数学应用是数学 教育 的重要内容,呼唤数学应用意识,提高数学应用教学质量,已成为广大数学教育工作者的共识。下面是我为大家推荐的数学建模论文,供大家参考。
数学建模论文 范文 一:建模在高等数学教学中的作用及其具体运用
一、高等数学教学的现状
(一) 教学观念陈旧化
就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及 逻辑思维 能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。
(二) 教学 方法 传统化
教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。
二、建模在高等数学教学中的作用
对学生的 想象力 、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。
高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。
三、将建模思想应用在高等数学教学中的具体 措施
(一) 在公式中使用建模思想
在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。
(二) 讲解习题的时候使用数学模型的方式
课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。
(三) 组织学生积极参加数学建模竞赛
一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。
四、结束语
高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。
参考文献
[1] 谢凤艳,杨永艳. 高等数学教学中融入数学建模思想[J]. 齐齐哈尔师范高等专科学校学报,2014 ( 02) : 119 -120.
[2] 李薇. 在高等数学教学中融入数学建模思想的探索与实践[J]. 教育实践与改革,2012 ( 04) : 177 -178,189.
[3] 杨四香. 浅析高等数学教学中数学建模思想的渗透 [J].长春教育学院学报,2014 ( 30) : 89,95.
[4] 刘合财. 在高等数学教学中融入数学建模思想 [J]. 贵阳学院学报,2013 ( 03) : 63 -65.
数学建模论文范文二:数学建模教学中数学素养和创新意识的培养
前言
创新人才的培养是新的时代对高等教育提出的新要求.培养高质量、高层次人才不仅需要传统意义上的逻辑思维能力、推理演算能力,更需要具备对所涉及的专业问题建立数学模型,进行数学实验,利用先进的计算工具、数学软件进行数值求解和做出定量分析的能力.
因此,如何培养学生的求知欲,如何培养学生的学习积极性,如何培养学生的创新意识和创新能力已成为高等教育迫切需要解决的问题[1].
在数学教学中,传统的数学教学往往注重知识的传授、公式的推导、定理的证明以及应用能力的培养.尽管这种模式并非一无是处,甚至有时还相当成功,但它不能有效地激发广大学生的求知欲,不能有效地培养学生的学习积极性,不能有效地培养学生的创新意识和创新能力.
而如何培养学生的创新意识和创新能力,既没有现成的模式可循,也没有既定的方法可套用,只能靠广大教师不断探索和实践.
近年来,国内几乎所有大学都相继开设了数学建模和数学实验课,在人才培养和学科竞赛上都取得了显着的成效.数学建模是指对特定的现象,为了某一目的作一些必要的简化和假设,运用适当的数学理论得到的一个数学结构,这个数学结构即为数学模型,建立这个数学模型的过程即为数学建模[2].
所谓数学教学中的数学实验,就是从给定的实际问题出发,借助计算机和数学软件,让学生在数字化的实验中去学习和探索,并通过自己设计和动手,去体验问题解决的教学活动过程.数学实验是数学建模的延伸,是数学学科知识在计算机上的实现,从而使高度抽象的数学理论成为生动具体的可视性过程.
因此,数学实验就是一个以学生为主体,以实际问题为载体,以计算机为媒体,以数学软件为工具,以数学建模为过程,以优化数学模型为目标的数学教学活动过程[3-7].
因此,如何把实际问题与所学的数学知识联系起来;如何根据实际问题提炼数学模型;建模的方法和技巧;数学模型所涉及到的各类算法以及这些算法在相应数学软件平台上的实现等问题就成了我们研究的重点.现结合教学实践,谈谈笔者在数学建模和数学实验课的教学中 总结 的几点看法.
1掌握数学语言独有的特点和表达形式
准确使用数学语言模拟现实模型数学语言是表达数学思想的专门语言,它是自然语言发展到高级状态时的特殊形式,是人类基于思维、认知的特殊需要,按照公有思维、认知法则而制造出来的语言及其体系,给人们提供一套完整的并不断精细、完善、完美的思维和认知程序、规则、方法.
用数学语言进行交流和良好的符号意识是重要的数学素质.数学建模教学是以训练学生的思维为核心,而语言和思维又是密不可分的.能否成功地进行数学交流,不仅涉及一个人的数学能力,而且也涉及到一个人的思路是否开阔,头脑是否开放,是否尊重并且愿意考虑各方面的不同意见,是否乐于接受新的思想感情观念和新的行为方式.数学建模是利用数学语言模拟现实的模型,把现实模型抽象、简化为某种数学结构是数学模型的基本特征.
现实问题要通过数学方法获得解决,首先必须将其中的非数学语言数学化,摒弃其中表面的具体叙述,抽象出其中的数学本质,形成数学模型.通过分析现实中的数学现象,对常见的数学现象进行数学语言描述,从而将现实问题转化为数学问题来解决.
