水生物处理实际是水体自净的强化 ,在去除了污水中的污染物后 ,必须将微生物从水中分离出来 ,这种分离主要是通过微生物本身的絮凝和原生动物、轮虫等的吞食作用完成的。本文主要介绍微生物在生活污水处理中的应用,及几种主要的污水生物处理技术。
生活污水可生化性相对较高,所以采用生化法处理效果比较好。大多数城市污水处理厂的原水主要是生活污水,其中掺杂的工业污水只占相当小的一部分,所以生化法一直是城市污水处理厂的首选工艺。
生活污水是一大污染源。生活污水中含有大量的无机物和有机物。无机物如氯化物、硫酸盐、磷酸盐和钠、钾、钙、铁等碳酸盐,有机物有纤维素、淀粉、脂肪、蛋白质和尿素等。排放入环境中促使浮游植物生长和大量繁殖,形成赤潮和水华。
利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的。微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它有机化合物作为微生物的营养物质,经过一系列的酶促反应,这些有机物在微生物体内得到分解利用,有些合成微生物自身的结构和功能物质,有些则为微生物提供所需的能量。微生物新陈代谢类型有需氧型和厌氧型两种,因此,污水生物处理方法分为好氧生物处理和厌氧生物处理.
好氧生物处理是在水中有溶解氧存在的条件下,借好氧和兼性厌氧微生物(其中主要是好氧菌)的作用来进行的。在处理过程中,绝大多数的有机物都能被相应的微生物氧化分解。用好氧法处理污水,基本上没有臭气,处理所需的时间比较短,如果条件适宜,—般可去除BOD九成以上 。
厌氧生物处理是在无氧的条件下,借厌氧和兼性厌氧微生物(其中主要是厌氧菌)的作用来分解污水中有机物的,也称厌氧消化或厌氧发酵。厌氧生物处理主要应用于有机污泥和高浓度有机污水的处理。由于是密闭发酵,所以在处理过程中不影响周围环境;同时隔绝空气又加以高温发酵,可以钉死寄生虫卵和致病菌;并且可以产生生物能源甲烷。因此厌氧消化法近年来渐渐受到重视,但由于所需时间长,对设备要求严格,因而影响其迅速推广。
在污水处理中,通常是以有机物在氧化过程中所消耗的氧量这一综合性指标来表示有机污染物的浓度,如生化需氧量和化学需氧量。生化需氧量是指在特定的温度和时间微生物分解污水中有机物所消耗的氧量,称为生化需氧量。生化需氧量约占生化需氧总量的一大半,故采用生化需氧量来表示污水中可降解有机物的浓度是比较合适的。但污水中有机物并不是都能较快降解的,在工业废水中,可以结合化学需氧量等指标表示有机污染物的浓度。
只有生化需氧量高的废水才适宜采用生物处理,化学需氧量很高但生化需氧量不高的废水不宜采用生物处理。对于有毒的废水,只要毒物能降解,就可用生物法处理,关键是控制毒物浓度和驯化微生物。
污水生物处理方法包含活性污泥法、生物膜法、生物接触氧化法、厌氧生物化学法、固定化微生物法,生物处理法通常配合化学混凝处理效果更好,化学混凝药剂处理法资料至望采纳.
河水污染治理措施论文
导语: 随着我国工业化进程的不断加快,河流污染现象越来越严重。当前我国的河流污染形势非常严峻。在国内水资源形势日益严峻的背景下,加强对河流的保护显得非常重要。当前我国对河流污染的治理还处于起步阶段,但是随着人们环保意识的觉醒,河流污染的环境保护措施将得到深入研究。本文将重点探讨河流污染的治理措施。
[ 关键词] 河流污染 环保 治理措施
中图分类号:U473.9 文献标识码:U 文章编号:1009914X(2013)34012701
当前我国的河流污染形势日益严峻。河流污染严重影响到了人们的生命财产安全,给人们的生产生活带来危险。“一些企业肆意排污导致河流污染加剧,对人民的正常生活、身体健康等都造成了严重的危害”。[1]在可持续发展理念深入人心的背景下,河流污染治理问题逐渐深入人心,被越来越多的人所重视。
绿色环保是当前经济社会的发展的必然趋势。而要想实现这个目的,就必须要高度重视河流污染问题。无论是从发达国家的发展经验来看还是从过去我国粗放式发展的理念来看,河流污染的治理都已成为当务之急。在这样的背景下加强河流环保措施的研究就显得非常重要。
一、河流污染形式
河流污染基本上可以分为两种形式:一种形式是点污染;另一种形式就是面污染。所谓点污染主要指的是工业废水以及城镇生活污水造成的各种污染。面污染主要指的是大范围内污染物由于降雨等造成的污染。这两种形式的污染都会对人们的生产生活造成影响,严重情况下还会对居民的人身健康造成影响。在这样的背景下加强对河流污染原因的研究就显的非常必要。
二、河流污染的原因
经过对河流污染进行深入调查,我们就会发现河流污染基本上是由三个原因造成的:一是水土流失严重。我国农田土壤在过去几十年的发展中大量应用化肥农药,虽然在一定程度上实现了增产目的,但是也造成严重的水土流失。水土流失现象的家居,是造成河流污染的主要原因。二是废污水得不到有效处理。当前人们虽然对工厂废污水的处理保持一定程度重视,但是在实际操作过程中仍然存在一系列问题,废污水得不到有效处理就被排到河里,这是导致河流污染的根本原因。三是人们的环境保护意识淡薄。当前国家虽然制定了一些环境保护的法律体系,但是在实践过程中往往存在有法不依,执法不严的现象。这是河流污染的关键。
