您当前的位置:首页 > 发表论文>论文发表

2015年初中数学论文

2023-12-08 11:45 来源:学术参考网 作者:未知

2015年初中数学论文

初中数学的教学论文范文

导语:在初中数学教学中,只有把数学理论知识和现实问题相结合,才能激发学生的数学思维,下面要为大家分享的就是初中数学的教学论文范文,希望你会喜欢!

摘要 :

本文从初中数学出发,针对现在中国初中数学教学中存在的不足,进而对于怎样提升学生对于数学课堂的兴趣落实探索。初中数学体系十分基础,知识结构十分严谨并且紧密结合,所以需要学生维持对于数学坚持不懈的兴趣,通过这种方式才可以紧跟教学进度,从而提升学生的主动学习的动力。

关键词 :

初中数学;教学;学生;学习兴趣

1、使用多媒体教学办法激发兴趣

当前普遍应用于课堂的多媒体教学能够将难以理解的抽象知识更加形象地表现给学生,展现的办法更加直接和容易理解,除了可以辅助学生更加直观地深入观察空间以外,还可以提升学生在学习中视觉以及听觉的辅助效果,并可以帮助学生深入构筑的数学知识的课堂情景当中,从而帮助学生创设更加活泼的课堂气氛,辅助学生获得更多学习方面的经验,极大限度地提升学生对于数学的兴趣。譬如说,数学教师在初中课堂上讲述关于行程方面的数学题时,如果学生无法精确地明晰什么是两地、同时出发等概念,就一定会阻碍学生获得正确的解题办法。这个时候数学教师就能够通过使用多媒体的办法放映动画版的解题过程,其成果必然十分显著。教师在数学课堂中通过使用多媒体办法的先进的影像技术,能够把关于行程方面题目的不同状况更加形象深刻的显示在数学课堂之中,通过把数学知识通过更加新奇的娱乐办法解答出来,帮助学生构筑更加生动活泼的教学氛围,增强学生针对数学概念和相关知识点的学习兴趣,极大程度增强了学生的好奇心,从而高度提升了学生对于数学学习的兴趣。

2、使用语言艺术激发兴趣

在初中数学的课堂上,数学教师若具备较强的语言艺术,使用更加幽默的教学语言能够产生对于学生求知的诱惑力,一方面可以调整学生对于数学学习的心情,另一方面还可以构筑更为和谐的数学课堂气氛,从而提升学生课堂数学知识掌握的效率,这也成为了教师使用语言艺术的魅力。语言艺术能够辅助数学知识更加形象具体的实现,能够帮助教师将较为抽象难以理解的数学教学内容通俗化,也能够推动课堂中难以理解的数学理论更加通俗易懂,这在极大意义上可以高度激发学生对于数学知识的兴趣。因此,数学教师在初中教学课堂中,可以更频繁地使用一些生活中较为常见的案例,这样才可以激发学生对于数学的兴趣。譬如说,教师在进行样本这一节的讲授过程中,能够通过将生活中购买葡萄的案例进行辅助讲授,买家往往会询问“葡萄甜不甜”,此时的卖家往往会让买家进行品尝,而这种品尝自然只能是一个或者几个,无法进行全部品尝,此刻就展现了样本的含义——仅仅抽取主体的部分当做调查课题就可以估计总体,这样就能够辅助学生对其进行理解,也可以高效激发学生学习兴趣。

3、展现日常使用的数学知识激发兴趣

学习是为了能够切实地运用知识。因此初中数学教师在课堂上,必须更加看重如何引领其学生正确使用课堂数学知识,进而理解日常生活过程中可能产生的疑问,必须帮助学生明白数学知识是怎样使用的,他们才可能更加主动地进行数学知识的吸收,这样才能形成良性循环,极大限度地提升学生的好奇心,增强并培育学生对于数学知识的兴趣。譬如说,学习了“三角形”的数学知识,教师能够引领学生走入日常生活,譬如要求学生去测量并通过计算得到河岸宽度等一些很难直接测量的事物。教师还能够鼓励学生进行必要的讨论课,引领学生搜寻生活中可以看到的数学知识进行探讨。不仅如此,教师还需要能够将生活中可能出现的情况加入进数学教学中,推动学生更深层地明白数学其实在生活中随处可见,这就提升了学生对于数学知识的使用意识以及创造意识,从而激发学生对于数学知识的兴趣。