2借助数学建模教学使学生学会使用数学语言构建数学模型
根据现阶段普通高校学生年龄特点和知识结构,我们可以通过数学建模对学生加强数学语言能力的培养,让他们熟练掌握数学语言,以期提升学生的形象思维、 抽象思维 、逻辑推理和表达能力,提高学生的数学素质和数学能力.在数学建模教学过程中,教师要力求做到用词准确,叙述精炼,前后连贯,逻辑性强.在问题的重述和分析中揭示数学语言的严谨性;在数学符号说明和模型的建立求解中揭示数学语言的简约性,彰显数学语言的逻辑性、精确性和情境性,突出数学符号语言含义的深刻性;在模型的分析和结果的罗列中,显示图表语言的直观性,展示数学语言的确定意义、语义和语法;在模型的应用和推广中,显示出数学符号语言的推动力的独特魅力.
而在学生的书面作业或论文 报告 中,注意培养学生数学语言表达的规范性.书面表达是数学语言表达能力的一种重要形式.通过教师数学建模教学表述规范的样板和学生严格的书面表达的长期训练来完成.在书面表达上,主要应做到思维清晰、叙述简洁、书写规范.例如在建立模型和求解上,严格要求学生在模型的假设,符号说明、模型的建立和求解,图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.
对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面要及时纠正.
3借助数学实验教学,展示高度抽象
的数学理论成为具体的可视性过程要培养创新人才,上好数学实验课,首先要有创新型的教师,建立起一支"懂实验""会试验""能创新"的教师队伍.由于数学实验课理论联系实际,特点鲜明,内容新颖,方法特别,所以能够上好数学实验课,教师就必须具备扎实的数学理论功底,计算机软件应用操作能力,良好的科研素质与科研能力.
因此,数学与统计学院就需要选取部分教师,主攻数学建模、数学实验、数值分析课程.优先选派数学实验教师定期出去进修深造提高,以便真正形成一支"懂实验""会实验""能创新"的教师队伍.实验课的地位要给予应有的重视.我院现存的一个重要表现就是实验设备不足,实验室开放时间不够.为了确保数学实验有物质条件上的保证,必须建立数学实验与数学建模实验室.
配备足够的高性能计算机,全天候对学生开放,尽快尽早淘汰陈旧的计算机设备.精心设计实验内容,强化典型实验,培养宽厚扎实理论水平;精选实验内容,加强学生之间的互动,培养协作意识和团队精神.在实验教学时数有限的情况下,依据培养目标和教学纲要,对教材中的实验内容进行选择、设计.要最大限度地开发学生的创造性思维,数学实验在项目设计过程中应当遵循适应性、趣味性、灵活性、科学性、渐进性和应用性的基本原则.
选择基础性试验,重点培养宽厚扎实的理论水平,提高对数学理论与方法的深刻理解.熟练各种数学软件的应用与开发,提高计算机应用能力,增强实践应用技能;增加综合性实验和设计性实验,从实际问题出发,培养学生分析问题,解决问题的能力,强化 创新思维 的开发.
教学方法上实行启发参与式教学法:启发-参与-诱导-提高.充分发挥学生主体作用,以学生亲自动脑动手为主.
教师先提出问题,对实验内容,实验目标,进行必要的启发;然后充分发挥学生主体作用,学生动手操作,每个命令、语句学生都要在计算机上操作得到验证;根据学生出现的情况,老师总结学生出现的问题,进行进一步的诱导;再让其理清思路,再次动手实践,从理论与实践的结合上获得能力上提高.数学实验是一门强调实践、强调应用的课程.
数学实验将数学知识、数学建模与计算机应用三者融为一体,可以使学生深入理解数学的基本概念和理论,掌握数值计算方法,培养学生运用所学知识使用计算机解决实际问题的能力,是一门实践性很强的课程.在这一教学活动中,通过数学软件如MAT-LAB、Mathematica、SPSS的教学和综合数学实验,如碎片拼接、罪犯藏匿地点的查找、光伏电池的连接、野外漂流管理、水资源的有效利用、葡萄酒的分类等,通这些实际问题最终的数学化的解决,将高度抽象的数学理论呈现为生动具体的可视性结论,展示数学模型与计算机技术相结合的高度抽象的数学理论成为生动具体的可视性过程.
4突出学生的主体作用,循序渐进培养学生学习、实践到创新
实践教学的目的是要提高学生应用所学知识分析、解决实际问题的综合能力.
在教学中,搭建数学建模与数学实验这个平台,提示学生用计算机解决经过简化的问题,或自己提出实验问题,设计实验步骤,观察实验结果,尤其是将庞大繁杂的数学计算交给计算机完成,摆脱过去害怕数学计算、画函数图像、解方程等任务,避免学生一见到庞大的数学计算公式就会产生畏惧心理,从而丧失信心,让学生体会到在数学面前自己由弱者变成了强者,由失败者变成了胜利者、成功者.