三、物理方法
针对河流污染的治理,我们主要采用的物理方法主要是四种措施:一是调水,二是机械除藻;三是曝气复暖;四是底泥疏竣。所谓调水主要指的是通过加入大量的清洁水来改善污染水质。通常这种方式主要是通过水利设施调动附近清洁水源来进行清洁。
所谓机械除藻主要指的是通过专门机械来去除水中的蓝藻以降低河流污染。在河流中经常会产生大量的水华蓝藻。这些蓝藻的出现会严重影响到河流水质。去除水华蓝藻能够有效地降低河内磷、内源氮的负荷,这对于提升河流水体质量很有帮助。
曝气复暖。通常意义上河流污染主要是由于河内溶解氧降低造成的。我们对河流的保护就可以从提升河内溶解氧的这个角度来进行考察。曝气复暖就主要是通过这种形式来保护水体的。曝气复暖技术通过向河道充入氧气,来提高水体的溶氧水平,增加水体好氧生物的活力,最终达到提升水体水质的目的。当前主要是通过移动式充氧平台和规定式充氧平台实现这种技术。
底泥疏浚。在被污染的河流中有许多污染物都淤积在河底泥土中。为了有效提升河水水质,人们可以通过底泥疏浚的方法来治理。把底泥挖出来就可以有效的减少河里的污染物,从而减少河流污染。
四、生物方法
所谓生物方法主要指的是生物促成法,生物强化法和生态修复法。接下来我们就来详细分析这三种技术。所谓生物促成技术主要指的是通过把解毒剂,降解污染物,常量元素,维生素,微量元素等投入到河流中以降低污染的技术。生物促成技术的应用能够有效地降低河流污染,应用这种方法能够起到有效降低土著微生物的目的,从而能够强化污染环境的自净能力,最终有效缓解河流污染。
生物强化法。生物强化技术主要指的.是通过往受污染的水体中接种污染降解菌,通过污染降解菌来激活水中微生物并使他们迅速繁殖,继而来抵制有害微生物的生长。通过生物强化法可以有效解决水体污染问题。这种方法对于消除受污染水体中的黑臭和硝化底泥很有帮助。
生态修复技术。生态修复主要是通过利用浮岛技术,人工湿地,生物膜法,水生植物等形式来降低河水污染。生态技术是“利用生态平衡、物质循环的原理和技术方法,对受污染或受破坏、胁迫的水体生物生存和发展状态的改善、改良或恢复、重现”[2]浮岛技术,是通过在受污染区域搭建辅导,在水面上种植植物最终形成生物链来进行水体恢复,运用浮岛技术可以有效提升水体质量。人工湿地。人工湿地是在模仿自然湿地的基础上形成的一种具有很强渗透性能的物质。通过使用人工湿地可以有效实现污水的净化。人工湿地一般可以分为垂直湿地,潜流湿地,表面湿地三种形式。当前“国内外在人工湿地的应用方面积累了丰富的理论及实践经验”[3]生物膜法是通过天然河中的生物膜来起到净化与过滤的技术,生物膜一般是由人通过填充填料来供细菌絮凝生长,最后生成的。生物膜具有表面大,附着微生物多等特点,应用人工湿地可以使得河流的自净能力显著增长。在今后的河流污染治理中我们应该加强对这种技术的研究。“在上海的应用有生态浮床技术、沉水植物修复技术、植生生态混凝土技术等。
五、化学方法
化学治理方法主要指的是通过往受污染的水体里放入各种化学剂,例如铁盐,化学药剂杀藻等化学物质来改善水质。一般意义上化学方法主要有化学除藻以及絮凝沉淀两种方法。化学除藻是一种能够有效控制藻类生长的方法,对于解决严重富营养化的河流的污染问题具有重要意义。但是在使用这种方式来治理和水污染的时候,我们也要注意这种方法要适度应用,过度使用就会造成动植物的再次污染。絮凝沉淀是通过投入混凝剂来缓解污染的。这种方法主要应用在污染非常严重的地表水体中。采用这种方法可以有效控制源磷负荷。
当前随着经济社会的发展河流污染形势日益严峻,在这样的背景下加强河流污染治理显得非常重要。本文详细分析了当前环境污染的形式以及产生原因,而后深入论述了河流污染治理的措施。我们在今后的河流污染治理中必须要结合河流自身的特点来进行治理。“多个城市治污实践证实。河长制”确实是推动我国水污染治理的一项有效措施”[5]要慎重科学地选择治理措施,这是有效缓解治理污染的有效手段。
参考文献
[1]丁社教.治理河流污染的制度激励悖论分析[J].中国行政管理,2008(2).
[2]张乾铄.生物-生态措施修复治理河流污染综述[J].现代农业科技,2009(6).
[3]房立新.小新河人工湿地水质净化作用探讨[J].科技信息,2012(29).
[4]王翔.城市河流污染问题浅探[J].城镇供水,2010(5).
[5]李瑞生,段龙飞,王新星.天津市河流污染现状及治理建议[J].海河水利,2012(2).
随着工业化进程的不断推进,水污染的覆盖面也随之不断扩大,这给环境造成了严重的破坏,下面是我精心推荐的水污染控制技术论文范文,希望你能有所感触!
