您当前的位置:首页 > 发表论文>论文发表

表面活性剂论文参考文献

2023-12-12 14:31 来源:学术参考网 作者:未知

表面活性剂论文参考文献

表面活性剂在化妆品中的应用
摘要:论述了表面活性剂的功能,如润湿、分散、乳化、增溶、起泡、消泡和洗涤去污等功能,以及在化
妆品中的作用。介绍了表面活性剂和化妆品的分类情况,化妆品的原料以及化妆品对表面活性剂的要求。
详细介绍了化妆品中常用的几种表面活性剂。对化妆品中用的表面活性剂的发展趋势进行了阐述。
关键词:表面活性剂;化妆品;功能;应用
表面活性剂在化妆品中的主要功能包括乳化、分
散、增溶、起泡、清洗、润滑和柔软等。表面活性剂
在化妆品中具有广泛的用途,起着重要的作用。化妆
品中所利用的表面活性剂的性能不仅仅是其单一的
性能,而是利用其多种性能,因此,表面活性剂是
化妆品生产中不可缺少的原料,广泛应用于化妆品
中。
化妆品是指以涂抹、喷、洒或者其他类似方法,
施于人体(皮肤、毛发、指趾甲和口唇齿等),以达
到清洁、保养、美化、修饰和改变外观,或者修正人
体气味,保持良好状态为目的的产品。目前,化妆品
的发展趋势是向疗效性、功能性和天然性方向发展。
1表面活性剂的分类
表面活性剂的分类方法有很多种,根据表面活性
剂的来源进行分类,通常把表面活性剂分为合成表面
活性剂、天然表面活性剂和生物表面活性剂三大类。
1.1合成表面活性剂
合成表面活性剂是指以石油、天然气为原料,通
过化学方法合成制备的表面活性剂。表面活性剂在性
质上的差异,除与烃基的大小和形状有关外,主要与
亲水基团类型有关。一般以亲水基团的结构为依据来
分类,按亲水基团是否带电可将表面活性剂分为离子
型和非离子型两大类,其中离子型表面活性剂又分为
阳离子表面活性剂、阴离子表面活性剂和两性离子表
面活性剂。
1.2天然表面活性剂
20世纪70年代的石油危机对以石油为基本原料
的表面活性剂工业产生了巨大的冲击,引起人们对能
源消耗、工艺生产过程、生态学和石油制品安全性等
一系列问题的思考,从而引发了以天然油脂为原料生
产表面活性剂的重大变革。由于生物新技术的应用,
油脂分离精制技术的发展,植物油脂品种的改良及增
产,使得大量获得价格较低的高纯度的天然油脂成为
可能,新的抗氧化剂的开发成功,解决了天然油脂腐
败变质的问题,再加上人们对安全及环保意识的提
高,以油脂为原料的天然表面活性剂的开发引起人们
的高度重视。目前在天然油脂中最受重视的要数棕榈
油和棕榈仁油。
1.3生物表面活性剂
生物表面活性剂是指由细菌、酵母和真菌等多种
微生物产生的具有表面活性剂特征的化合物。用微生
物生产表面活性剂是20世纪70年代后期国际生物工
程领域中研究的新课题。用微生物制取生物表面活性
剂可以得到许多难以用化学方法合成的产物,在结构
中引进了新的化学基团,而制得的产物易于被生物完
全降解,无毒性,在生态学上是安全的。生物表面活
性剂根据其亲水基的不同可分为糖脂系、酰基缩氨酸
系、磷脂系、脂肪酸系和高分子表面活性剂五类。
2表面活性剂的功能
表面活性剂是一类具有多种功能的精细化学品,表面活性剂具有润湿、分散、乳化、增溶、起泡、消
泡和洗涤去污等多种功能。
当液体与固体表面接触时,气体被排斥,原来的
固-气界面消失,代之以固-液界面,这种现象称
为润湿。从普遍意义而言,润湿是一种流体被另一种
流体自表面取代的过程。
通常把一种物质的颗粒或液滴以及微小的形态分
散到另一介质中的过程叫分散。所得到的均匀、稳定