4、使用分层教学办法激发兴趣

每个学生都是独立具有其独特个性的,当然从教学角度来说,每个学生接收知识的层次也不尽相同。因此身为初中数学教师,必须高度明白这一特性,在数学教学中更加看重使用分层教学的办法,依据学生的现实状况依据其所在层次实现不同地教学。针对数学基础知识掌握不扎实的学生,教师在进行课堂提问以及作业批改的时候需要相对宽松,通过这种方式维护学生的自尊心以及学习自信心,推动学生可以更加深刻地体验学习的趣味;针对数学知识接收较快的学生,教师则可以适当提升难度,进而激发这类学生对数学更加深层次的探索。不仅如此,教师还需要适当鼓励学生。在学生在接受数学知识的过程中陷入困境时,教师必须激励学生主动克服困难;学生有所进步的时候应当对学生进行表扬。教师必须更多地看重学生具备的优点,在学习过程中重视表扬的作用,辅助学生产生得到学习成就的快乐,从而高度鼓励学生产生对于数学学习的热忱,激发其兴趣。

5、结语

综合上文,在初中数学的教学进程中,学生对于数学知识的学习兴趣是能够更快接收课程知识的关键条件。所以,数学教师在进行数学教学进程中,必须使用不同的办法和手段,激发学生的潜力,经过以上办法激励学生针对数学知识的学习兴趣,通过这种方式学生才可以推动学习兴趣变为动力,才可以更加主动地落实课堂知识的实践,从而高效增强数学课堂的教学成果。

参考文献:

[1]赵云涛.新课改下初中数学教学存在的问题及其对策[J].学周刊,2017(23).

[2]李灿钊.初中数学教学要注重学生综合应用能力的培养[J].中国教育学刊,2017(06).

摘要:

随着时代进步,教育理念改革的`提出,怎样有效提高初中数学教学课堂效率成为每个人心中越来越重要的一个问题。其中,提高老师教学课堂有效的教学方法之一就是问题导学法。运用导学法不但能够培养学生的逻辑思维能力,还能增强学生自觉找到问题并解决问题的能力。因此,我们应该在实际教学中充分运用问题导学法进行教育,激发学生的学习主动性,有效提高初中数学课堂的效率。

关键词:

初中数学教学;问题导学法;应用策略

在运用问题导学法课堂教学过程中,教师提出的问题要有引导性的作用,对学生有一定的启发,帮助学生提高学习数学知识的效率。另外,教师应该合理的运用这一方法,让课堂氛围变得生动有趣,激发学生的兴趣,提高学生学习数学知识的积极性,从而使学生更好的去分析解决问题。在实际教学中教师要把学生作为课堂的主体,善于运用问题导学法进行教学,帮助学生有效提高数学学习成绩。

一、现阶段的问题导学法在初中数学教学中的应用

随着素质教育化的不断改革,教师要摒弃老旧式的教学理念,学习创新更多更有效的教学方法,以其特有的课堂魅力提高学生对初中数学知识的兴趣,这样不仅能够帮助提高课堂效率,还能促进问题导学法在课堂教学中的充分运用。但是,有些教师并没有摒弃老旧式的教学方法,在课堂上只是一味的给学生进行理论教学,以至于学生觉得数学课堂枯燥乏味,不愿意学习数学知识。教师依然占据主体,掌控课堂,让学生被动学习,不能发挥其主观能动性,这不但不利于学生学习数学知识,还不能使问题导学法在课堂中合理应用。因此,教师们要认真了解现阶段数学导学法在初中数学课堂的应用,改变传统的教学观念,在课堂中多运用问题导学法。

二、问题导学法在初中数学教学中的应用策略

1、提高导入问题的质量。教师在选择课堂导入问题的时候,要选择跟教学内容密切相关的问题,而且要能够符合学生的身心发展,问题要能吸引学生的注意力,在进一步提高问题的难度,这样学生会更好的学习教学内容。例如:在对七年级下册《相交线与平行线》进行教学时,教师要提出能够分层次的问题,先提出简单的问题,再在此基础上增加难度,帮助学生分析问题,这样做不但可以增强课堂效率,吸引学生的注意力,还能对教学内容感兴趣,提高学生逻辑思维能力。

2、引导学生思考问题。教师要想更好的运用问题导学法,就要把怎样通过引导让学生积极分析思考问题放在重要的位置,所以在具体教学中,教师要先对问题进行认真分析和研究。一方面,为了让学生更好的了解问题,就可以先让学生提前预习,让学生对要学的知识有个大概的认知。另一方面,在分析问题的过程中,教师要把教学内容跟之前提到的问题结合起来,引导学生进行相关思考,然后进一步帮助学生找到答案。