水污染及其控制方法
【摘要】水是人类生产生活中必不可少的宝贵资源,因此水体一旦受到污染,不仅使水资源的数量、质量下降,直接或间接地危及人类的生存和发展,而且污染后的水体也很难再得到恢复和控制。本文主要对水体污染的类型特征及我国的水污染现状进行了综合评述,简要的阐明了水污染可能会带来的危害及水污染的常规处理方法,并就目前水污染防治过程中所面临的困难提出几点建议。
【关键词】水体污染;现状;危害;防治;控制方法
1、水体污染及其类型
1.1 水体污染[1]
水体污染是指排入水体的污染物在数量上超过了该物质在水体中的本底含量和自净能力即水体的环境容量,破坏了水中固有的生态系统,破坏了水体的功能及其在人类活动和生产中的作用,降低了水体的使用价值和功能的现象。我国水污染具有影响地域广、持续时间长、水质季节性变化、污染类型复杂等普遍特征。
1.2 水污染现状
近年来,我国江河、湖泊和海域普遍遭受不同程度的污染,各种类型的水污染事件更是不断地发生。如2004年2月在四川沱江发生严重氨氮超标排放事件,工业废水不合格排放致使大量鱼类死亡,100多万人饮水受到影响,直接经济损失超过3亿元;2005年11月,中石油吉林石化公司双苯厂发生爆炸,苯类污染物泄露流入第二松花江,造成水质污染[2]。当然,我们也采取了很多措施来缓解我国水污染严峻的状况,如从1998年开始的“淮河水专项”,到今天为止已经坚持了16年之久。
1.3 水体污染的类型[1]
从污染成因上来看,水体污染可以分为自然污染和人为污染。从污染源来看,水体污染可分为点源污染和面源污染。从污染的性质来看,水体污染可分为物理性污染、化学性污染和生物性污染。
2、水体污染的危害
水体污染将直接降低生活饮用水的品质,影响人类健康,并对水生生物的生存环境造成不同程度的破坏,影响工农业生产的正常进行,进而导致水生态失衡、生态系统退化,产生一系列的社会生态问题,并且直接影响到社会的安全稳定和经济的正常运转。
3、水污染控制技术
3.1水污染控制原则
要实现对水污染的全局调控和有效综合防治,需从宏观控制、技术控制和管理控制三个方面着手,以可持续发展为指导思想,对产业结构和工业布局进行合理的优化与调整,对工业生产工艺和污水处理技术进行改进,对受纳水体和排污口进行科学有效的管理和监督控制。
3.2水污染处理技术[3-4]
随着水污染状况的不断恶化,及其对人类生产、生活带来的诸多不利影响,越来越多的人认识到了水污染控制与管理的重要性和迫切性。现代污水处理技术,按原理可分为物理处理法、化学处理法和生物化学处理法三类。
废水的物理处理通常是借助物理力或机械力使得废水中的某些污染物质得以分离的单元操作过程。废水的化学处理,就是利用化学反应的作用去除水中的杂质,其处理对象主要是废水中无机或有机(难于降解的)溶解物质或胶体物质。生物化学处理法,是利用微生物的代谢作用,使污水中呈溶解、胶体状态的有机污染物转化为稳定的无害物质。
4、水污染防治面临的困难[5-8]
4.1 水资源保护的意识淡薄, 可持续发展的观念不强
人们对水资源保护和水污染治理的重要性还缺乏足够认识,在发展当地经济的过程中, 只注重经济效益, 忽略水资源的合理利用与保护,个别地区和企业甚至损人利己,以污染临近或下游地区的水资源与环境为代价来发展本地经济。
4.2 管理体制不顺, 缺乏配套的政策措施
现行管理体制未能有效利用经济手段, 未能形成一系列激励水污染治理、水资源优化配置和节约用水的政策措施, 从而导致水污染严重和水资源的有效利用程度不高, 用水浪费惊人。
4.3 有法不依, 执法不严现象根深蒂固
目前, 与水资源保护和水污染治理有关的法律不少, 如《中华人民共和国水法》( 2002 年)中第三十四条规定,禁止在饮用水水源保护区内设置排污口。另外在《中华人民共和国水土保持法》( 1991 年) 、《中华人民共和国水污染防治法》( 1996 年修订)等立法中, 也有关于水污染防治的相应条款。但是由于在处理水污染事件过程中,相关法律法规未能得到及时落实和有效贯彻,使得“有法不依,执法不严”情况持续存在,水污染状况日趋严重。
4.4 科研滞后, 缺乏有效的技术支持
由于水资源时空分布的不均匀性、动态性和随机性, 使得水污染防治技术不能得到统一、系统的规划和研究。流域水资源优化配置、水资源和环境的承载能力与经济发展的关系、水污染防治的有效措施, 水资源保护与管理的决策支持系统等都缺乏深入研究。
5、对水污染防治的建议[9]
5.1 源头控污
5.1.1 加强环保宣传,提高环保意识
5.1.2加强企业的环境管理,合理安排企业布局
5.1.3 加强法律法规建设,改善相应的执行机制
5.2 选择适合本地区的水污染控制技术
我国地大物博,水资源时空分布不均,经济发展地区性强,针对这一情况,不同地区在污水处理时应根据当地的地形地势,道路交通条件及居民住宅布局等具体不同情况,选择适宜当地自然环境且成本低,管理维护简单,效率高的污水处理技术。
6、总结
水是生命之源、生产之要、生态之基,水作为人类生产、生活必不可少的宝贵资源,它的污染和短缺将给人类带来致命的威胁。特别是在经济飞速发展的今天,水污染的问题更不能被忽略,我们应该吸取以往城市发展中水污染对人们的经济生活带来的严重影响的教训,充分重视水环境问题,努力实现各个地区的经济和水环境保护的持续、健康、和谐的发展。
参考文献:
[1]毕润成.生态学[M].北京:科学出版社,2012: 83-86.
[2]程声通.水污染防治规划原理与方法[M].北京:化学工业出版社,2010.5: 5-8.
[3]赵庆良,任南琪.水污染控制工程[M].北京:化学工业出版社,2005.3: 79.
[4]张宝军.水污染控制技术[M].北京:中国环境科学出版社,2007.3: 19.
[5] 谭炳卿, 孔令金, 尚化庄. 河流保护与管理综述[J]. 水资源保护, 2002(3) : 53-57.
[6] 汪恕诚. 资源水利――人与自然和谐相处[M]. 北京: 中国水利水电出版社, 2003.