的体系叫分散体。
乳化是一种液体以微小液滴或液晶形式均匀分散
到另一种不相混溶的液体介质中形成的具有相当稳定
性的多相分散体系的过程。
表面活性剂在水溶液中形成胶束后,具有能使不
溶或微溶于水的有机化合物的溶解度显著增大的能
力,且溶液呈透明状,这种作用称为增溶作用。
由液体薄膜或固体薄膜隔离开的气泡聚集体称为
泡沫,可分为液体泡沫和固体泡沫。在液体泡沫中,
液体和气体的界面起主要作用。一般地说,当表面张
力低,膜的强度高时,不论是稳定泡沫还是不稳定泡
沫,起泡力都较好。溶液的黏度对泡沫稳定在两方面
起作用:一方面是增强泡沫液膜的强度;另外,表面
黏度大,膜液体不易流动排出,延缓了液膜破裂,而
增强了泡沫的稳定性。
消泡作用分为破泡和抑泡两种。具有破泡能力的
物质称为破泡剂。有效的消泡剂既要能迅速破泡,又
要能在相当长的时间内防止泡沫生成。
洗涤去污作用是表面活性剂应用最广泛、最具有
实用意义的基本特性。洗涤去污过程是极为复杂的,
与污垢种类、基本性能、表面活性剂和助剂的种类和
结构密切相关,而其过程又是多种表面现象,如吸
附、润湿、渗透、乳化、分散、泡沫和增溶等在不同
情况下的综合效应。
3化妆品的分类
化妆品能对人体面部、皮肤表面、毛发和口腔起
清洁保护和美化作用。化妆品的品种多种多样,分类
方式也各不相同。按使用部位可分为:皮肤用化妆
品、毛发用化妆品、指甲用化妆品和口腔用化妆品。
按使用目的可分为:洁净用化妆品、基础保护化妆
品、美容化妆品和芳香制品,还可根据化妆品本身的
剂型分类。
4化妆品的原料
制造化妆品所用的原料有很多种,据统计大概有
3 000多种。根据化妆品原料在化妆品中所含比例的
大小,可分为基质原料和配合原料。基质原料是调配
各种化妆品的主体,也成为基础原料。膏霜类的油
脂,香粉类的滑石粉等均属基质原料;配合原料是用
来改善化妆品的某些性质和赋予色、香等的辅助原
料,如膏霜中的乳化剂、抗氧化剂和防腐剂等均属配
合原料。配合原料在化妆品中的比例虽小,但对化妆
品的质量影响却很大。它们之间没有绝对的界限,某
一种原料在化妆品中起着基质原料的作用,而在另一
化妆品中可能仅起着辅助原料的作用。
4.1基质原料
1)油脂类
油脂是组成膏霜类化妆品的基本原料,主要起护
肤、柔滑和滋润等作用。脂肪酸甘油酯是组成动植物
油脂的主要成分,在常温下呈液态的称为油,呈固态
的称为脂。根据来源又可分为植物性油脂和动物性油
脂。植物性油脂包括椰子油、橄榄油、蓖麻籽油、杏
仁油、花生油、大豆油和棕榈油等。动物油脂包括牛
油、猪油、貂油和海龟油等。这些动植物油脂加氢后
的产物称为硬化油。在化妆品中常用的硬化油有:硬
化椰子油、硬化牛脂、硬化蓖麻油和硬化大豆油等。
2)蜡类
蜡是高碳脂肪酸和高碳脂肪醇所组成的酯。在化
妆品中主要作为固定剂,增加化妆品的稳定性,调节
其黏度,提高液体油的熔点,使用时对皮肤产生柔软
的效果。依据来源的不同,蜡类也可分为植物性蜡和
动物性蜡。植物性蜡包括巴西棕榈蜡、霍霍巴蜡和小
烛树蜡等。动物蜡类包括蜂蜡、羊毛脂蜡、鲸油和虫
蜡等。
3)高碳烃类
用于化妆品原料中的烃类主要包括烷烃和烯烃,
它们在化妆品中的主要作用是其溶解作用,净化皮肤
表面,还能在皮肤表面形成憎水性油膜,来抑制皮肤
表面水分的蒸发,提高化妆品的功效。在化妆品中用
的主要包括角鲨烷、凡士林、液体石蜡和固体石蜡等。
4)粉类
粉类是组成香粉、爽身粉、胭脂、牙粉和牙膏等
粉类化妆品的基质原料。一般是不溶于水的固体,经