3、做好课堂提问。在运用问题导学法时,教师要提前准备好课堂提问的内容,使学生对教师提出的问题感兴趣,加强学生学习的主动性。教师可以进行多样化教学,提高学生学习数学新知识的积极性。例如,在对七年级“平面直角坐标系”进行教学时,可以运用多媒体课件,展示具体的图像,让学生进行观察,通过观察提出一些问题,这样不但能让学生对教学内容感兴趣,也能培养学生积极主动学习的能力。教师也可以通过游戏的方法进行提问,让学生在做游戏中轻松学习数学知识。

4、对所学知识进行巩固。在通过问题导入法课堂教学后,为了进一步加深学生对所学知识的掌握程度,教师要进行巩固训练,一般就会通过让学生完成课后习题的方法进行考核。因此,老师要布置一些跟教学知识点相关的习题,让学生独立完成,对所学内容进行练习和巩固。另外,经过分析学生的解答,可以了解到学生具体的学习情况,然后针对学生没有很好掌握的地方,再次进行详细讲解,提升初中数学课堂的教学质量。

5、因人施教,重视每一个学生。每个学生的学习基础是不同的,但是,这不是说要把学生分成几个不同的层次,而是说要在平时的学习过程中重视每一个学生,不能只注重学习好的学生,也要把学习基础差的同学放在重点。所以,在课堂上要找好问题的切入点,不同学生不同要求。起点比较低的教学,能够让每个同学都参与进来,可以让学生更轻松的学到数学知识,提高学生的自信心。

三、结束语

经过上边的综合分析,问题导学法在初中数学课堂中的应用可以发挥非常重要的作用。所以,教师要认真学习并应用问题导学法进行教学,这样不仅仅能改变老旧式的教学模式,让初中数学课堂的效率更高,还能加强学生的学习兴趣,提高学生解决问题能力和逻辑思维能力。

参考文献

[1]王福利.问题导学法在初中数学教学中的实施要点分析[J].求知导刊,2015,(23):12-23.

[2]唐茜.谈初中数学教学中实施素质教育[J].雅安职业技术学院学报,2012,(02):46-67.

[3]王琪华.关于初中数学教学应用问题导学法的思考[J].知识文库,2015,(23):78-89.

摘要:

学习习惯和学生的智力没有直接联系,而是指学生为了使学习更有效率在学习上形成的个人的一种自觉学习的习惯。现在,大家对养成良好的学习习惯非常重视,尝试着让学生用更好更有效率的学习方式去学习,并使之成为一种习惯,自觉地去遵守,最终让学生受益匪浅。数学解方程教学在初中数学中占据重要的地位,本文结合中学生性格特征和数学学科本身的特点,积极探索了良好的学习习惯对初中数学解方程教学的影响。

关键词:

初中数学;学习习惯;解方程

我在初中数学解方程教学中对于学生良好学习习惯的培养主要做了以下几个方面:

一、培养学生认真预习的好习惯

预习是学生自己摸索、自己动手、动脑、自己阅读课文的过程,可以培养学生的自学能力。上新课前,我深钻教材,根据教学内容和学生的实际设计导学案,在学习新课的前一天把学案发给每一位学生,引导学生根据学案内容结合本节课本进行思考,探究,并把结论(还要附带解题思路)标注在学案相对位置,然后把一节课的主要内容总结出来,把疑难问题记录下来,有能力的同学还可以自己先完成课本的随堂练习。

二、培养学生认真听课的习惯

众所皆知,读书有三到,也就是非常重要的三点,只有这三点学生都具备了,那么他们才会在学习时更加认真,完全沉浸在学习中。但是这三点学生自己具备是比较困难的,必须还要有老师的指导,如对学生的课堂表现作出一定的评定,这一点是非常重要的,对学生们形成良好的习惯具有很大的促进作用。除此之外,老师还要更加细心,对学生的各种表现加以留意,并从中发现学生的优点,从各个方面去观察,对有进步和表现较好的同学进行夸奖。举个例子,如果一个成绩靠后的学生举手想要回答问题,那么我会让他第一个起来回答,并且对他这一勇敢的表现进行夸奖。如果一个害羞的学生回答问题,我就会对他这一表现进行夸奖,让他更有勇气。即使有些学生会答错或者不知道回答什么,我都不会对他们抱怨,而是对他们更加耐心,并且加以引导。总的来说,在多种情况下会给他们多种夸奖和鼓励,这样,他们就会更加自信勇敢地回答问题,并且对课堂也会充满了兴趣,学习也就会更加认真。