[7] 钱正英, 张光斗. 中国可持续发展水资源战略研究综合报告[M] . 北京: 中国水利水电出版社, 2001.
[8] XXIX IAHR Congress. Environmental hydraulics and eco-hydraulics[ C] . Proceedings of Theme B. Beijing, TsinghuaUniversity Press, 2001.
[9] 周正, 周颖辉. 我国农村水污染现状及防治方法[J].NORTHERN ENVIRONMENT,2011: 99.
点击下页还有更多>>>水污染控制技术论文范文
微生物在污水处理中的应用
摘要:本文主要阐述了各种微生物在不同种类污水中的应用,以及它们不同的应用机理。
关键词:微生物 生活污水 工业污水 农业污水 重金属 农药
1.世界水资源现状
环境保护是我国的基本国策。世界经济发展的实践证明,为实现经济的持续稳定的发展,必须解决好发展与环境保护的矛盾。
全球水资源状况迅速恶化,“水危机”日趋严重。据水文地理学家的估算,地球上的水资源总量约为13.8亿立方公里,其中97.5%是海水(13.45亿立方公里)。淡水只占2.5%,其中绝大部分为极地冰雪冰川和地下水,适宜人类享用的仅为0.01%.
20世纪50年代以后,全球人口急剧增长,工业发展迅速。一方面,人类对水资源的需求以惊人的速度扩大;另一方面,日益严重的水污染蚕食大量可供消费的水资源。本届世界水论坛提供的联合国水资源世界评估报告显示,全世界每天约有200吨垃圾倒进河流、湖泊和小溪,每升废水会污染8升淡水;所有流经亚洲城市的河流均被污染;美国40%的水资源流域被加工食品废料、金属、肥料和杀虫剂污染;欧洲55条河流中仅有5条水质差强人意。
20世纪,世界人口增加了两倍,而人类用水增加了5倍。世界上许多国家正面临水资源危机:12亿人用水短缺,30亿人缺乏用水卫生设施,每年有300万到400万人死于和水有关的疾病。到2025年,水危机将蔓延到48个国家,35亿人为水所困。水资源危机带来的生态系统恶化和生物多样性破坏,也将严重威胁人类生存。
水资源危机既阻碍世界可持续发展,也威胁着世界和平。过去50年中,由水引发的冲突共507起,其中37起有暴力性质,21起演变为军事冲突。专家警告说,随着水资源日益紧缺,水的争夺战将愈演愈烈。
2.污水处理方法分类
2.1物理法
利用物理作用分离废水中呈悬浮状态的污染物质。主要有沉淀法,过滤法,离心分离法,吸附法等。
2.2化学法
利用化学反应原理及方法来分离,回收废水中的污染物,或改变污染物的性质,使它从有害变为无害的处理法。主要有化学凝聚法,中和法,氧化还原法,离子交换法。
2.3生物法
主要利用微生物的生命活动过程,对废水中的污染物质进行转移和转化的作用,从而是污水得到净化的方法。
2.4.微生物简介
微生物是肉眼看不见或看不清的生物的总称。包括原核生物(细菌,放线菌和蓝细菌),真核生物(真菌和微型藻类),非细胞生物(病毒类)。微生物具有体积小、表面积大、繁殖力惊人等特点,能不断与周围环境快速进行物质交换。污水具备微生物生长繁殖的条件,因而微生物能从污水中获取养分,同时降解和利用有害物质,从而使污水得到净化。因此微生物可在污水净化和治理中得到广泛应用,造福人类。
微生物能降解和转化污染物主要是因为微生物具有以下几个特点:个体微小,比表面积大,代谢速率快;种类繁多,分布广泛,代谢类型多样;具有多种降解酶;繁殖快,易变异,适应性强;共代谢作用等。
3.原理
利用微生物处理污水实际就是通过微生物的新陈代谢活动,将污水中的有机物分解,从而达到净化污水的目的.微生物能从污水中摄取糖,蛋白质,脂肪,淀粉及其它低分子化合物。微生物新陈代谢类型有需氧型和厌氧型两种,因此,净化方法分为好氧净化和厌氧净化.
3.1.好氧净化
氧存在条件下,许多好氧微生物通过分解代谢、合成代谢和物质矿物化,在把有机物氧化分解成CO2和H2O等过程中,获寻C源、N源、P源、S和能量。污水的微生物好氧净化就是模拟上述原理,把微生物置于一定的构筑物内通气培养,高效率净化污水的方法。
3.2厌氧净化
微生物在严格厌氧条件下,有机物发酵或消化过程中,大部分有机物被解生成H2、CO2、H2S和CH4等气体。污水的生物厌氧净化就是根据污水经厌氧发酵后既到净化,又获得了生物能源CH4的原理。微物细胞能量转移的电子受体,由好氧条件下分子氧改变为厌氧条件下的有机物。在厌氧件下,不溶于水而难分解的大分子有机污物,被微生物的胞外酶降解为可溶性物质,再由产甲烷厌氧细菌和产氢细菌降解成低分子有酸类和醇类、并放出H2和CO2;有机酸类和类经产甲烷菌降解成H2、CO2和CH4。甲烷菌还可利用H2还原CO2,形成CH4。
微生物净化过程:
Ⅰ.有机污染物的浓度由高变低
Ⅱ.异养细菌迅速氧化分解有机污染物而大量繁殖,然后是以细菌为食料的原生动物出现数量高峰,再后是由于有机物矿化,利于藻类的生长,而出现藻类的生长高峰。
Ⅲ.溶解氧浓度随着有机物被微生物氧化分解而大量消耗,很快降到最低点,随后,由于有机物的无机化和藻类的光合作用及其他好氧微生物数量的下降,溶解氧又恢复到原来水平。
这样,在离开污染源相当的距离之后,水中的微生物数量,有机物,无机物的含量,也都下降到最低点。于是,水体恢复到原来的状态。