研究两性表面活性剂时,会考察哪些性质

方云 夏咏梅(无锡轻工大学化工学院,江苏 无锡,214036)

摘要:介绍了两性表面活性剂的流变性、水溶助长性、钙皂分散性和抗硬水性等一般性质。讨论了两性表面活性剂的流变性与表面活性剂浓度之间的关系,并给出了调节混合体系流变性的方法。从混合胶束理论出发,对两性表面活性剂是比其他类型表面活性剂更优秀的钙皂分散剂这一事实,作者提出了新见解。同时,对两性表面活性剂的生态性质,如生物降解性、鱼毒性等也进行了较为详细的介绍。

关键词:两性表面活性剂;流变性;钙皂分散性;生态性质

中图分类号:TQ423.3  文献标识码:A  文章编号:1001-1803(2000)06-0047-04

1 流变性

表面活性剂溶液的粘度随表面活性剂浓度增大而增大,但有时浓度进一步增大时溶液粘度反而会降低。表面活性剂浓度与表面活性剂团簇形状之间的关系已在第二讲中描述,表面活性剂溶液在低浓度时具有球状胶束,其流变性基本类同于牛顿型流体,因此粘度很低。随表面活性剂浓度增加,当球状胶束过渡到变型球状特别是棒状胶束时,粘度急剧增大。预计这是由于非球状胶束重叠使体系自由流动性减小而造成的,此时溶液便表现出非牛顿型流体的流变学特征,或具触变性或具抗流变性。体系浓度进一步增大,则胶束会变型至六角棒状胶束,一般称为进入中间相(M相)。此时由于胶束排列整齐,使胶束间不易滑移,故而体系粘度进一步增大,且抗流变性很强。当溶液浓度很大时,会进入层状相(G相),过渡到层状胶束。由于层状胶束中每层胶束的滑移面运动相对自由,粘度反而比M相有所下降。当然,各种浓度和各种胶束形状下溶液的流变特性随表面活性剂品种不同而不同。

由于两性表面活性剂自身带正、负电荷中心,彼此间的作用使其临界胶束浓度比相应的阴离子或阳离子表面活性剂的低,且达到一定浓度(一般为30%左右)便易形成流变性差的粘滞液体。通过在其中加入第三组分改变其胶束结构,可能改善两性表面活性剂的流变性,使得到浓度更高的两性表面活性剂溶液成为可能。如某种具有良好流变性的两性浓缩物中含5%~40%水,36%~70%两性表面活性剂,5%~45%水溶性非表面活性有机溶剂,可用于个人洗护用品。由于非表面活性有机溶剂的加入使得两性表面活性剂进入G相或L1相,从而有较好的泵送性和自由流动性。

40.2%的椰油酰胺丙基甜菜碱与60/40的丙二醇/水混合便可使体系处于G相。在浓度≥40%的甜菜碱两性表面活性剂中加入磺基甜菜碱两性表面活性剂、两性甘氨酸盐、三甲基甘氨酸等也可改善流变性,得到具有很好流动性的液体,并具有贮存稳定性。ChevalierY.研究了两性表面活性剂的分子结构与胶束结构、流变性间的关系。据报道一种新型双长链两性表面活性剂在水溶液中的层状相通过简单稀释能瞬间形成囊泡分散液。

2 水溶助长性

水溶助长剂是一类能够阻止液晶相形成和抑制胶束相形成的物质。水溶助长剂常用于在低温下保持表面活性剂溶液的流体状态,提高聚氧乙烯化非离子表面活性剂的浊点,还能降低离子型表面活性剂的临界溶解温度即KP温度。椰油亚氨基二丙酸钠的水溶助长性归因于分子中有两个离子性基团存在,使得分子的亲水性提高。表面活性剂型的水溶助长剂通过与主表面活性剂形成混合胶束而破坏液晶相,它们的强亲水头提高了表面活性剂混合分子间的亲水排斥作用,使液晶转变成球状胶束。两性表面活性剂对皂类而言是一种水溶助长剂,故可提高水溶性。由于皂类和两性表面活性剂在KP温度方面产生的协合效应,混合体系的KP温度能达到两种组分单独存在时都不能达到的低值。图1所示的十六酸皂和十六烷基羟基磺丙基甜菜碱(CHSB)混合体系具有KP温度的正协合效应,体系的最低KP温度为30℃,比十六酸钠皂的KP温度(58℃)和CHSB的KP温度(89℃)都低得多,即使在CHSB的摩尔分数为10%时,混合体系的KP温度也能够降低到大约50℃。