三、培养学生自主探究、合作交流的习惯

在教学中,我给学生留有足够的时间和空间自主探究,让他们经历观察、描述、思考、推理、交流和应用等等,让学生亲身体验如何做数学、如何实现数学的再创造,这样就使学生从逐步学会到自己会学,真正成为学习的主人。例如在学习解一元一次方程x-5=8时,起初学生会根据等式的基本性质做题,在等号左右两边同时加5,后来经过观察、思考、交流,学生能发现常数项-5从等号左边移到右边变为+5,从而总结出可以通过移项变号解这道方程,也知道解方程的每一步变形是根据等式的基本性质得到的。

四、培养学生认真审题的习惯

做题时,首先要求学生认真看清楚题目,然后理解其中的含义,看清楚题目是算对题的第一步,也是最重要的一步,因而,进行这一方面的培训可以让学生们培养细心严谨的习惯,让学生把学过的知识和题目紧紧联系在一起,从而举一反三,让学生计算速度得到提高,并且准确率大大提升。例如解方程,对于一部分不认真审题和观察题的学生,他们会先用完全平方公式展开得到,再去括号得,最后通过解一元二次方程求出x的值,认真审题和观察题的学生会在方程两边同时除以4得,再开方就可以解出x的值,这样既能使运算简单化又能提高做题的质量。

五、培养学生检验的习惯

“查”就是在做完题后从头再检查一遍,因为不可能所有人一次就能算对,每个人都有马虎的时候,所以检查是必不可少的,只要学生在做完题目后好好看一看,一般就能找出马虎而造成的错误并且改正错误,使正确率提高。但是一些学生认为太过麻烦,从不检查,或者自己觉得自己检查不出来,就让自己的父母检查,要不就等老师检查,过后再去改正这些错误。有些学生验算,只不过是一种形式,比如解方程的x等于多少时,解得x=0是错误的,学生代入方程中检验,右边=4+0=4,最终得出方程左边等于右边。学生根本就没有好好计算一下左边究竟等于多少,而是看右边等于多少,就直接写左边等于多少。针对这些不检查的坏习惯,教师布置作业时要少而精,使学生能有时间验算;批改完作业后如发现错误,发给学生自己检查,找出错误所在,草稿纸上订正后再交给老师批改,订正后全部正确再让学生订在作业本上,这样不仅能促使学生通过自己的检查找出错误所在,引以为戒,而且能培养学生认真负责,自觉检查的习惯。

六、培养学生自主复习的习惯

我们的学生绝大多数来自乡镇,周围学习环境较差,父母文化程度低,他们既没精力也没能力去管孩子的学习,因此这些孩子缺乏良好的学习习惯,他们的学习主要靠老师在抓,在查,在督促,在鼓励他们多思考、多做练习、多问问题,在帮助孩子养成主动学习,积极思考的数学学习习惯。总而言之,良好的学习习惯是学生取得优秀成果的最重要的一点,只要这样,数学对于学生来说也就更加简单有趣,最终老师才会培养出在数学方面非常优秀的学生。当然,养成良好的学习习惯需要一段时间,这个过程是比较漫长复杂的。因此教师要针对学生们的不同情况,不同阶段,做出切实可行的方针,不能超出他们的能力范围之外,让学生们慢慢在这个过程中一步步养成,并且让这些习惯慢慢渗透到他们的各个方面,最终受益终生。

参考文献:

[1]数学课程标准[S].北京:北京师范大学出版社,2012.

[2]顾云燕.新课程背景下“解方程”教学的思考与实践[J].河北教育,2009.

[3]赵辰虎.初中数学教学中培养学生良好的学习习惯[J].学周刊b版,2013.

摘要:

文章从四个方面探究了新课程改革背景下的初中数学教学策略,即创设教学情境,培养学生的兴趣,激发学生的学习意识;培养学生的思维习惯,激活学生的学习思维;开展实践教学,培养学生的实践能力,掌握有效的学习技能;运用信息技术教学,加速学生知识的形成,开拓学生的思维模式。

关键词:

新课程;初中数学;培养兴趣

通过对《新课程标准》理论的进一步研究和学习,笔者意识到想要激发学生的积极性,数学教学必须转变观念,真正落实学生主体地位。如何有效地落实学生的主体地位,激发学生的积极参与,自觉地学习数学?笔者谈谈几点策略。