再设计让学生自己动手去解决的各类实际问题,使学生通过对实际问题的仔细分析、作出合理假设、建立模型、求解模型及对结果进行分析、检验、总结等,解决实际问题,逐步培养学生熟练使用计算机和数学软件的能力以及运用数学知识解决实际问题的意识和能力.
同时,给学生提供大量的上机实践的机会,提高学生应用数学软件的能力.一个实际问题构成一个实验内容,通过实践环节加大训练力度,并要求学生通过计算机编程求解、编写实验报告等形式,达到提高学生解决实际问题综合能力的目标.数学建模与数学实验课程通过实际问题---方法与分析---范例---软件---实验---综合练习的教学过程,以实际问题为载体,以大学基本数学知识为基础,采用自学、讲解、讨论、试验、文献阅读等方式,在教师的逐步指导下,学习基本的建模与计算方法.
通过学习查阅文献资料、用所学的数学知识和计算机技术,借助适当的数学软件,学会用数学知识去解决实际问题的一些基本技巧与方法.通过实验过程的学习,加深学生对数学的了解,使同学们应用数学方法的能力和发散性思维的能力得到进一步的培养.实践已证明,数学建模与数学实验课这门课深受学生欢迎,它的教学无论对培养创新型人才还是应用型人才都能发挥其他课程无法替代的作用.
5具体的教学策略和途径
数学建模课程和数学实验课程同时开设,在课程教学中,要尽可能做到如下几个方面:
1)注重背景的阐述
让学生了解问题背景,才能知道解决实际问题需要哪些知识,才能做出贴近实际的假设,而这恰恰是建立一个能够解决实际问题的数学模型的前提.再者,问题背景越是清晰,越能够体现问题的重要性,这样才能激发学生解决实际问题的兴趣.
2)注重模型建立与求解过程中的数学语言的使用
在做好实际问题的简化后,使用精炼的数学符号表示现实含义是数学语言使用的彰显.基于必要的背景知识,建立符合现实的数学模型,通过多个方面对模型进行修正,向学生展示不同的条件相对应的数学模型对于现实问题的解决.在模型的求解上,严格要求学生在模型的假设,符号说明、图形的绘制、变量的限制范围、模型的分析与推广方面,做到严谨规范.对学生在利用建模解决问题时使用符号语言的不准确、不规范、不简洁等方面及时纠正.
3)注重经典算法的数学软件的实现和改进
由于实际问题的特殊性导致数学模型没有固定的模式,这就要求既要熟练掌握一般数学软件和算法的实现,又要善于改进和总结,使得现有的算法和程序能够通过修正来解决实际问题,这对于学生能力的培养不可或缺.只有不断的学习和总结,才有数学素养的培养和创新能力的提高.
参考文献:
[1]叶其孝.把数学建模、数学实验的思想和方法融人高等数学课的教学中去[J].工程数学学报,2003,(8):1-11.
[2]颜荣芳,张贵仓,李永祥.现代信息技术支持的数学建模创新教育[J].电化教育研究,2009,(3)。
[3]郑毓信.数学方法论的理论与实践[M].广西教育出版社,2009.
[4]姜启源.数学实验与数学建模[J].数学的实践与认识,2001,(5):613-617.
[5]姜启源,谢金星,叶俊.数学建模[M].第3版.北京:高等教育出版社,2002.
[6]周家全,陈功平.论数学建模教学活动与数学素质的培养[J].中山大学学报,2002,(4):79-80.
[7]付桐林.数学建模教学与创新能力培养[J].教育导刊,2010,(08):89-90.