微生物处理优点:微生物具有来源广,易培养,繁殖快,对环境适应性强,易变异的特征在生产上较容易的采集菌种进行培养繁殖,并在特定条件下进行驯化,使之适应不同的水质条件,从而通过微生物的新陈代谢使有机物无机化。加之微生物的生存条件温和,新陈代谢时不需要高温高压,它是不需要投加催化剂的.生物法具有废水处理量大、处理范围广、运行费用相对较低,所要投入的人力,物力比其他方法要少的多。在污水生物处理的人工生态系统中,物质的迁移转化效率之高是任何天然的或农业生态系统所不能比拟的。
4.污水处理中重要的微生物种群
4.1 丝状细菌
丝状细菌(Filamentous bacteria)能显著影响絮状活性污泥的沉降性(污泥膨胀)或引起生物量变化和泡沫形成(污泥发泡),从而严重影响活性污泥的处理效率.传统上,丝状细菌是通过光学显微镜学进行分析鉴定的,如革兰氏和Neisser染色反应、典型的形态学特征等.但应用full—cycle rRNA技术发现,传统形态学鉴定方法不能发现污水厂活性污泥中的许多丝状细菌 。
系统发生树部分提供了丝状菌的系统发生亲缘关系,但有些丝状类型如Eikelboom 1863或Nostocoidalimicola等则是放置在完全无关的类群中.现在利用rRNA目标寡聚核苷酸探针能迅速地鉴定大多数丝状菌,证明在活性污泥中有些丝状菌呈现多态性现象.Kanagawa等(2000)从活性污泥中分离出15种丝状菌,根据形态被分类为Eikelboom 21 N,利用16S rDNA序列分析表明都同变形杆菌亚纲的Thiothrix丝状菌形成单系群(monophyletic group).Thiothrix丝状菌在污水中通常表现出生理多能性,在异养、兼性营养和化能自养情况下,它们都能同标记的乙酸盐或碳酸氢盐结合。在厌氧状况下(无论有无硝酸盐),Thiothrix丝状菌都很活跃,它通过吸收硫代硫酸盐和乙酸盐来形成胞内硫粒。
利用丝状菌的FISH探针,Mircothrix parvicella被发现有特殊的脂消费,在厌氧情况下专门吸收长链脂肪酸(而不是短链脂肪酸和葡萄糖),随后当硝酸盐或氧可用作电子受体时它们则使用贮存完成生长.不过,在厌氧情况下,M.parvicella不能吸收磷,不适合那些有除磷要求的生物反应器.利用FISH技术对丝状菌进行系统分类发现,大多数未描述的丝状菌属于绿色非硫细菌(Chloroflexi),也可能是污水生物处理系统中丰度最高的丝状菌。Liao等(2004)发展一种定量FISH,对实验室和污水厂反应器中的丝状菌进行了研究,以增加Sphaerotilus natans的方式来刺激污泥膨胀,结果发现是Eikelboom 1851菌丛(而不是试验的S.natans菌)同活性污泥容积指数(volume index)极度相关,其可延伸的菌丝长度约为6×10。la,m/mL。
4.2 生物除磷的重要细菌
生物除磷可以在EBPR的微生物途径中由完成,该过程通过循环活性污泥进行交替的厌氧、需氧为特征。基于微生物的纯培养技术,变形杆菌纲г亚纲的不动杆菌属(Acinetobacter)长期被认为是唯一的PAO(Polyphosphate—accumulating organism).但实际上,虽然不动杆菌能积累多聚磷酸盐,却没有PAO的典型代谢方式.Wanger等(1994)用rRNA目的探针测试后认为,主要的PAO应该为口亚纲中的Rhoclocyclus群,其次为 亚纲中的Planctomycete群及屈挠杆菌属(Flexibacter)、CFB群(Cytophaga—Flavobacterium—Bacteroides)等.利用萤光抗体染色、呼吸醌检测和属特异探针的FISH等非培养方法,证明在EBPR系统中,由于培养偏差显然高估了不动杆菌的相对丰度,表明其对EBPR系统实际上不是最重要的,而另外一些分离出的细菌才是PAO的候选者。不过,有7个Acinembacter新种从活性污泥中分离到,可望进一步阐释该属在脱磷中扮演的角色和意义。
积磷小月菌(Microlunatus phosphovorus)是一个高G+C含量的革兰氏阳性菌,被认为是专性好氧菌,可以通过EMP途径发酵葡萄糖为乙酸,而不能够在厌氧情况下生长.有明显吸收葡萄糖、分泌乙酸的转化,导致胞内乙酸积累;产生的乙酸在随后的好氧阶段消耗掉.phosphovorus表现出卓越的吸收和释放磷的能力,磷释放率和吸收率可分别高达3.34 mmol g/cell•h和1.56 mmol g/cell•h,比Lampropedia spp.和Acinetobacterspp.要高1个数量级,特异探针证明其在EB—PR工厂里可占总细菌的2.7%。
俊片菌属(Lampropedia)也拥有聚磷菌的基本代谢特征,但比EBPR模型预言的吸收乙酸盐释放磷酸盐的比率要低很多.那些被建议名为“Candidatus Ac—cumulibacter phosphates”已被证实显著存在于EBPR系统中.Saunders等(2003) 在对6个运行污水厂进行了检测后认为,很可能“无关紧要”的“CandidatusAccumulibacter phosphates”正是重要的PAO.另外还有显微镜原位观察显示,酵母菌很可能涉及在生物除磷中,许多“聚磷菌”很可能是酵母菌的孢子,但其作用机理显然还需要进一步探讨.
