如交流电动机的串级调速、各种类型的变频调速,特别是矢量控制技术的应用,使得交流调速系统逐步具备了宽的调速范围、较高的稳速精度、快速的动态响应以及在四象限作可逆运行等良好的技术性能。现在从数百瓦的伺服系统到数百千瓦的特大功率高速传动系统,从一般要求的小范围调速传动到高精度、快响应、大范围的调速传动,从单机传动到多机协调运转,已几乎都可采用交流调速传动。交流调速传动的客观发展趋势已表明,它完全可以和直流传动相媲美、相抗衡,并有取代的趋势。
3.2 交流调速常用的调速方案及其性能比较
  由电机学知,交流异步电动机的转速公式如下:
  
  n= 60ƒ1 (1-s) pn (1-1)
  
  式中 Pn——电动机定子绕阻的磁极对数;
   f1——电动机定子电压供电频率;
   s ——电动机的转差率。
  从式(1-1)中可以看出,调节交流异步电动机的转速有三大类方案。
  
  
  (1)改变电动机的磁极对数
  由异步电动机的同步转速
  
  no= 60ƒ1 pn
  
  可知,在供电电源频率f1不变的条件下,通过改接定子绕组的连接方式来改变异步电动机定子绕组的磁极对数Pn,即可改变异步电动机的同步转速n0,从而达到调速的目的。这种控制方式比较简单,只要求电动机定子绕组有多个抽头,然后通过触点的通断来改变电动机的磁极对数。采用这种控制方式,电动机转速的变化是有级的,不是连续的,一般最多只有三档,适用于自动化程度不高,且只须有级调速的场合。
  (2)变频调速
   从式(1—1)中可以看出,当异步电动机的磁极对数Pn一定,转差率s—定时,改变定子绕组的供电频率f1可以达到调速目的,电动机转速n基本上与电源的频率f1成正比,因此,平滑地调节供电电源的频率,就能平滑,无级地调节异步电动机的转速。变频调速调速范围大,低速特性较硬,基频f=50Hz以下,属于恒转矩调速方式,在基频以上,属于恒功率调速方式,与直流电动机的降压和弱磁调速十分相似。且采用变频起动更能显著改善交流电动机的起动性能,大幅度降低电机的起动电流,增加起动转矩。所以变频调速是交流电动机的理想调速方案。
  (3)变转差率调速
  改变转差率调速的方法很多,常用的方案有:异步电动机定子调压调速,电磁转差离合器调速和绕线式异步电动机转子回路串电阻调速,串级调速等。
  定子调压调速系统就是在恒定交流电源与交流电动机之间接入晶闸管作为交流电压控制器,这种调压调速系统仅适用于一些属短时与重复短时作深调速运行的负载。为了能得到好的调速精度与能稳定运行,一般采用带转速负反馈的控制方式。所使用的电动机可以是绕线式异电动机或是有高转差率的鼠笼式异步电动机。
  电磁转差离台器调速系统,是由鼠笼式异步电动机、电磁转差离合器以及控制装置组合而成。鼠笼式电动机作为原动机以恒速带动电磁离合器的电枢转动,通过对电磁离合器励磁电流的控制实现对其磁极的速度调节。这种系统一般也采用转速闭环控制。
  绕线式异步电动机转子回路串电阻调速就是通过改变转子回路所串电阻来进行调速,这种调速方法简单,但调速是有级的,串入较大附加电阻后,电动机的机械特性很软,低速运行损耗大,稳定性差。
  绕线式异步电动机串级调速系统就是在电动机的转子回路中引入与转子电势同频率的反向电势Ef,只要改变这个附加的,同电动机转子电压同频率的反向电势Ef,就可以对绕线式异步电动机进行平滑调速。Ef越大,电动机转速越低。
   上述这些调速的共同特点是调速过程中没有改变电动机的同步转速n0,所以低速时,转差率s较大。
   在交流异步电动机中,从定子传入转子的电磁功率PM可以分成两部分:一部分P2=(1—s)PM是拖动负载的有效功率,另一部分是转差功率PS=sPM,与转差率s成正比,它的去向是调速系统效率高低的标志。就转差功率的去向而言,交流异步电动机调速系统可以分为三种:
  1)转差功率消耗型
   这种调速系统全部转差功率都被消耗掉,用增加转差功率的消耗来换取转速的降低,转差率s增大,转差功率PS=sPM增大,以发热形式消耗在转子电路里,使得系统效率也随之降低。定子调压调速、电磁转差离合器调速及绕线式异步电动机转子串电阻调速这三种方法属于这一类,这类调速系统存在着调速范围愈宽,转差功率PS愈大,系统效率愈低的问题,故不值得提倡。
  2)转差功率回馈型
   这种调速系统的大部分转差功率通过变流装置回馈给电网或者加以利用,转速越低回馈的功率越多,但是增设的装置也要多消耗一部分功率。绕线式异步电动机转子串级调速即属于这一类,它将转差功率通过整流和逆变作用,经变压器回馈到交流电网,但没有以发热形式消耗能量,即使在低速时,串级调速系统的效率也是很高的。
  3)转差功率不变型
   这种调速系统中,转差功率仍旧消耗在转子里,但不论转速高低,转差功率基本不变。如变极对数调速,变频调速即属于这一类,由于在调速过程中改变同步转速n0,转差率s是一定的,故系统效率不会因调速而降低。在改变n0的两种调速方案中,又因变极对数调速为有极调速,且极数很有限,调速范围窄,所以,目前在交流调速方案中,变频调速是最理想,最有前途的交流调速方案。

第四章变频电动机的特点
4.1电磁设计
对普通异步电动机来说,再设计时主要考虑的性能参数是过载能力、启动性能、效率和功率因数。而变频电动机,由于临界转差率反比于电源频率,可以在临界转差率接近1时直接启动,因此,过载能力和启动性能不在需要过多考虑,而要解决的关键问题是如何改善电动机对非正弦波电源的适应能力。方式一般如下:

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页