高中数学建模的主要过程及教学案例论文
在个人成长的多个环节中,许多人都写过论文吧,论文是学术界进行成果交流的工具。你知道论文怎样写才规范吗?以下是我为大家收集的高中数学建模的主要过程及教学案例论文,欢迎大家借鉴与参考,希望对大家有所帮助。
摘要: 高中新课程标准中提出了数学建模核心素养,数学建模素养的培养是高中数学教学中的重要内容,提高数学建模素养是影响学生综合数学素养的重要因素。数学建模共有四个步骤,通过对每一个步骤最核心内容的阐述,将有利于开展数学建模教学活动。
关键词: 数学建模;高中数学;数学教学;数学素养;
最新颁布的《普通高中数学课程标准》(2017年版)(以下简称《课标》(2017年版))中明确了中学阶段数学学科核心素养,包括数学抽象、逻辑推理、数学建模、直观想象、数学运算、数据分析[1]。史宁中教授也曾多次表示数学学科核心素养可以更简单地概括为抽象、推理、模型。此次新课标的公布进一步强调了数学建模的重要性,突出了建模在数学教学中的重要地位。事实上,在2003年公布的《普通高中数学课程标准(实验)》中就开始强调数学建模的重要性。强调在整个高中课程内容中渗透数学建模思想,并至少在高中阶段安排一次建模活动。
在最初这对数学一线数学教育工作者来说是一个不小的挑战,特别是在重视推理、运算能力,强调解题为主,以面对高考为最根本出发点的高中数学教学中,教师们将数学建模融入课堂教学确实具有一定的难度。但是,随着不断的变化和认识,数学建模已经不再是陌生的事物。由于数学建模可以简化数学问题,更容易地分析数学数据解决数学问题。近年来,数学建模教学在我国中学教学中得到了广泛的应用。许多从事数学教学的积极参与到数学建模教学领域的研究中,寻找答案来解决数学教学中存在的问题。不过,随着社会的变化,人们对数学和人才培养质量也不断提出新的要求。加之新的教育理念、教育方法、教育技术快速地涌进一线教学,数学建模的教学也处在不断地变化甚至是挑战之中。
一、数学建模的主要过程
按照《课标》(2017年版)的要求,数学建模是对现实问题进行数学抽象,用数学语言表达问题、用数学方法构建模型解决问题的素养。主要过程包括:在实际情境中从数学的视角发现问题、提出问题,分析问题、建立模型,确定参数、计算求解,检验结果、改进模型,最终解决实际问题。通过这些描述可以看出数学建模的`过程实际上是一个完整的数学问题解决过程,在这个过程中学生要对问题有深入的分析,不但能够发现问题还有能够找到解决问题的办法,更为重要的是在进行一定操作运算之后能够对模型有所改进,验证结果。通过高中数学课程的学习,学生能够有意识地用数学语言表达现实世界,发现问题并提出问题,理解数学与现实的关系。学会用数学模型解决实际问题,积累实践经验。认识数学模型在科学、社会和工程技术中的作用,提高实践能力,增强创新意识和科学精神[2,3]。
数学最为基本的核心素养是抽象、推理、模型,但是这三者之间并不是相互独立,互不联系的过程。我们在解决一个实际问题的过程中,往往是三个素养同时发挥作用,或者多次交互发生,这一点从数学建模的四个过程就可以看出。
第一步,发现问题,提出问题。发现问题、提出问题一直以来是数学教育关注的重点内容。在20世纪我国的数学教育更加侧重学生三大能力的培养,在学生问题解决表现方面没有给予足够的重视。在21世纪初期,随着新课改的推行,问题解决能力逐渐受到大家的认可和重视。在课堂教学或者课程标准制定中都考虑了学生在这些方面的能力。我国学生历来比较擅长解决问题,并且往往是封闭性问题。蔡金法教授对中美学生在开放性问题的对比研究中清晰地展示了这种差异,而在问题提出等方面我国学生仍然还需提高,需要引导学生能够主动思考,主动发现问题,提出问题。作为数学建模的第一个过程,这里面的发现问题和提出问题是在一定的情境下,对所涉及的现实场景或者某个具体数学情境下的深入思考,所提出的问题可以是经过数学抽象后的数学问题,也可以是一个现实问题。这个过程最重要的是提出一个问题,而且是一个具有一定价值的问题,有了这个问题或者一系列问题才能够为后续的建模活动打开局面。
第二步,分析问题,建立模型。对问题的分析并不局限于数学,还需要调整其他学科或生活经验,往往还需要查阅资料。这一过程主要是对前面提出问题的再加工,在这一过程中一定要将问题进一步数学化,或者说完全转化为数学问题,虽然可能仍然带有不同的现实背景,但问题的内部结构关系一定是数学的。这种再加工的过程就是应用已经学习过的数学定理、概念、性质等知识把问题模型化。经过上述两个步骤完成了数学抽象的过程,从现实世界进入了数学世界,用数学的规律和方法分析问题。
第三步,确定参数,计算求解。这一过程就是解决问题的过程,在这个过程中参数的确定最为关键。参数的确定需要基于高质量的数据,而数据收集往往是数学建模活动的重要组成部分。数据的来源可以多样化,在一些封闭性问题中要利用所给数据。而在一些开放性问题中,数据的获得可以通过网络、教科书、其他资料等。用数据来确定假设模型中的参数,通过计算为了解决数学问题,这个过程体现了数学建模和数据分析、数学运算、逻辑推理等素养直接相关[4]。
第四步,检验结果,改进模型。这是最后的过程,在这个过程中要给出最后的结果。有些时候在第三个步骤就能够得出问题的结果,或者作出结论的判断。但是由于面对一个较为复杂的问题时,问题所涉及的方面较多,在模型中会涉及到很多参数,且在计算过程中所应用的数据来源也相对单一、有限,不能完全符合现实情况,会导致结果出现偏差。因此,在这个过程中研究者需要根据所解决问题的实际情况进行调整,做到最佳符合。
二、数学建模教学案例
例:市化工厂生产香皂,现接到生产180g装的香皂的订单。目前化工厂有两种规格的产品,分别是60g装每块1.15元,150g装每块2.5元。那么180g装的香皂出厂价格为多少?