一、创设教学情境,培养学生的学习兴趣,激发学生的学习意识

《数学课程标准》对广大数学教师提出了“情境教学”的教学建议。因此,在数学课堂教学过程中,教师应立足于现实情境,从学生的经验中激发学生学习数学的热情。例如,在讲授“面面垂直判定定理”时,教师情境引入“建筑工地上,工人师傅正在砌墙,为保证墙面与地面的垂直,用一根吊着铅锤的绳子,来看看细绳和墙面是否吻合…”伴随着教师的叙述,向学生展示与叙述对应的图片。接下来,教师抛出问题“工人师傅或许不知道其中的秘密,但同学们能找到理论依据吗?”教学期间,教师利用话语描述并结合图片展示创设教学情境,将抽象的知识具体化,激发学生的学习意识。只有这样,学生的认知过程和情感过程才会统一,才会为创造性思维的形成增添动力。当然,创设良好的教学情境,必须从学生的学习兴趣出发,从知识形成的过程出发,贴近学生的生活,从而激发学生的积极性和挑战性。

二、培养学生的思维习惯,激发学生的学习思维

《新课程改革》要求教师在教育观念和教学方式上进行根本性变革,打破传统师生关系的旧模式,架起架子,重塑师生平等和谐的师生关系。所以,教师应以平等的态度,启发学生的思维,激发学生的思维主动性,鼓励学生思考,争当学生的顾问。例如,当学生学完“圆的本质”之后,教师提出了“车轮为什么要变成圆形”,让学生充分发挥自由的想象力,自由交流和沟通。这样,不仅可以激发学生的积极性,而且可以培养学生的思维能力,鼓励学生敢于思考,勇于发表见解。无形中营造了一个富有生命活力的严谨又活跃的教学氛围。在这种和谐的师生关系下,数学思维和方法的渗透,良好思维品质的培养,学习思维能力的培养就水到渠成,事半功倍。

三、开展实践教学,培养学生的实践能力,引导学生掌握有效的学习技能

学生是数学学习的主人,有效的数学教学应为学生提供充分的参与数学活动的机会,激发学生的学习潜能,引导学生积极参与自主学习。具体地说,在开展一个实践教学活动时,可以采取以下步骤。

首先,学生自己观察物体或现象,或操作某些学习装置,在观察过程中要独立思考,及时与同伴进行讨论交流[1],以弥补他们在单纯的观察和操作中的不足。第二,教师按一定的顺序给学生们推荐活动,最好是课堂内外形式相结合,保证整个学习过程中活动的连续性和稳定性。第三,每位学生都要记录活动的过程,进行反思,弥补不足。例如,在“轴对称图形”教学中,教师首先折叠一张方格纸,然后用剪刀随机切割一个图形,最后展开方格纸。这时,一个轴对称图形便出现在学生面前,教师引导学生注意观察并鼓励做出类似操作。通过动手实践,学生虽然剪出的图形的形状不同,但它们都具有共同的对称性。在此基础上,推导了轴对称图形的有关知识,学生对其抽象概念和性质产生了深刻的印象[2]。

四、运用信息技术教学,加速学生知识的形成,激发学生数学思维

《新课程标准》下的数学教学不能仅靠传统的粉笔和黑板来实现。在教学中,教师经常会遇到要用更多的语言来解释的概念、动态图形及公式等知识点,而这往往也是教学的重点和难点。所以教师必须掌握现代教学方法,利用多媒体辅助,为学生提供丰富的知识和材料。例如,“2017年晋江质检的数学试卷”中最后一道填空题中,在求EF的取值范围过程中,绝大部分学生能正确求解最小值,但在求最大值时,需要不断地作图加上合情的推理才能快速找到最大值的特殊位置。在平时的教学中,如果教师能恰当地利用多媒体技术对这类题目进行展示并讲解其变化的过程,就能增加学生对这类动点问题的内在认识,减少恐惧心理,形成足够的几何动态意识,做到“动中取静,以静制动”,从而达到解题目的。

总之,教师在教学中要不断完善自己的教学策略,合理应用不同课型的特征及相关理论,使教师的教学与时俱进,更能融入学生的思维中,从而达到有效教学。

参考文献

[1]向爱民.初中数学教与学[J].读与写(教育教学刊),2011,8(1):104-105.

[2]吴开国.在初中数学课堂教学中有效实施创新教育的研究[J].金色年华:教学参考,2010(9):96.

