真正称得上人工智能研究工作的第一个奠基人是英国的图灵。1937年,当时年仅24岁的他就在一篇关于“理想计算机”的论文中提出了天才的设想,这就是大家知道的图灵机。他令人信服地论证和说明了任何需要精确地加以确定的计算过程能够由图灵机来完成。1950年,他在《计算机能思维吗?》一文中不仅给人工智能下了定义,而且还论证了人工智能的可能性。他的许多思想都大大超过了同时代的人。
图灵
阿兰·麦席森·图灵(Alan Mathison Turing,1912.6.23—1954.6.7),英国数学家、逻辑学家,被称为人工智能之父。 1931年图灵进入剑桥大学国王学院,毕业后到美国普林斯顿大学攻读博士学位,二战爆发后回到剑桥,后曾协助军方破解德国的著名密码系统Enigma,帮助盟军取得了二战的胜利。
阿兰·麦席森·图灵,1912年生于英国伦敦,1954年死于英国的曼彻斯特,他是计算机逻辑的奠基者,许多人工智能的重要方法也源自于这位伟大的科学家。他对计算机的重要贡献在于他提出的有限状态自动机也就是图灵机的概念,对于人工智能,它提出了重要的衡量标准“图灵测试”,如果有机器能够通过图灵测试,那他就是一个完全意义上的智能机,和人没有区别了。他杰出的贡献使他成为计算机界的第一人,现在人们为了纪念这位伟大的科学家将计算机界的最高奖定名为“图灵奖”。上中学时,他在科学方面的才能就已经显示出来,这种才能仅仅限于非文科的学科上,他的导师希望这位聪明的孩子也能够在历史和文学上有所成就,但是都没有太大的建树。少年图灵感兴趣的是数学等学科。在加拿大他开始了他的职业数学生涯,在大学期间这位学生似乎对前人现成的理论并不感兴趣,什么东西都要自己来一次。大学毕业后,他前往美国普林斯顿大学也正是在那里,他制造出了以后称之为图灵机的东西。图灵机被公认为现代计算机的原型,这台机器可以读入一系列的零和一,这些数字代表了解决某一问题所需要的步骤,按这个步骤走下去,就可以解决某一特定的问题。这种观念在当时是具有革命性意义的,因为即使在50年代的时候,大部分的计算机还只能解决某一特定问题,不是通用的,而图灵机从理论上却是通用机。在图灵看来,这台机器只用保留一些最简单的指令,一个复杂的工作只用把它分解为这几个最简单的操作就可以实现了,在当时他能够具有这样的思想确实是很了不起的。他相信有一个算法可以解决大部分问题,而困难的部分则是如何确定最简单的指令集,怎么样的指令集才是最少的,而且又能顶用,还有一个难点是如何将复杂问题分解为这些指令的问题。
1936年,图灵向伦敦权威的数学杂志投了一篇论文,题为“论数字计算在决断难题中的应用”。在这篇开创性的论文中,图灵给“可计算性”下了一个严格的数学定义,并提出著名的“图灵机”(Turing Machine)的设想。“图灵机”不是一种具体的机器,而是一种思想模型,可制造一种十分简单但运算能力极强的计算装置,用来计算所有能想象得到的可计算函数。“图灵机”与“冯·诺伊曼机”齐名,被永远载入计算机的发展史中。1950年10月,图灵又发表了另一篇题为“机器能思考吗”的论文,成为划时代之作。也正是这篇文章,为图灵赢得了“人工智能之父”的桂冠。
艾伦·图抄灵。
图灵对于人工智能的发展有诸多贡献,提出了一种用于判定机器是否具有智能的试验方法,即图灵试验,每年都有试验的比赛。此外,图灵提出的著名的图灵机模型为现代计算机的逻辑工作方式奠定了基础。
图灵在科学、特别在数理逻辑和计算机科学方面,他的一些科学成果,构成了现代计算机技术的基础。
扩展资料:
如果把图灵机的内部状态解释为指令,用字母表的字来表示,与输出字输入字同样存贮在机器里,那就成为电子计算机了。由此开创了“自动机”这一学科分支,促进了电子计算机的研制工作.
与此同时,图灵还提出了通用图灵机的概念,它相当于通用计算机的解释程序,这一点直接促进了后来通用计算机的设计和研制工作,图灵自己也参加了这一工作。
在给出通用图灵机的同时,图灵就指出,通用图灵机在计算时,其“机械性的复杂性”是有临界限度的,超过这一限度,就要靠增加程序的长度和存贮量来解决.这种思想开启了后来计算机科学中计算复杂性理论的先河。
人工智能(Artificial Intelligence),英文缩写为AI。它是研究、开发用于模拟、延伸和扩展人的智能的理论、方法、技术及应用系统的一门新的技术科学。 人工智能亦称智械、机器智能,指由人制造出来的机器所表现出来的智能。通常人工智能是指通过普通计算机程序来呈现人类智能的技术。通过医学、神经科学、机器人学及统计学等的进步,有些预测则认为人类的无数职业也逐渐被人工智能取代。中国人工智能论文总量和高被引论文数量都是世界第一。 在产业发展和市场应用方面,中国人工智能企业数量全球第二。 从政策环境来看,中国人工智能政策主要关注中国制造、创新驱动、物联网、互联网+、大数据和科技研发,且聚焦于实现人工智能领域产业化。中国人工智能发展虽已进入国际领先集团,但还存在核心技术领域薄弱、顶尖人才缺乏、企业知识生产能力弱,以及重技术发展和产业进步而轻社会影响和道德伦理研究等突出问题。