[1]

图1 KP的协合作用

3 钙皂分散性

阴离子型和两性表面活性剂中的一些品种能防止皂类在硬水中形成皂垢悬浮物,具有这种功能的物质称作钙皂分散剂。一些两性表面活性剂的钙皂分散值是目前所能达到的最低值,钙皂分散值的数值低于2%甚至难以测出。烷基甜菜碱在硬水中具有一定的钙皂分散力,但磺基甜菜碱的钙皂分散性比其更好,象酰胺丙基磺基甜菜碱的钙皂分散值低达2%。Parris[2~5]报道了许多磺基甜菜碱、酰胺基磺基甜菜碱和硫酸基甜菜碱的钙皂分散力值,并指出硫酸基甜菜碱和酰胺基磺基甜菜碱的钙皂分散性比磺基甜菜碱好。双酰胺基甜菜碱具有很强的降低表面张力的能力,其钙皂分散力良好。方云合成了分子中酰胺氮上带聚氧乙烯基团的羟基磺基甜菜碱

:

[6]

从表2可见磷酸基甜菜碱的钙皂分散力比磺基甜菜碱更强。

皂类的两大缺点是低温溶解度小和抗硬水能力差,上面已经提到离子型或两性型表面活性剂作为水溶助长剂,可以降低其KP温度,提高其低温水溶性。此外,阴离子型和两性表面活性剂中的一些品种还能防止皂类在硬水中形成皂垢悬浮物。

最早提出的钙皂分散机理认为钙皂分散剂对钙皂只是简单的分散作用,但用这种机理很难解释为什么钙皂分散剂的添加时间不同则获得的钙皂分散效果便不一样的实验事实。后来提出的钙皂分散机理认为是钙皂分散剂插入皂类胶束中形成混合胶束。典型的皂类胶束是在软水中形成的,一旦有钙、镁离子加入其中,皂类胶束便会发生反转,导致出现钙皂沉淀或悬浮

当p=1或2时,钙皂分散力均为2%,不带聚氧乙烯的相应物其钙皂分散力为3%。

朱水平[7]报道了在疏水基中引入聚氧乙烯链的羟基磺基甜菜碱物。但是如果有钙皂分散剂存在,并与皂类形成混合胶束,则肥皂的羧基被钙皂分散剂彼此分隔远离,不足以形成不溶性钙、镁皂而使胶束发生反转。

将钙皂分散的混合胶束机理与混合胶束可能产生的协合效应或复配效应这两者结合起来考虑,可以解释为什么两性表面活性剂是比阴离子或非离子型表面活性剂更优秀的钙皂分散剂。从第三讲(见《日化工业》2000年No.5》)表2列出的混合体系的分子间相互作用

其钙皂分散力为3%。而疏水链碳原子数为18,但

不含-O-键的类似物,其钙皂分散力为5%。覃善木[8]报道的锍

型甜菜碱的钙皂分散力见表1。何元君[9]报道

了磷酸基甜菜碱的钙皂分散力,见表2

。参数B的数值可以看出,阴离子-阴离子表面活性剂混合体系的B<-1,阴离子-非离子表面活性剂混合体系的B=-1~-5,而阴离子-两性表面活性剂混合体系的B=-5~-15。在形成混合胶束的分子间相互作用

第6期2000年12月

方云等:两性表面活性剂(四)两性表面活性剂的一般性质

方面,显然以阴离子-两性表面活性剂混合体系最强。其原因是两性表面活性剂中的阳离子基团能与阴离子表面活性剂中的阴离子基团发生类似于阴离子-阳离子表面活性剂的强相互作用,同时两性表面活性剂中携带的阴离子基团又能维持相互作用后复合体系的水溶性。第三讲中还证明阴离子-两性表面活性剂混合体系能产生降低cmc的协合作用或明显的复配效应。正是由于这种分子间的强相互作用,使得皂类与磺基甜菜碱两性表面活性剂混合胶束的cmc值降低。而临界胶束浓度的降低意味着溶液中皂类的单体减少,即皂类与钙、镁离子相互作用的机率减少,因而两性表面活性剂的钙皂分散力更高。