初中数学教育教学论文范文3篇

  数学思维能力的好坏直接关系到分析其他问题的能力,初中课堂教学效果的好坏也直接影响到初中学生数学思维能力的培养,因此应当引起 教育 教学工作者足够的重视。本文是我为大家整理的初中数学教育教学论文 范文 ,欢迎阅读!
  初中数学教育教学论文范文篇一:初中数学合作学习对策
  一、合作学习内涵机理论述

  所谓的合作学习,实质上就是进行班级成员科学分组,确保组内学生能够针对对应课题进行深入交流和同步学习,最终派出代表将组内核心观点表述完整,在获得教师合理性评论建议后加以整改,以此实现对应教学规范引导指标。

  二、目前我国初中数学合作学习期间存在的冲突性问题整理研究

  首先,合作探究式问题设置形式过于简易单一。须知此类学习交流模式在于激发个体思维创新和合作意识,只有经过各类角度分析整编过后,才能绽放出独到的智慧结晶。可现实中,教师始终关注课程进度和应试结果,对于学生主观能动性关注度不够,尤其在鸭架式口语灌输讲解氛围中,学生对于既有知识感知趣味丢失,后期自主性学习动力也就不足。如若长期放置不管,对于学生今后身心健康发展是极为不利的。其次,合作小组内部成员分工秩序极为紊乱。事实上,合作学习理念主张吸纳各类学生观念,确保话题内涵讨论结果的多元特性。可实际布置活动期间,由于教师规则指导不够规范,使得对应任务难以及时交接到个体成员之上,尤其大部分学生作为独生子女,个人主义思想极为深刻,基本上只会将注意力集中投射在自身感兴趣的单元之上,造成固定小组向心力溃败结果,关于真正意义上的合作探究学习风尚难以保持延续。一般情况下,学习成绩优异的学生会成为问题提出、结论 总结 代表,至于其余个体完全扮演旁观者角色,小组其间隐藏的思维两极分化效应显著。最终学习好的个体素质得以合理提升,而成绩不高的个体将继续沉沦。最后,教师普遍不会参与到初中数学探究式合作学习流程中。在其思维体系中,片面地认为一切工作都将交付给学生,而应尽的实践活动设计组织、关键知识点提醒引导、课堂秩序科学规范监管职责,却顺势抛之度外。长此以往,学生整体上便处于放任自流境遇之中,在得不到合理肯定激励结果基础上,失去自主性学习动力,经常合作交流期间讨论其余话题内容,令课堂安定和谐秩序全面消散。也就是说,目前初中数学课堂合作教学基本上流于形式,对应的个体素质规范调试指标难以顺利贯彻。

  三、新课标背景下初中数学合作学习规范引导策略解析

  (一)合作探究内容的科学选取设置

  结合客观层面分析,初中数学教材的确存在部分教学内容难以开展合作交流模式,而指导教师要做的就是,尽量挖掘学生整体兴趣感知点,尽量寻找一些高难度且令学生产生疑惑的课题内容。经过高层次认知任务分配布置过后,学生才好联合既有知识、生活分析 经验 加以科学探讨解读,这样对于个体思维架构完善显得相对有利一些。

  (二)针对小组学生个体进行科学分工指导

  其核心任务在于明确组内成员之间性格、能力互补功效,确保学生经过较难话题讨论期间能够相互辅助,建立标准正向竞争合作学习风尚,使得平时不爱讲话的同学也能轻松参与进来。这就需要教师尽量合理安排座位,将以往单纯样式的观众席位模式全面遏制,让同一组相对熟悉的学生聚集在一起,确保话题交流深度的有机彰显结果。之后进行不同组间探究结果整理评估,实施不同阶段发言代表人的交替规则,针对表现优异的学生个体加以现场鼓舞激励。

  (三)尊重并鼓励学生布置多元化合作探究模式

  初中数学教学内容着实丰富,为了确保学生逻辑和感性思维得到进一步灵活衔接,教师必须确保单位课堂学习内容和探究任务的明确特性,令各类学生都能针对合作探究模式创新改革问题发表自身建议,确保单位成员都能有所作为,竭尽全力令单位任务可以在预设时间范畴之内得以顺利完成。另一方面,教师需要在各小组完成任务后要多给予鼓励。对于成绩比较差的学生,教师要采取特殊照顾、单独辅导的 方法 ,让每一名学生都不掉队,给予他们充分的自信心,发挥作为集团一员的特殊作用。

  四、结语

  综上所述,初中教学内容丰富,对于学生 逻辑思维 引导开发和人文情感协调都将产生独特调试功效。教师要做的就是,尽量关注并挖掘学生个体身心发展特征,做好合作学习小组成员划分任务,确保学生彼此之间产生高效互补启示作用,进一步为后续课题深度解读和个体发展前景科学预测绽放提供标准疏通性建议。