第一步将香皂的体积与其表面积的函数关系看作一种相对规则形状的对应关系。在简化的情况下,明确问题中的变量和参数。这里可以设定香皂的出厂价格(y);香皂的成本(y1);香皂的包装成本(y2);香皂的质量(w);香皂的质量为w时包装的表面积(Sw)。
第二步抽象出数学模型:
(1)香皂的出厂价格y由香皂的生产成本y1和包装成本y2确定;
(2)当香皂质量为w时,其表面积为
(3)香皂的生产成本与香皂质量成正比,设比例系数为k1,即y1=k1w;
(4)香皂的包装成本与香皂表面积成正比,设比例系数为k2,即y2=kS2sw。
在上述讨论出的变量之间关系的基础上以及香皂质量为w时其各项成本与相关因素之间的关系,得出关于香皂出厂价格的函数
目标是在条件60g装的香皂出厂价为每块1.15元和150g装的香皂出厂价为每块2.5元下求出180g装的香皂的出厂价格。
第三步是模型求解。由题中已知条件60g装的香皂出厂价为每块1.15元,150g装的香皂出厂价为每块2.5元。将其代入上述所求出厂价格的函数中得到
二者联立得由此解得k1≈9.668×10-3,将k1代入中,解得k2k3≈3.719×10-2。
因此,香皂的出厂价格和香皂质量的表达式为
那么当w=180时,对应的函数值即180g装的该厂家生产的香皂的出厂价约为2.93元。
接下来还可以对该问题做一步的讨论,如果考虑单位质量内香皂所对应的出厂价格(记为y3),可以得到如下函数关系式:
根据该函数的单调性也可以清楚地说明生活中常见的大包装的商品售出的价格更低的现象。
第四步,分析模型结果。根据日常生活经验,结合在超市等地购物可以知道同类型商品往往购买体积、质量较大的会更划算,也就是单位体积或者质量价格较低。这在酸奶、饮料中表现十分明显。不过也要考虑随着体积增大给包装带来的成本增加问题。事实上随着体积的变化还会带来商品摆放位置的变化,甚至影响商品的销售成本。可见这是一系列问题,实际的建模问题比我们计算的还要复杂得多。但是从这个问题中学生能够体会到数学建模的重要性,体会到数学对于解决问题的重要价值。
参考文献
[1]中华人民共和国教育部.普通高中数学课程标准(2017年版)[M].北京:人民教育出版社,2018.
[2]黄群慧.高中数学建模教学的实践探索[J].江西教育,2020(6):20-21.
[3]吴静怡.数学建模思想在高中数学课堂教学中的应用研究[J].数学教学通讯,2020(6):45-46
[4]章建跃,张艳娇,金克勤.数学建模活动的课程理解、教材设计与教学实施[J].中学数学教学参考,2020(5):13-19.
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
加强高中数学建模教学培养学生的创新能力
摘要:通过对高中数学新教材的教学,结合新教材的编写特点和高中研究性学习的开展,对如何加强高中数学建模教学,培养学生的创新能力方面进行探索。
关键词:创新能力;数学建模;研究性学习。
《全日制普通高级中学数学教学大纲(试验修订版)》对学生提出新的教学要求,要求学生:
(1)学会提出问题和明确探究方向;
(2)体验数学活动的过程;
(3)培养创新精神和应用能力。
其中,创新意识与实践能力是新大纲中最突出的特点之一,数学学习不仅要在数学基础知识,基本技能和思维能力,运算能力,空间想象能力等方面得到训练和提高,而且在应用数学分析和解决实际问题的能力方面同样需要得到训练和提高,而培养学生的分析和解决实际问题的能力仅仅靠课堂教学是不够的,必须要有实践、培养学生的创新意识和实践能力是数学教学的一个重要目的和一条基本原则,要使学生学会提出问题并明确探究方向,能够运用已有的知识进行交流,并将实际问题抽象为数学问题,就必须建立数学模型,从而形成比较完整的数学知识结构。
数学模型是数学知识与数学应用的桥梁,研究和学习数学模型,能帮助学生探索数学的应用,产生对数学学习的兴趣,培养学生的创新意识和实践能力,加强数学建模教学与学习对学生的智力开发具有深远的意义,现就如何加强高中数学建模教学谈几点体会。
一.要重视各章前问题的教学,使学生明白建立数学模型的实际意义。
教材的每一章都由一个有关的实际问题引入,可直接告诉学生,学了本章的教学内容及方法后,这个实际问题就能用数学模型得到解决,这样,学生就会产生创新意识,对新数学模型的渴求,实践意识,学完要在实践中试一试。
如新教材“三角函数”章前提出:有一块以O点为圆心的半圆形空地,要在这块空地上划出一个内接矩形ABCD辟为绿册,使其册边AD落在半圆的直径上,另两点BC落在半圆的圆周上,已知半圆的半径长为a,如何选择关于点O对称的点A、D的位置,可以使矩形面积最大?