表3列出了椰油基磺丙基甜菜碱(CoSB)两性表面活性剂作为钙皂分散剂的成功应用实例。将CoSB加入到商标名为“象牙”的香皂中,观察在皂浓度为0.075%时在100mgCaCO3/L硬水中的钙皂沉淀情况。实验结果表明极少量的CoSB两性表面活性剂便能有效抑制钙皂沉淀,并改善了肥皂在硬水中的发泡性。类似的应用实例在文献中报道很多。

表3 “象牙”皂添加CoSB后在硬水中的结果

“象牙”皂(w/%)

0.0750.0750.0750.075

CoSB(w/%)

比例

结果沉淀,无泡

0.001500.003750.00750

50÷120÷110÷1

无沉淀,中等泡沫无沉淀,大量泡沫无沉淀,大量泡沫

中,羧基甜菜碱近似于定量地失去可溶性有机碳,形成大量的CO2,因而推知其发生了完全的生物降解。经Sturm试验和Fisher闭瓶试验,羧基甜菜碱的结果均优于已被接受认可为具有生物降解性的直链烷基苯磺酸盐(LAS)。甜菜碱和酰胺丙基甜菜碱均属于易生物降解类表面活性剂。这类产品中含有的有机物质,在密封瓶实验中BOD28/DOC值至少达到60%,在改良法

椰油酰胺OECD筛选试验中至少可以除去70%DOC。

丙基甜菜碱在OECD301D试验中BOD28值达到93%。Fernley[10]采用Fischer,Sturm和OECD试验过程,对烷基甜菜碱、磺基甜菜碱的生物降解性进行研究。在OECD试验中,羟基磺基甜菜碱的初级生物降解作用是很快的,而且很完全,降解度达到96%,验证实验达到94.8%。然而,磺基甜菜碱在Fischer和Sturm实验中不能直接降解。烷基甜菜碱在Sturm试验中产生的CO2量是理论量的81%(C14~15甜菜碱)及91%(C12甜菜碱),而十二烷基磺基甜菜碱和十六烷基磺基甜菜碱分别为49%和56%。这可能是因为生成了相当稳定的中间体。在同样的试验中,甜菜碱失去DOC初值的93%~99%,这表明其完全生物降解而无难分解的中间体形成。在Fischer密闭瓶实验中,甜菜碱吸收的氧占理论氧的比例也比磺基甜菜碱和羟基磺基甜菜碱高,证实了前述结果。

用BOD5/COD方法测试的结果证明两性咪唑啉是生物降解性好的品种,对20mg/L烷基两性羧基甘氨酸盐溶液用河道涅灭(RiverDie)试验测试,根据其表面活性降低判断生物降解性也证实了上述结论。Re-wo公司的报告由DIN38412测得两性咪唑啉的生物降解度为77%,属于易生物降解类物质。Henkel公司的报告也认为两性咪唑啉生物降解迅速。试验方法包括:根据OECD分级,闭瓶试验中BOD28/COD至少在60%以上,或在改良OECD筛选试验中至少达到70%

符合上述要求的有机组分均被认可为易DOC去除率。于生物降解。

所有表面活性剂,包括两性表面活性剂在内,其水生毒性均相似,具有大致相同的、典型的LC50值(鱼类和Daphnia毒性)为1mg/L~15mg/L。急性鱼毒以LC50的方式报道,为1mg/L~10mg/L(金鱼:DIN38412T15法,或斑马鱼:ISO7346法)。烷基甜菜碱的急性鱼毒LC50(金鱼:DIN38412T15或斑鱼:ISO7346)数值范围在10mg/L~100mg/L。采用同样的方法测定酰胺丙基甜菜碱的LC50为1mg/L~10mg/L。椰油酰胺甜菜碱的LC50(96h,OECD203)是2.0mg/L。