  作者:张小荣 单位:江苏省南通市海安县孙庄初级中学
  初中数学教育教学论文范文篇二:初中数学智能教学研究
  一、初中生智能

  智能简单地说,就是智慧和能力。主要体现于大脑的功能,表现为大脑对外界信息加工处理的本领,它包括感知能力、记忆能力、想象能力和思维判断的能力,感知能力和记忆能力是智慧的基础,想象能力和思维判断的能力是智慧的核心。反映在数学上,就是区分形状不同的几何图形,不同变量变化的规律,从具体的形象思维——抽象概括思维——逻辑思维,对前人总结的定理、公示、法则的在现,洞察二维、三维空间物体相互位置关系,以及以记忆为基础的各种思维判断能力。中学生经过六年小学阶段教育,已具备一定的“数学与逻辑推理能力”,从生理学角度来看,其大脑的四个功能区,即感受区、判断区、想象区已基本成熟,接近成年人这一阶段,人的认识呈“飞跃”式发展。初中生从十一、二岁进入学校,到十四、五岁初中 毕业 ,这一段时间有人把它称为人生中“黄金时段”我们就要抓住人生中的“黄金时段”,适时开发中学生智能,培养学生的创新精神,才能获得智能资源的大丰收。

  二、发展智能是初中数学教学的重要任务

  数学作为一门研究现实世界空间形成和数量关系的科学,是学习和研究现代科学技术必不可少的基础知识和基本工具。作为教师不能奢望每个学生都能成为一代娇子,但也完全可能让每个学生在他现有智能基础上得到充分的发展。为提高整个一代人的智能水平做出最大努力,这一出发点也可列为中学教师应尽的责任之一。中学数学的教学任务不仅要传授知识,尤其重要的是开发智力和培养能力。所以在数学教学中,传授知识和发展智能是相互影响、相互制约、不可分割的有机统一体。那种把发展智能和传授知识相对立起来,或者严重脱节的倾向,把发展智能神秘化,甚至认为高不可攀的观点都是错误的。作为一名学生教师应该清楚自己不仅是知识的传授者,而且是智能的开发者,应该把主要力量放在开发学生的智能上,在人生的最重要的“黄金时段”发掘人的最宝贵的东西——智能。

  三、初中生的智能开发

  开发学生的智能,要遵循客观规律。使每个学生的创造力和创造精神得到发展,凡有利于这一工作的工作,都属于开发智能的范畴。作为中学数学教师,在开发学生智能方面应该认识并做到以下几点:从人性角度看,人既是主体性与客观性的统一,又是能动性和受动性的统一,也是独立性与依赖性的统一。学生在学习活动中表现为:我要学和要我学。我要学是基于学生对学习的一种内在需要,表现为学习兴趣。学生有了学习兴趣,学习活动对他来讲就不是一种负担,而是一种享受,一种愉快的体验,学生会越学越想学,越学越爱学,有兴趣的学习事半功倍。兴趣是学生学好知识的、内在的、直接的动力,不断激发学生的学习兴趣,使学生始终处于积极的思维状态,是发展学生智能的基础。有人说:“生趣才能爱学,爱学才能增加,增加才能长智。”可见,生趣是爱学、增加、长智的起点。在实际的教学工作中,每节课都必须精心设计,以激发学生的求知欲。例如在讲“函数”时授课前让学生先计算:2的4次方是多少?2/3的三分之二次方是多少?学生在解决了第一题后,所学知识不能解出第二题,于是就有了找到解法的欲望。这时教师就顺势导出将要学习的新知识——函数。从而达到了激发学生学习兴趣的目的。

  作者:卢占武 单位:河北省廊坊市固安县沙垡中学
  初中数学教育教学论文范文篇三::初中数学教学中数学思维培养
  一、数学思维的特点

  任何一门学科都具有其自身的特点,数学作为一门基础学科,更是具备了严谨性和抽象性的显著特点,只有牢牢把握数学的特点,在严谨性和抽象性特点的指导下开展教学工作,才能更好的培养学生严谨的数学 思维方式 。

  1.数学思维具有严谨性

  数学是一门对逻辑性思维要求十分严格的学科,它要求教学人员对概念和定义有精准的把握和透彻的理解,对于问题的结论,也应做到反复论证,以便在教学中能够完整的表达数学名词的实质意义。在实际教学过程中,不同学生对知识的理解能力也各不相同,因此在传授知识的过程中不能够向数学科学一样做到绝对精准,这就要求老师因材施教,差别化的对待不同学生,进行数学思维的培养,进而逐步走向严谨。