这是培养创新意识及实践能力的好时机要注意引导,对所考察的实际问题进行抽象分析,建立相应的数学模型,并通过新旧两种思路方法,提出新知识,激发学生的知欲,如不可挫伤学生的积极性,失去“亮点”。
这样通过章前问题教学,学生明白了数学就是学习,研究和应用数学模型,同时培养学生追求新方法的意识及参与实践的意识。因此,要重视章前问题的教学,还可据市场经济的建设与发展的需要及学生实践活动中发现的问题,补充一些实例,强化这方面的教学,使学生在日常生活及学习中重视数学,培养学生数学建模意识。
2.通过几何、三角形测量问题和列方程解应用题的教学渗透数学建模的思想与思维过程。
学习几何、三角的测量问题,使学生多方面全方位地感受数学建模思想,让学生认识更多现在数学模型,巩固数学建模思维过程、教学中对学生展示建模的如下过程:
现实原型问题
数学模型
数学抽象
简化原则
演算推理
现实原型问题的解
数学模型的解
反映性原则
返回解释
列方程解应用题体现了在数学建模思维过程,要据所掌握的信息和背景材料,对问题加以变形,使其简单化,以利于解答的思想。且解题过程中重要的步骤是据题意更出方程,从而使学生明白,数学建模过程的重点及难点就是据实际问题特点,通过观察、类比、归纳、分析、概括等基本思想,联想现成的数学模型或变换问题构造新的数学模型来解决问题。如利息(复利)的数列模型、利润计算的方程模型决策问题的函数模型以及不等式模型等。
3.结合各章研究性课题的学习,培养学生建立数学模型的能力,拓展数学建模形式的多样性式与活泼性。
高中新大纲要求每学期至少安排一个研究性课题,就是为了培养学生的数学建模能力,如“数列”章中的“分期付款问题”、“平面向是‘章中’向量在物理中的应用”等,同时,还可设计类似利润调查、洽谈、采购、销售等问题。设计了如下研究性问题。
例1根据下表给出的数据资料,确定该国人口增长规律,预测该国2000年的人口数。
时间(年份)
人中数(百万) 39 50 63 76 92 106 123 132 145
分析:这是一个确定人口增长模型的问题,为使问题简化,应作如下假设:(1)该国的政治、经济、社会环境稳定;(2)该国的人口增长数由人口的生育,死亡引起;(3)人口数量化是连续的。基于上述假设,我们认为人口数量是时间函数。建模思路是根据给出的数据资料绘出散点图,然后寻找一条直线或曲线,使它们尽可能与这些散点吻合,该直线或曲线就被认为近似地描述了该国人口增长规律,从而进一步作出预测。
通过上题的研究,既复习巩固了函数知识更培养了学生的数学建模能力和实践能力及创新意识。在日常教学中注意训练学生用数学模型来解决现实生活问题;培养学生做生活的有心人及生活中“数”意识和观察实践能力,如记住一些常用及常见的数据,如:人行车、自行车的速度,自己的身高、体重等。利用学校条件,组织学生到操场进行实习活动,活动一结束,就回课堂把实际问题化成相应的数学模型来解决。如:推铅球的角度与距离关系;全班同学手拉手围成矩形圈,怎样围使围成的面积最大等,用砖块搭成多米诺牌骨等。
四、培养学生的其他能力,完善数学建模思想。
由于数学模型这一思想方法几乎贯穿于整个中小学数学学习过程之中,小学解算术运用题中学建立函数表达式及解析几何里的轨迹方程等都孕育着数学模型的思想方法,熟练掌握和运用这种方法,是培养学生运用数学分析问题、解决问题能力的关键,我认为这就要求培养学生以下几点能力,才能更好的完善数学建模思想:
(1)理解实际问题的能力;
(2)洞察能力,即关于抓住系统要点的能力;
(3)抽象分析问题的能力;
(4)“翻译”能力,即把经过一生抽象、简化的实际问题用数学的语文符号表达出来,形成数学模型的能力和对应用数学方法进行推演或计算得到注结果能自然语言表达出来的能力;
(5)运用数学知识的能力;
(6)通过实际加以检验的能力。
只有各方面能力加强了,才能对一些知识触类旁通,举一反三,化繁为简,如下例就要用到各种能力,才能顺利解出。
例2:解方程组
x+y+z=1 (1)
x2+y2+z2=1/3 (2)
x3+y3+z3=1/9 (3)
分析:本题若用常规解法求相当繁难,仔细观察题设条件,挖掘隐含信息,联想各种知识,即可构造各种等价数学模型解之。
方程模型:方程(1)表示三根之和由(1)(2)不难得到两两之积的和(XY+YZ+ZX)=1/3,再由(3)又可将三根之积(XYZ=1/27),由韦达定理,可构造一个一元三次方程模型。(4)x,y,z 恰好是其三个根
