中国航天事业是在50年代中期开始的,1956年,中国制定了12年科
学发展远景规划,把火箭和喷气技术列为重点发展项目。同年建立了第
一个导弹、火箭研究机构,1958年把发射人造地球卫星列入国家科学规
划,组建机构开展空间物理学研究和探空火箭研制工作,并开展星际航
行的学术活动和实验设备的筹建工作。中国航天事业在创业之初经历了
经济上、技术上的种种困难,经过艰苦奋斗,终于在1960年2月发射成
功第一枚探空试验火箭,同年11月又发射成功第一枚自制的运载火箭,
在60年代后期又研制成功中程和中远程运载火箭,为中国航天事业的发
展奠定了基础。中国于60年代中期制定了研制和发射人造地球卫星的空
间计划。1968年组建了中国空间技术研究院。1970年4月24日,中国第
一颗人造地球卫星“东方红”1号发射成功,使中国成为继苏、美、法
、日之后世界上第五个用自制运载火箭成功地发射卫星的国家。1971年
3月3日发射成功的第二颗人造地球卫星向地面发回了各项科学实验数据
,正常工作了多年。1975年11月26日首次发射成功返回型人造地球卫星
,中国成了继美、苏之后世界上第三个掌握卫星返回技术的国家。1980
年5月,向南太平洋发射大型运载火箭取得成功,1981年9月20日首次用
一枚大型运载火箭把三颗空间物理探测卫星送入地球轨道,1982年10月
从水下潜艇发射运载火箭成功。1984年4月,发射一颗对地静止轨道试
验通信卫星“东方红”2号,4月16日卫星定点于东经125度赤道上空,
至1985年10月,中国依靠自己的力量共发射了17颗不同类型的人造地球
卫星。这些卫星为地质、测绘、地震、海洋、农林、环境保护等国民经
济部门和空间科学研究提供了十分有价值的资料。第一颗试验通信卫星
已用于国内通信广播和电视节目传输,对改善边远地区的通信和广播状
况发挥了重要作用。通过一系列航天活动中国已建立了各类人造卫星、
运载火箭、发射设备和测量控制系统的研究、设计、试验和生产的基地
,建成了能发射近地卫星和对地静止轨道卫星,拥有光测、遥测和雷达
等多种跟踪测量手段的酒泉和西昌航天器发射场;组成了由控制中心地
面台站和测量船构成的卫星测控网,造就了一支富有经验的航天科学技
术队伍,从而有能力不断开拓航天活动。
10月15日到16日神州5号载人飞船发射成功,是中国高科技领域继
“两弹一星”之后又一座光辉的里程碑,中国由此成为世界上继俄罗斯
和美国之后第三个有能力将航天员送上太空的国家
卫星通信双线极化天线馈源阵列分析的论文
摘要 :本文介绍了一种用于Ku频段卫星通信的双线极化天线馈源阵列,该馈源阵列可应用于单反射面或双反射面的卫星通信天线中,实现对通信卫星的小角度、高速、高精度电子波束扫描和跟踪,降低卫星天线对机械伺服结构精度和动态跟踪的要求,从而大幅降低伺服系统成本,拓展动中通卫星天线在民用领域的应用。
关键词 :馈源阵列;动中通;微带天线
1引言
星地动中通天线系统满足了用户通过卫星在动态移动中传输宽带数据信息的需求,使车辆、轮船、飞机等移动载体在运动过程中可实时跟踪卫星,不间断传送语音、数据、图像等信息[1][2]。目前,动中通天线主要用Ku频段与固定轨道卫星进行通信[3],需同时覆盖上行/下行频段,其中上行频段为13.75-14.5GHz,下行频段10.95-11.75GHz、12.25-12.75GHz,上行和下行频段为双正交的线极化。为保证卫星与地面移动设备间的流畅通信,动中通天线要实时指向通信卫星,同时为避免天线发射时对邻近卫星的干扰,移动设备在运动中天线的跟踪误差要小于0.1°,并且馈源也要进行旋转跟踪,接收和发射间的极化隔离度要大于30dB[4][5]。国内外已有多家企业推出了动中通天线产品,如以色列RaySat公司的多组片天线、美国TracStar的IMVS450M产品等[6]。为满足天线对卫星的高精度实时跟踪对准的要求,上述动中通天线中均包含有自动跟踪系统,在初始静态情况下,由GPS、经纬仪、捷联惯导系统测量出航向角、载体所在位置的经度和纬度及相对水平面的初始角,然后根据其姿态及地理位置、卫星经度自动确定以水平面为基准的天线仰角,在保持仰角对水平面不变的前提下转动方位,并以信号极大值方式自动对准卫星。在载体运动过程中,测量出载体姿态的变化,通过数学运算变换为天线的误差角,通过伺服机构调整天线方位角、俯仰角、极化角,保证载体在变化过程中天线对星保持在规定范围内,使卫星发射天线在载体运动中实时跟踪地球同步卫星。高精度的伺服系统始终是传统动中通天线系统的关键部分。通常情况下,由于动中通天线具有较大的口径(一般约为0.8~1.2m)及重量,造成了高精度伺服系统具有较高的成本。目前,应用于动中通天线的高精度伺服系统成本动辄数万、甚至超过十万,占整个动中通天线系统成本的很大部分,限制了动中通卫星天线在民用领域的广泛应用[5]。
2双线极化天线馈源阵列