4.3 硝化细菌
氮循环是高度依赖微生物活性和转化的一个过程.这类微生物在污水处理、农业等领域具有极其重要的作用,因此成为近年来世界研究的热点,变形杆菌的β亚纲几乎已经成为微生物生态学的模式系统 .Kindaichi等(2004)对自养硝化生物膜进行了FISH分析表明,膜上有50%属于硝化细菌,其余50%为异养细菌,分布为变形杆菌α亚纲23% ,г亚纲13% ,绿色非硫细菌9% ,CFB群2%,未定类群3%.该结果表明,硝化细菌通过可溶性产物的产生支持了异养菌,异养菌也从代谢多样性等方面确保了生物膜的生态稳定性 .从培养角度来说,硝化细菌生长极慢;由于硝化细菌的分布同pH、温度等敏感,所以污水厂的硝化作用常有崩溃的情况发生.
4.3.1 氨氧化茵
基于16S rDNA序列分析,已经分离和描述过的氨氧化细菌都分属于变形杆菌纲的2个单系群中.Ni-trosococcusoceanus和N.halophilus属于Proteobacteria的β亚纲,包括亚硝化单胞菌属(Nitrosomonas)、亚硝化螺菌属(Nitrosospira)、亚硝化弧菌属(Nitrosovibrio)和亚硝化叶菌属(Nitrosolobus),后3个属关系密切;而Nitrosococcus mobilis(实际是Nitrosomonas的一个成员)则在β亚纲组成紧密相关的集合.
4.3.2 亚硝酸氧化茵
基于超微特性,已培养出的亚硝酸氧化菌(Nitrite.oxidizing bacteria,NOB)被分为4个已知属,硝化杆菌属(Nitrobacter),硝化刺菌属(Nitrospina),硝化球菌属(Nitrococcus)和硝化螺菌属(Nhrospira).16S rDNA序列比较分析表明,硝化杆菌属及其3个种都属于变形杆菌的α一亚纲;Nitrospina和Nitrococcus各有一个种,分属于变形杆菌的δ和г一亚纲;Nitrospira属包含有moscoviensis和Ⅳ.rrtarin.在传统上,Nitrobacter一直被认为是最重要的亚硝酸盐氧化菌.然而,在硝化污水厂内用目的探针的FISH法和定量斑点杂交(Quantitative dot blot)等发现,检测不到Nitrobacter或者数目很低,因此凸现了非Nitrobacter的NOB在硝化过程中的重要性.Egli等(2003)用不同污泥接种反应器,利用定量FISH和RFLP(Restriction fragment length polymorphism)方法对稳定的硝化作用反应器进行检测,发现有活性的都属于Nitrospira属 J.以Nitrospira序列发展的特定16S rRNA探针,对活性污泥进行FISH查后表明,未培养的类硝化螺菌(Nitrospira—like)以显著性数目(总菌数的9%)存在,其对亚硝酸盐氧化的重要性已由反应器富集研究所证实.Nhrospira能固定CO:,也能利用丙酮酸混合营养生长,而不利用乙酸盐、丁酸盐和丙酸盐。
4.4 反硝化细菌
反硝化细菌(Denitrifying bacteria)的大多数鉴定和计数都是依赖培养法.很多属的成员,如产碱杆菌属(Alcaligenes)、假单胞菌属(Pseudomonas)、甲基杆菌属(Methylobacteriurn),副球菌属(Paracoccus)和生丝微菌属(Hyphornicrobiurrt)等,都从污水厂中作为脱氮微生物群分离出来过,但这些细菌属在污水厂中是否具有原位脱氮的活性却很少被知道.在一个补充以甲醇作为还原碳化物的脱氮沙滤中,使用特异FISH探针监测到有大量数目的P.spp和H.spp;而在没有附加甲醇的非脱氮沙滤中,两属存在的数目都低于总细胞0.1% ,这间接证明了在脱氮过程中有两属的活性参与。
5.水污染物的类型及处理
5.1生活污水
生活污水是一大污染源。生活污水中含有大量的无机物,有机物。无机物如氯化物,硫酸盐,磷酸盐和钠,钾,钙,铁等碳酸盐,有机物有纤维素,淀粉,脂肪,蛋白质和尿素等。排放入环境中促使浮游植物生长和大量繁殖,形成赤潮和水华。
生活污水的处理主要是其中有机物的分解,其主要方法有活性污泥法、生物膜法、AB法。
5.1.1活性污泥法
活性污泥法是以活性污泥为主体的废水生物处理的主要方法。活性污泥法是向废水中连续通入空气,经一定时间后因好氧性微生物繁殖而形成的污泥状絮凝物。其上栖息着以菌胶团为主的微生物群,具有很强的吸附与氧化有机物的能力。
5.1.2生物膜法
生物膜法是利用附着生长于某些固体物表面的微生物(即生物膜)进行有机污水处理的方法。生物膜是由高度密集的好氧菌、厌氧菌、兼性菌、真菌、原生动物以及藻类等组成的生态系统,其附着的固体介质称为滤料或载体。生物膜自滤料向外可分为庆气层、好气层、附着水层、运动水层。生物膜法的原理是,生物膜首先吸附附着水层有机物,由好气层的好气菌将其分解,再进入厌气层进行厌气分解,流动水层则将老化的生物膜冲掉以生长新的生物膜,如此往复以达到净化污水的目的。生物膜法具有以下特点:(1)对水量、水质、水温变动适应性强;(2)处理效果好并具良好硝化功能;(3)污泥量小(约为活性污泥法的3/4)且易于固液分离;(4)动力费用省。