酰胺丙基甜菜碱的急性和慢性细菌毒性已得到研究,急性毒性EC50(Ps.putida,耗氧实验)数值大于

4 抗硬水性能

两性离子表面活性剂的结构特征决定了其具有较强的耐电解质能力,因而也耐硬水。表面活性剂的抗硬水性能主要体现在两个方面,即对钙皂的分散力以及自身对钙、镁硬离子的耐受能力。许多甜菜碱两性表面活性剂对钙、镁离子均表现出非常好的稳定性,Lin-field研究小组对甜菜碱两性表面活性剂的钙离子稳定性进行了考察,发现大部分磺基甜菜碱两性表面活性剂的钙离子稳定性均在1800mgCaCO3/L以上,属于具有最好抗硬水能力的表面活性剂之列。而相应的仲胺基化合物的钙离子稳定性值却要低得多。方云[8]报道在酰基羟基磺基甜菜碱的酰胺氮上引入聚氧乙烯基团后,其钙离子稳定性仍可达到1800mgCaCO3/L以上,证明这一类物质自身对水硬度不敏感。文献报道C8~16系列N-(3-烷氧基-2-羟基丙基)甜菜碱的钙离子稳定性亦大于1800mgCaCO3/L,并且有很好的钙皂分散性能。

5 生态性质

由两性表面活性剂的化学结构可以推知它们是生物降解性能好的品种。在SturmCO2试验和DOC试验

100mg/L,与慢性毒性(Ps.putida,抑制生长试验)的藻类生长抑制试验得EC50(72h,OECDEC50值相同。201)数值是3.3mg/L。

牛油基三丙四胺五羧甲基钠(TN4A5)是一种很好的两性表面活性剂,已经对其生态安全性质进行了考察,结果见表4和表5。在表5中,试验物被暴露于由耦合试验(OECD303A)(参见表4)的生物降解产物中,生物降解试验开始时TN4A5的起始浓度为71mg/L,总生物降解率达80%左右。直接用TN4A5进行的鱼毒试验表明EC50(48h,Daphnia)为14mg/L,LC50(48h,河鲑鱼)为2.4mg/L。

表4 TN4A5的生物降解性

试验方法

1.闭瓶试验 (OECD301D,5天)2.改良SCAS试验 (OECD302A)3.耦合单元试验 (OECD303A)

模拟试验

>90.0

由HPLC测得的初级生物降解值

内在生物降解

80.0

表示为DOC值

试验性质Ready生物降解

试验结果(%)72.5

评价简易生物降解

表6所列的数据可以看出,含12%左右表面活性剂的洗衣粉的总有机碳(TOC)是116g/kg,而固含量为46%左右的液体洗涤剂的TOC则达到336g/kg,因而TOC值高成为液体洗涤剂的一大缺点。TN4A5在液体洗涤剂中的推荐用量为10%~15%,这种两性表面活性剂基的液体洗涤剂的TOC值只有大约107g/kg,这对推广液体洗涤剂具有重要意义。

表6 TOC数据

洗衣粉液体洗涤剂

TOC(g/kg)

116

336

两性表面活性剂基液体洗涤剂

107

参考文献:

[1]方云.克拉夫点(KP)与cmc、PMAX的关系[J].日用化学工业,1991(1):20-24.

[2]ParrisN.,WeilJ.K.,LinfieldW.M.,Soapbaseddetergentformula-tion(V)[J].J.ofAmericanOilChemicalSoc.1973,50:509.

[3]ParrisN.,WeilJ.K.,LinfieldW.M.,Soapbaseddetergentformula-tion(XVIII)[J].J.ofAmericanOilChemicalSoc.1976,53:97.[4]ParrisN.,WeilJ.K.,LinfieldW.M.,Soapbaseddetergentformula-tion(XII)[J].J.ofAmericanOilChemicalSoc.1976,53:60.

[5]ParrisN.,PierceC.,LinfieldW.M.,Soapbaseddetergentformula-tion(XII)[J].J.ofAmericanOilChemicalSoc.1977,54:294.[6]方云.无锡轻工业学院硕士学位论文:合成新型磺基甜菜碱两性表面活性剂[D].1985.

[7]朱水平,夏纪鼎,等.新型烷氧化磺基甜菜碱两性表面活性剂的合成[J].日用化学工业,1995(1):4-8.

[8]覃善木.无锡轻工业学院硕士学位论文:新型含硫两性表面活性剂的合成与性能研究[D].1985.

[9]何元君.华东理工大学硕士学位论文:新型磷酸酯甜菜碱两性表面活性剂研究[D].1994.