t3-t2+1/3t-1/27=0 (4)
函数模型:
由(1)(2)知若以xz(x+y+z)为一次项系数,(x2+y2+z2)为常数项,则以3=(12+12+12)为二次项系数的二次函f(x)=(12+12+12)t2-2(x+y+z)t+(x2+y2+z2)=(t-x)2+(t-y)2+(t-z)2为完全平方函数3(t-1/3)2,从而有t-x=t-y=t-z,而x=y=z再由(1)得x=y=z=1/3,也适合(3)
平面解析模型
方程(1)(2)有实数解的充要条件是直线x+y=1-z与圆x2+y2=1/3-z2有公共点后者有公共点的充要条件是圆心(O、O)到直线x+y的距离不大于半径。
总之,只要教师在教学中通过自学出现的实际的问题,根据当地及学生的实际,使数学知识与生活、生产实际联系起来,就能增强学生应用数学模型解决实际问题的意识,从而提高学生的创新意识与实践能力。
数学建模随着人类的进步,科技的发展和社会的日趋数字化,应用领域越来越广泛,人们身边的数学内容越来越丰富。强调数学应用及培养应用数学意识对推动素质教育的实施意义十分巨大。数学建模在数学教育中的地位被提到了新的高度,通过数学建模解数学应用题,提高学生的综合素质。本文将结合数学应用题的特点,把怎样利用数学建模解好数学应用问题进行剖析,希望得到同仁的帮助和指正。
一、数学应用题的特点
我们常把来源于客观世界的实际,具有实际意义或实际背景,要通过数学建模的方法将问题转化为数学形式表示,从而获得解决的一类数学问题叫做数学应用题。数学应用题具有如下特点:
第一、数学应用题的本身具有实际意义或实际背景。这里的实际是指生产实际、社会实际、生活实际等现实世界的各个方面的实际。如与课本知识密切联系的源于实际生活的应用题;与模向学科知识网络交汇点有联系的应用题;与现代科技发展、社会市场经济、环境保护、实事政治等有关的应用题等。
第二、数学应用题的求解需要采用数学建模的方法,使所求问题数学化,即将问题转化成数学形式来表示后再求解。
第三、数学应用题涉及的知识点多。是对综合运用数学知识和方法解决实际问题能力的检验,考查的是学生的综合能力,涉及的知识点一般在三个以上,如果某一知识点掌握的不过关,很难将问题正确解答。
第四、数学应用题的命题没有固定的模式或类别。往往是一种新颖的实际背景,难于进行题型模式训练,用“题海战术”无法解决变化多端的实际问题。必须依靠真实的能力来解题,对综合能力的考查更具真实、有效性。因此它具有广阔的发展空间和潜力。
二、数学应用题如何建模
建立数学模型是解数学应用题的关键,如何建立数学模型可分为以下几个层次:
第一层次:直接建模。
根据题设条件,套用现成的数学公式、定理等数学模型,注解图为:
将题材设条件翻译
成数学表示形式
应用题 审题 题设条件代入数学模型 求解
选定可直接运用的
数学模型
第二层次:直接建模。可利用现成的数学模型,但必须概括这个数学模型,对应用题进行分析,然后确定解题所需要的具体数学模型或数学模型中所需数学量需进一步求出,然后才能使用现有数学模型。
第三层次:多重建模。对复杂的关系进行提炼加工,忽略次要因素,建立若干个数学模型方能解决问题。
第四层次:假设建模。要进行分析、加工和作出假设,然后才能建立数学模型。如研究十字路口车流量问题,假设车流平稳,没有突发事件等才能建模。
三、建立数学模型应具备的能力
从实际问题中建立数学模型,解决数学问题从而解决实际问题,这一数学全过程的教学关键是建立数学模型,数学建模能力的强弱,直接关系到数学应用题的解题质量,同时也体现一个学生的综合能力。
3.1提高分析、理解、阅读能力。
阅读理解能力是数学建模的前提,数学应用题一般都创设一个新的背景,也针对问题本身使用一些专门术语,并给出即时定义。如1999年高考题第22题给出冷轧钢带的过程叙述,给出了“减薄率”这一专门术语,并给出了即时定义,能否深刻理解,反映了自身综合素质,这种理解能力直接影响数学建模质量。
3.2强化将文字语言叙述转译成数学符号语言的能力。
将数学应用题中所有表示数量关系的文字、图象语言翻译成数学符号语言即数、式子、方程、不等式、函数等,这种译释能力是数学建成模的基础性工作。
例如:一种产品原来的成本为a元,在今后几年内,计划使成本平均每一年比上一年降低p%,经过五年后的成本为多少?