5.1.3AB法
AB法工艺由德国B0HUKE教授首先开发。该工艺将曝气池分为高低负荷两段,各有独立的沉淀和污泥回流系统。高负荷段A段停留时间约20-40分钟,以生物絮凝吸附作用为主,同时发生不完会氧化反应,生物主要为短世代的细菌群落,去除BOD达50%以上。B段与常规活性污泥相似,负荷较低,泥龄较长。
5.2工业废水
工业废水是水体污染的主要污染源。包括钢铁工业废水,食品工业废水,印刷废水,化工废水等。随着工业化的发展,含有重金属离子的废水产生量越来越多。重金属离子已成为最重要、最常见的污染物之一。由于重金属在生物体内的富集、吸收与转化,从而通过食物链危害人体健康。如致癌、致畸等,故而处理重金属污染刻不容缓。
微生物处理技术在生活污水处理中的应用已经非常成熟并且全面普及,但是在工业污水的处理中还存在着一定的技术问题。相对于生活污水来说,工业污水的成份要复杂的多,大多数工业污水的COD值都相当高,可生化性差,这就给微生物处理带来了相当大的难度,有些工业污水甚至还有很高的氨氮指标,增加了微生物处理的难度。但是微生物技术的许多优势注定了它将是工业污水治理的一个方面,而且目前已经有很多行业的工业污水开始采用微生物处理技术并且得到了稳定的运行数据。
这里主要讲述关于污水中重金属的处理。目前可用的微生物法有生物吸附法、硫酸盐还原菌净化法和利用微生物的转化作用去除重金属。
5.2.1生物吸附法
生物吸附是利用生物量(如发酵工业的剩余菌体)通过物理化学机制,将金属吸附或通过细胞吸收并浓缩环境中的重金属离子,由于重金属具有毒性,如果浓度太高,活的微生物细胞就会被杀死。所以,必须控制控制被处理水的重金属浓度。
例如陈小霞等人用小球藻富集铬离子,研究表明小球藻富集铬离子的机制主要表现是表面吸附和主动运输。在生长期和稳定期小球藻富集的铬以有机铬存在,而在衰亡期,小球藻富集的铬以无机铬存在。
利用工业发酵后剩余的芽孢杆菌菌体或酵母菌吸附重金属,具体做法是首先用碱处理菌体,以便增加其吸附重金属的能力。然后通过化学交联法固定这些细胞,固定化的芽孢杆菌对重金属的吸附没有选择性(微生物在结合无机污染物上表现出选择性,多于大多数合成的化学吸附剂,微生物对金属的吸附和累积主要取决于不同配位体结合部位对对金属的选择性)。可以去除废水中的Cd、Cr、Cu、Hg、Ni、Pb、Zn 去除率可达99%。吸附在细胞上的重金属可以用硫酸洗脱,然后用化学方法回收重金属,经过碱处理后的固定化细胞还可以重新用于吸附重金属。
5.2.2硫酸盐还原菌净化法
脱硫弧菌属硫酸盐还原菌是厌氧化能细菌,它最大的特征就是在无自由氧的条件下,在有机质存在时通过还原硫酸根变成硫化氢,从中获得生长能量而大量繁殖;它繁殖的结果是使溶解度很大的硫酸盐变成了极难溶解的硫化物或硫化氢。这类细菌分布广泛,海洋、湖泊、河流及陆地上都能存在。在没有自由氧而有硫酸盐及有机物存在的地方它就能生长繁殖,其生长温度为25~35摄氏度,PH值为6.2~7.5.该细菌的作用可将废水中的硫酸根变成硫化氢,使废水中浓度较高的重金属Cu、Pb、Zn等转变为硫化物而沉淀,从而使废水中的重金属离子得以去除。
5.2.3利用微生物的转化作用去除重金属
微生物可以通过氧化作用、还原作用、甲基化作用和去烷基化作用对重金属和重金属类化合物进行转化。
细菌胞外的荚膜或粘膜层可产生多种胞外多聚体,胞外多聚体能够吸附自然条件下或废水处理设施中的重金属。其主要成分是多糖、蛋白质和核酸。
真菌的细胞壁内含几丁质,这和N----乙酰葡糖胺多聚体是一种有效的金属于放射性核素结合的生物吸附剂。经过氢氧化物处理的各类真菌暴露出来的几丁质、脱乙酰壳多糖和其他金属结合的配位体,形成菌丝层,可以有效的去除废水中的重金属。
六价铬具有强烈的毒性,其毒性是三价铬的100倍,而且能在人体内沉淀。由于六价铬很容易通过胞膜进入细胞,然后在细胞质、线粒体和细胞核中被还原为三价铬,三价格在细胞内与蛋白质结合为稳定的物质并且和核酸相作用,而细胞外的三价铬是不能参透细胞的,细菌利用细胞中的NADH作为还原剂,在厌氧或好氧的状态下,将六价铬还原为三价铬。如阴沟肠杆菌能抗10000µmol/l铬酸盐,在厌氧的条件下能使六价铬还原为三价铬,三价铬可以通过沉淀反应与水分离而被去除。
5.3农业废水
它面广而量大且分散。农田使用农药,化学农药主要是人工合成的生物外源性物质,很多农药本身对人类及其他生物是有毒的,而且很多类型是不易生物降解的顽固性化合物。农药残留很难降解,人们在使用农药防止病虫草害的同时,也使粮食、蔬菜、瓜果等农药残留超标,污染严重,同时给非靶生物带来伤害,每年造成的农药中毒事件及职业性中毒病例不断增加。同时,农药厂排出的污水和施入农田的农药等也对环境造成严重的污染,破坏了生态平衡,影响了农业的可持续发展,威胁着人类的身心健康。农药不合理的大量使用给人类及生态环境造成了越来越严重的不良后果,农药的污染问题已成为全球关注的热点。因此,加强农药的生物降解研究、解决农药对环境及食物的污染问题,是人类当前迫切需要解决的课题之一。