[10]Fernleyg.W..Zwitterionicsurfactant:structureandperformence[J].J.ofAmericanOilChemicalSoc.1978,55:98.

表5 TN4A5的生物降解产物的鱼毒性试验方法

1.口服毒性(OECD202)2.口服毒性(OECD203)

试验对象Daphniamagna

斑马鱼(Brachydaniorerio)

EC50(48h)(mg/L)

35.5>71

优良的生物降解性和很低的鱼毒性使得TN4A5具有很好的应用前景,可以成为洗涤剂和个人洗护用品中的绿色化学成分。如果再结合其给配方带来的低TOC值,则上述结论就变得更有意义。近年来对洗衣粉及液体洗涤剂的生态效应已进行了广泛的讨论,从

AmphotericSurfactantsⅣ

GeneralPropertiesofAmphotericSurfactants

FangYun  XiaYong-mei

(SchoolofChemicalandMaterialEngineering,WuxiUniversityofLightIndustry,Wuxi 214036,China)

Abstract:Generalpropertiesofamphotericsurfactantswereintroducedsuchasrheologicalproperty,hydrotropicproper-ty,limesoapdispersingabilityandhardwater-resistance.Therelationshipbetweenrhologicalpropertyandconcentrationofamphotericsurfactantswasdiscussed,andthemethodtoadjustrhoogicalpropertyofmixedsystemswasproposed,too.Thenewopiniontoexplainwhyamphotericsurfactantisthebestlimesoapdispersingagentwasgivenfromtheviewpointofmixedmicelletheory.Environmentaspectofamphotericsurfactantssuchasbiodegradationandfishtoxitywasintroducedindetail.

Keywords:amphotericsurfactant;rhologicalproperty;limesoapdispersingability;environmentaspect

超低界面张力泡沫体系性能及驱油方案优化研究

许关利

(中国石化石油勘探开发研究院提高采收率研究所,北京 100083)

摘 要 在大庆油田的油水条件下,评价了表面活性剂的界面和泡沫性能,并优化了泡沫配方和注入方式。筛选的双子表活剂的表面张力约为25mN/m,能在表活剂浓度为0.05%~0.3%的范围内与原油达到超低界面张力,具有较好的泡沫稳定性。泡沫体系配方中气液比对泡沫驱采收率的影响最大,其次是聚合物浓度,优选的泡沫体系配方为表面活性剂浓度0.3%,聚合物浓度2000mg/L,气液比为3:1。气体和表面活性剂/聚合物二元液混合注入的压力升幅最大,耗时最短,泡沫驱采收率也较高。气体、表面活性剂与聚合物3种物质完全分开交替分段塞注入时压力升幅最小,耗时最长,采收率最小。气体与二元液交替注入时的压力和采收率居中。结合现场实施工艺,优选气体与表面活性剂/聚合物二元液交替注入的方式,交替周期越短泡沫驱采收率越高。

关键词 表面活性剂 超低界面张力 泡沫驱 提高采收率 注入方式

Research on the Performance of Ultra-low Interfacial TensionFoam and Optimization of Core Flooding Project

XU Guanli

(SINOPEC Exploration & Production Research Institute,Beijing 100083,China)

Abstract The interfacial property,foam stability of selected surfactant were investigated in this paper.The formula and injection mode were optimized under reservoir condition of Daqing Oilfield.The experiment shows that the surface tension of the Gemini surfactant is approximate 25mN/m( 25℃),which indicating super surface activity.The ultra-low interfacial tension( <0.01mN/m)is acquired between oil and surfactant solution with the surfactant concentration range of 0.05% and 0.3%.Its foam stability is better than those of sodium α- olefin sulfonate and sodium heavy alkyl benzene sulfonate according to the disintegration half-time of foam volume.For the ultra-low interracial tension foam,gas liquid ratio has the most obvious influence on the EOR of foam after polymer flooding,and polymer concentration follows.The preferential surfactant concentration is 0.3%,with polymer concentration of 2000 mg/L and gas liquid ratio of 3:1.At the same dosage of surfactant and polymer,the simultaneous injection of gas and the liquid which is composed of surfactant and polymer gives rise to the highest injection pressure and highest EOR.The medium pressure and EOR result from the alternate injection of gas and liquid.The consuming time of simultaneous injection is the shorter than that of alternate of gas and the liquid.The alternate injection of individual surfactant,polymer and gas demands the longest injection time.Combined with the injection technology of oilfield,the preferential injection method is alternate injection of gas and the liquid,and the shorter the alternate cycle is,the higher the EOR of foam after polymer flooding is.