  2.数学思维具有抽象性

  所谓抽象性,就是指用数学来表示客观存在的事物的本质特征和物与物之间的关联性。所有的数学定义都是从客观事物中总结归纳而来的,并不断提升,不断探索新的规律和法则,最终形成的完整的数学体系。而在这个过程中,抽象性不断加深,概况性不断提升,人们对事物的认识程度也就不断加深。因此,与其他学科思维相比,数学学习所需的 抽象思维 更有层次性。

  二、培养初中生良好思维方式的方法

  具备良好的思维方式是学好一门学科的关键,而思维的发展也需要一定的知识基础作铺垫。在初中教学中,也应掌握恰当的方式方法,综合运用不同技巧加强对学生数学思维的培养和引导。

  1.不断拓展学生的思维

  在教学过程中,老师的教授讲解固然重要,但也应适当给予学生独立思考的时间,并在习题练习的过程中对知识进行把握和充分理解。教师在对一些特殊概念和知识的讲解过程中应与学生深入探讨,而非停留在只教授不讨论、只讲概念不深入探究的阶段。要加强对学生自主学习能力的培养,带动学生学习的主动性,从而逐步拓宽学生的思维,增强学生数学学习的逻辑思维能力。另外,也要充分利用学生的错误,在学生错误解答题目或错误理解概念时,应当深入分析出错的原因,从根本上纠正错误的思维方式。

  2.运用正确的引导方式和教学方式

  教师在教学过程中,要有清晰的头脑和明确的思维逻辑方式,在讲解过程中应有步骤、有层次的进行讲解。例如,在初中数学中引入绝对值的概念,这就区别于低年级的数学教学,介绍负数的概念给学生,从而拓宽了学生对于数字的理解范围。对于|x|,x的值不是单一的+x,而是分成不同的情况。它的值可能是-x,也可能是+x,也可能是0。而教师在讲解绝对值概念时,也应结合数轴上的点来介绍绝对值的大小,即到原点零的距离。另外,对于不同版本的课本和教材,也应有不同的 教学方法 和顺序,适时调整教学活动,不拘泥于课本,才能更好的培养学生的思维能力,提升学生数学学习的整体能力。

  3.培养学生的学习兴趣

  学习兴趣是促进学生进步和发展的最大动力,因此,老师在教学的同时要善于培养学生的学习兴趣,有利于学生更快速的理解知识,使学生能够积极主动的学习而非被动听课。同时,应关心稍稍落后的学生,适时的给予鼓励和并加以引导,促使他们积极思考,不断发掘新问题,提出疑惑,并和学生一同思考解答。例如,在讲解“如何求解一元二次方程的根”的问题时,应带领学生尝试不同方法进行求解。详细介绍因式分解法、图象求解法、配方法等多种方法,并对应习题进行练习讲解,而不是固定的只讲解一种方法,应让学生自主选择合适的方法。

  4.运用现代教学方式和技术进行课堂教学

  随着科技的不断进步与发展,计算机电子技术的进步,应将其综合运用到数学教学中,对于几何学的教学,可采用动态图的演示方式,更加具体的使学生感受到图形的变化以及变化过程中的规律,及时进行归纳总结。对于没有条件的地区,教师在教授过程中,应有过硬的绘图功底,通过绘制主要的图形变化过程帮助学生理解课堂知识,拓宽思维。

  三、结束语

  数学思维能力的好坏直接关系到分析其他问题的能力,而课堂教学效果的好坏也直接影响到学生数学思维能力的培养,因此应当引起教学工作者足够的重视。在适当时应摒弃传统落后的教学观念,结合新的思维方式进行教学,留给学生充分的独立思考空间,激发学生学习数学的兴趣,使学生在学习过程中做到举一反三,让学生在自主学习的过程中发现数学的乐趣,并养成良好的思维方式,从而为今后的数学学习以及其他学科的学习打下扎实的基础。

  作者:顾伟军 单位:江苏省滨海县坎北初级中学

初中数学论文范文

黄金分割
对于“黄金分割”大家应该都不陌生吧!
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。
古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。
多去观察生活,你就会发现生活中奇妙的数学!
数字
中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。
公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。

数学很有用
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

几篇论文,随你选.加点分!

初中数学论文3000字

黄金分割
对于“黄金分割”大家应该都不陌生吧!
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。
古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。
多去观察生活,你就会发现生活中奇妙的数学!
数字
中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。
公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。

数学很有用
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右
200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53
满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页