5.3.1 农业生产上主要使用的农药类型
当前农业上使用的主要有机化合物农药如表1所示。其中,有些已经禁止使用,如六六六、滴滴涕等有机氯农药,还有一些正在逐步停止使用,如有机磷类中的甲胺磷等。
表1 农业生产中常用农药种类简表
类 型 农 药 品 种
有机磷:敌百虫、甲胺磷、敌敌畏、乙酰甲胺磷、对硫磷、双硫磷、乐果等
杀虫剂 有机氮:西维因、速灭威、巴沙、杀虫脒等
有机氯:六六六、滴滴涕、毒杀芬等
杀螨剂 螨净、杀螨特、三氯杀螨砜、螨卵酯、氯杀、敌螨丹等
除草剂 2,4-D、敌稗、灭草灵、阿特拉津、草甘膦、毒草胺等
杀菌剂 甲基硫化砷、福美双、灭菌丹、敌克松、克瘟散、稻瘟净、多菌灵、叶枯净等
生长调节剂 矮壮素、健壮素、增产灵、赤霉素、缩节胺等
人们发现,在自然生态系统中存在着大量的、代谢类型各异的、具有很强适应能力的和能利用各种人工合成有机农药为碳源、氮源和能源生长的微生物,它们可以通过各种谢途径把有机农药完全矿化或降解成无毒的其他成分,为人类去除农药污染和净化生态环境提供必要的条件。
5.3.2 降解农药的微生物类群
土壤中的微生物,包括细菌、真菌、放线菌和藻类等,它们中有一些具有农药降解功能的种类。细菌由于其生化上的多种适应能力和容易诱发突变菌株,从而在农药降解中占有主要地位。一在土壤、污水及高温堆肥体系中,对农药分解起主要作用的是细菌类,这与农药类型、微生物降解农药的能力和环境条件等有关,如在高温堆肥体系当中,由于高温阶段体系内部温度较高(大于50 ℃),存活的主要是耐高温细菌,而此阶段也是农药降解最快的时期。通过微生物的作用,把环境中的有机污染物转化为CO2和H2O等无毒无害或毒性较小的其他物质。通过许多科研工作者的努力,已经分离得到了大量的可降解农药的微生物(见表2)。不同的微生物类群降解农药的机理、途径和过程可能不同,下面简要介绍一下农药的微生物降解机理。
5.3.3 微生物降解农药的机理
目前,对于微生物降解农药的研究主要集中于细菌上,因此对于细菌代谢农药的机理研究得比较清楚。
表2 常见农药的降解微生物
农 药 降 解 微 生 物
甲胺磷 芽孢杆菌、曲霉、青霉、假单胞杆菌、瓶型酵母
阿特拉津(AT) 烟曲霉、焦曲霉、葡枝根霉、串珠镰刀菌、粉红色镰刀菌、尖孢镰刀菌、斜卧镰刀菌、微紫青霉、皱褶青霉、平滑青霉、白腐真菌、菌根真菌、假单胞菌、红球菌、诺卡氏菌
幼脲3号 真菌
敌杀死 产碱杆菌
2,4-D 假单胞菌、无色杆菌、节杆菌、棒状杆菌、黄杆菌、生孢食纤维菌属、链霉菌属、曲霉菌、诺卡氏菌、
DDT 无色杆菌、气杆菌、芽孢杆菌、梭状芽孢杆菌、埃希氏菌、假单胞菌、变形杆菌、链球菌、无色杆菌、黄单胞菌、欧文氏菌、巴斯德梭菌、根癌土壤杆菌、产气气杆菌、镰孢霉菌、诺卡氏菌、绿色木霉等
丙体六六六 白腐真菌、梭状芽孢杆菌、埃希氏菌、大肠杆菌、生孢梭菌等
对硫磷 大肠杆菌、芽孢杆菌
七 氯 芽孢杆菌、镰孢霉菌、小单孢菌、诺卡氏菌、曲霉菌、根霉菌、链球菌
敌百虫 曲霉菌、镰孢霉菌
敌敌畏 假单胞菌
狄氏剂 芽孢杆菌、假单胞菌
艾氏剂 镰孢霉菌、青霉菌
乐 果 假单胞菌
2,4,5-T 无色杆菌、枝动杆菌
细菌降解农药的本质是酶促反应,即化合物通过一定的方式进入细菌体内,然后在各种酶的作用下,经过一系列的生理生化反应,最终将农药完全降解或分解成分子量较小的无毒或毒性较小的化合物的过程。如莠去津作为假单胞菌ADP菌株的唯一碳源,有3种酶参与了降解莠去津的前几步反应。第一种酶是A tzA,催化莠去津水解脱氯的反应,得到无毒的羟基莠去津,此酶是莠去津生物降解的关键酶;第二种酶是A tzB,催化羟基莠去津脱氯氨基反应,产生N-异丙基氰尿酰胺;第三种酶是A tzC,催化N-异丙基氰尿酰胺生成氰尿酸和异丙胺。最终莠去津被降解为CO2和NH3。微生物所产生的酶系,有的是组成酶系,如门多萨假单胞菌DR-8对甲单脒农药的降解代谢,产生的酶主要分布于细胞壁和细胞膜组分;有的是诱导酶系,如王永杰等得到的有机磷农药广谱活性降解菌所产生的降解酶等。由于降解酶往往比产生该类酶的微生物菌体更能忍受异常环境条件,酶的降解效率远高于微生物本身,特别是对低浓度的农药,人们想利用降解酶作为净化农药污染的有效手段。但是,降解酶在土壤中容易受非生物变性、土壤吸附等作用而失活,难以长时间保持降解活性,而且酶在土壤中的移动性差,这都限制了降解酶在实际中的应用。现在许多试验已经证明,编码合成这些酶系的基因多数在质粒上,如2,4-D的生物降解,即由质粒携带的基因所控制。通过质粒上的基因与染色体上的基因的共同作用,在微生物体内把农药降解。因此,利用分子生物学技术,可以人工构建“工程菌”来更好地实现人类利用微生物降解农药的愿望。