将题中给出的文字翻译成符号语言,成本y=a(1-p%)5
3.3增强选择数学模型的能力。
选择数学模型是数学能力的反映。数学模型的建立有多种方法,怎样选择一个最佳的模型,体现数学能力的强弱。建立数学模型主要涉及到方程、函数、不等式、数列通项公式、求和公式、曲线方程等类型。结合教学内容,以函数建模为例,以下实际问题所选择的数学模型列表:
函数建模类型 实际问题
一次函数 成本、利润、销售收入等
二次函数 优化问题、用料最省问题、造价最低、利润最大等
幂函数、指数函数、对数函数 细胞分裂、生物繁殖等
三角函数 测量、交流量、力学问题等
3.4加强数学运算能力。
数学应用题一般运算量较大、较复杂,且有近似计算。有的尽管思路正确、建模合理,但计算能力欠缺,就会前功尽弃。所以加强数学运算推理能力是使数学建模正确求解的关键所在,忽视运算能力,特别是计算能力的培养,只重视推理过程,不重视计算过程的做法是不可取的。
利用数学建模解数学应用题对于多角度、多层次、多侧面思考问题,培养学生发散思维能力是很有益的,是提高学生素质,进行素质教育的一条有效途径。同时数学建模的应用也是科学实践,有利于实践能力的培养,是实施素质教育所必须的,需要引起教育工作者的足够重视。
数学建模(mathematical modeling)就是通过建立数学模型来解决各种实际问题的方法。数学建模没有固定的格式和标准,也没有明确的方法,通常有6个步骤:
明确问题
合理假设
搭建模型
求解模型
分析检验
模型解释
1、明确问题
数学建模所处理的问题通常是各领域的实际问题,这些问题本身往往含糊不清,难以直接找到关键所在,不能明确提出该用什么方法。因此建立模型的首要任务是辨明问题,分析相关条件和问题,一开始尽可能使问题简单,然后再根据目的和要求逐步完善。
2、合理假设
作出合理假设,是建模的一个关键步骤。一个实际问题不经简化、假设,很难直接翻译成数学问题,即使可能也会因其过于复杂而难以求解。因此,根据对象的特征和建模的目的,需要对问题进行必要合理地简化。
合理假设的作用除了简化问题,还对模型的使用范围加以限定。
作假设的依据通常是出于对问题内在规律的认识,或来自对数据或现象的分析,也可以是两者的综合。作假设时,既要运用与问题相关的物理、化学、生物、经济、机械等专业方面的知识,也要充分发挥想象力、洞察力和判断力,辨别问题的主次,尽量使问题简化。
为保证所作假设的合理性,在有数据的情况下应对所作的假设及假设的推论进行检验,同时注意存在的隐含假设。
3、搭建模型
搭建模型就是根据实际问题的基本原理或规律,建立变量之间的关系。
要描述一个变量随另一个变量的变化而变化,最简单的方法是作图,或者画表格,还可以用数学表达式。在建模中,通常要把一种形式转换成另一种形式。将数学表达式转换成图形和表格较容易,反过来则比较困难。
用一些简单典型函数的组合可以组成各种函数形式。使用函数解决具体的实际问题,还比须给出各参数的值,寻求这些参数的现实解释,往往可以抓住问题的一些本质特征。
4、求解模型
对模型的求解往往涉及不同学科的专业知识。现代计算机科学的发展提供了强有力的辅助工具,出现了很多可进行工程数值计算和数学推导的软件包和仿真工具,熟练掌握数学建模的仿真工具可大大增强建模能力。
不同数学模型的求解难易不同,一般情况下很多实际问题不能求出解析解,因此需要借助计算机用数值的方法来求解,在编写代码之前要明确算法和计算步骤,弄清初始值、步长等因素对结果的影响。
5、分析检验
在求出模型的解后,必须对模型和“解”进行分析,模型和解的适用范围如何,模型的稳定性和可靠性如何,是否到达建模目的,是否解决了问题?
数学模型相对于客观实际不可避免地会带来一定误差,一方面要根据建模的目的确定误差的允许范围,另一方面要分析误差来源,想办法减小误差。
一般误差有以下几个来源,需要小心分析检验:
模型假设的误差:一般来说模型难以完全反映客观实际,因此需要做不同的假设,在对模型进行分析时,需要对这些假设小心检验,分析比较不同假设对结果的影响。
求近似解方法的误差:一般来说很难得到模型的解析解,在采用数值方法求解时,数值计算方法本身也会有误差。这类误差许多是可以控制的。
计算工具的舍入误差:在用计算器或计算机进行数值计算时,都不可避免由于机器字长有限而产生舍入误差,如果进行了大量运算,这些误差的积累是不可忽视的。
数据的测量误差:在用传感器、调查问卷等方法获得数据时,应注意数据本身的误差。
6、模型解释
数学建模的最后阶段是用现实世界的语言对模型进行翻译,这对使用模型的人深入了解模型的结果是十分重要的。模型和解是否有实际意义,是否与实际证据相符合。这一步是使数学模型有实际价值的关键一步。
相关阅读
数学模型和数学建模介绍
数学建模常用的