为了克服现有的动中通天线跟踪伺服系统所需精度高、成本高等缺点,我们开发了一种双线极化天线馈源阵列,可应用于单反射式或卡塞格伦式卫星通信天线中,结合后端的多通道数字波束形成(DigitalBeamForming,DBF)技术实现天线系统的机电融合跟踪,最终通过“大角度低精度机械跟踪”与“小角度多通道DBF精确跟踪”相结合,在实现天线系统对卫星的高精度跟踪对准的同时,降低对伺服系统的精度要求,从而降低伺服系统的成本。此馈源阵列为中心对称式结构,阵列的中心放置在单反射式或卡塞格伦式天线的焦点处,当对阵列中不同单元进行馈电时天线将辐射不同指向的高增益波束,此时再结合后端的高精度DBF技术可实现小角度范围内高精度的波束指向控制。馈源阵列采用基于微带印刷电路板的“法布里-帕罗”天线形式,阵列由三层结构组成,其中底层为带金属地板的微带反射板,中间层为微带形式的天线结构,顶层为一块起增强定向性作用的纯介质板。
2.1底层结构
馈源阵列的底层为一侧附铜并开有8个馈电孔的介质板,SSMA以及空心铜柱通过馈电孔焊接在底层介质板上,发射天线馈口和接收天线馈口分别有4个馈电孔。图2为底层电路板结构示意图。
2.2顶层结构
顶层介质板是将覆铜板全部刻蚀掉的介质板,构成了“法布里-帕罗”的上层结构。图3为顶层电路板结构示意图。
2.3中间层结构
中间层电路板两侧分别刻蚀了发射天线、接收天线及其附属馈电线路,其中,为焊接方便,焊盘均在一侧。为隔绝表面波对天线方向图的影响,天线阵列由格状金属条带分割,电路板两侧均有金属条带,并由金属化通孔相互导通。图4为中间层电路板结构示意图。中间层电路板上的微带阵列单元采用一对交叉的金属偶极子结构分别实现收/发的功能,两金属偶极子分别印刷于中间层微带介质板的正面与背面,分别工作于收/发(下行/上行)频段,并且交叉偶极子结构可对应实现收/发所要求的两正交线极化。阵列单元通过同轴底馈的方式实现馈电,其中偶极子的两臂分别与同轴接口的内芯以及外壁通过一段印刷细导线相连,这里采用细导线以减小馈电结构对收/发间隔离的影响。为进一步减小馈电结构对收/发间隔离所带来的影响,在设计中将同一位置处的两偶极子结构通过一段印刷细导线相连,通过其长度、粗细等参数可利用合适的对消手段来实现收/发之间的高隔离。通过在阵列单元周围引入一圈密集的金属化通孔结构,并且在电路板上设计金属附加结构以隔离介质中的表面波,从而降低阵列单元间的互耦。
2.4馈源阵列的装配
馈源阵列的三层电路板由数个尼龙螺柱进行固定,图5是馈源阵列的立体分解及整体装配示意图。在馈源阵列结构中,通过调节金属偶极子的'臂长,可调节天线的工作频率。通过调节顶层介质基板与中间层电路板间的距离,可方便地调节辐射增益以适应不同反射面尺寸及焦距的需求。
3仿真及实测效果
馈源阵列的端口1、端口3、端口5、端口7为接收端口,端口2、端口4、端口6、端口8为发射端口。图6是馈源阵列的仿真和测试回波损耗结果图。由图6可见,接收端口和发射端口回波分别在12.25-12.75GHz和13.75-14.5GHz范围内小于-10dB,达到了良好匹配。图7是馈源阵列在工作频点12.5GHz的仿真及实测接收方向图。由图7可见,工作于12.5GHz时,天线在天顶方向的增益为15dB,副瓣比主瓣低10dB(仿真)/18dB(实测)。图8是馈源阵列在工作频点14.1GHz的仿真及实测发射方向图。由图8可见,工作于14.1GHz时,天线在天顶方向的增益为15dB,副瓣比主瓣低11dB(仿真)/10dB(实测)。
4结束语
本馈源阵列采用微带印刷电路板结构,简单紧凑、工艺成熟、加工简单、成本较低且适用于大规模生产。相比于传统的波导口、波导喇叭等馈源结构,可在较小的面积内实现多个单元以及收/发通道,从而利于实现更高精度的波束指向控制。同时,馈源阵列采用的对消技术可在天线结构端实现同一位置处接收/发射通道之间30dB的隔离度,减轻了后端器件的压力。从实际应用来看,天线馈源阵列与主反射面配合,实现了动中通卫星天线对Ku频段通信卫星的小角度、高速、高精度电子波束扫描和跟踪。采用这种技术,大幅降低了天线对伺服系统精度和动态反应速度的要求,把伺服系统的成本降低了一个数量级,有助于推动卫星天线在天地一体化通信中的规模应用。
参考文献
[1]徐烨烽.创新引领、精进发展、规模应用-谈动中通天线发展新趋势[J].卫星与网络,2013,09:39-40.
[2]LouisJ.,IppolitoJr著.孙宝升译.卫星通信系统工程[M].北京:国防工业出版社,2012,3.
[3]MiuraA.,Yamamotos,Huan-bangLi,etal.Ka-BandAeronauticalSatelliteCommunicationsExperimentsUsingCOMETS[J].IEEETrans.onVehicularTechnology,2002,51(5):1153-1164.
[4]刘昌华.移动载体卫星通信系统天线跟踪技术的研究[硕士学位论文].西安电子科技大学,2009,3-4.
[5]汤铭.动中通伺服系统的设计[J].现代雷达,2003,25(4):51-54.
[6]阮晓刚,汪宏武.动中通卫星天线技术及产品的应用[J].卫星与网络,2006,3:34-37.