Key words surfactant;ultra-low interfacial tension;foam flooding;enhance oil recovery;injection mode

泡沫是气体分散于起泡剂溶液中所组成的分散体系,起泡剂一般为表面活性剂。作为多相粘弹性流体,泡沫的密度低、黏度大,具有剪切稀释特性,这些特征使其具有了提高石油采收率的应用前景。国外已对泡沫用于控制气体流度、提高气驱的采收率进行了充分的研究[1~3],现场试验也取得了一定的效果。国内的大庆油田和胜利油田也对泡沫驱油技术进行了多年研究[4],其中大庆油田的泡沫复合驱技术最具代表性,试验取得了提高采收率20%以上的效果[5],预示着泡沫驱油技术具有大幅度提高水驱油田采收率的潜力[6]。

大庆油田完成的泡沫复合驱试验使用表面活性剂、聚合物和强碱组成的三元体系,虽然取得了较好的驱油效果,但无法避免强碱带来的腐蚀、结垢、影响泡沫稳定性等负面问题。三元体系的一个主要技术特征是表面活性剂和碱协同作用产生超低油水界面张力,多年来复合驱研究的焦点也是合成在不需要加碱条件下能和原油达到超低界面张力的表面活性剂,并取得了一定的成果。本文对筛选的表面活性剂性能进行了研究,考察了聚合物驱后无碱的超低界面张力泡沫体系的驱油效果,优化了泡沫体系配方方式,为制定现场试验方案提供参考。

1 实验材料与方法

1.1 实验材料

实验用油为大庆油田井口脱水原油和模拟油,实验用水为油田现场注入污水,过滤后使用。聚合物为中国石油大庆炼化公司生产的分子量为3072万的聚丙烯酰胺。表面活性剂(DWS)为非离子双子表面活性剂,由大连戴维斯公司提供。重烷基苯磺酸盐(HABS)为大庆东昊投资有限公司生产,α-烯烃磺酸盐(AOS)购自浙江中轻物产化工公司。岩心为购自大庆石油学院的30cm长的人造3层非均质岩心,渗透率变异系数为0.72,孔隙度为22%~25%。

1.2 实验方法

1)表面张力:表面张力仪k12(Kruss公司生产),吊片法测量;全自动表面张力仪Tracker(TECLIS公司生产),悬滴法测量。

2)油水界面张力:旋转滴界面张力仪,TX500C,45℃。

3)泡沫半衰期:泡沫扫描仪FoamScan(TECLIS公司生产),注气速度30mL/min,注气量300mL,温度45℃。

4)岩心驱替实验:岩心首先抽真空饱和水,然后饱和油,老化一天后进行水驱,含水大于98%后进行聚合物驱(包括后续水驱),最后进行超低界面张力泡沫复合驱及后续水驱。

2 实验结果

2.1 表面张力

表面张力是评价表面活性剂活性高低的一项重要指标。如表1所示,双子表面活性剂(DWS)的表面张力随温度的升高而降低,与常规表面活性剂的变化规律相同。常规表面活性剂的表面张力一般大于30mN/m,如重烷基苯磺酸盐的表面张力为31.5mN/m[7],α-烯基磺酸钠的表面张力为34.4mN/m[8]。25℃时该双子表面活性剂的表面张力在25mN/m左右,已经接近碳氢表面活性剂理论上最低的表面张力值[9],与有机硅表面活性剂的表面张力相当(20~30mN/m),说明该双子表面活性剂的活性非常好。

表1 双子表面活性剂(DWS)的表面张力

选用Tracker全自动表面张力仪测定了25℃时不同浓度表面活性剂溶液的动态表面张力(图1)。各个浓度的表面活性剂溶液的表面张力随测试的进行逐渐降低,表面活性剂浓度越高,其表面张力越低。根据表面张力随浓度的变化趋势判断,该表面活性剂的临界胶束浓度(CMC)在0.08%附近,25℃时表面张力值约为25 mN/m。

图1 双子表面活性剂(DWS)的动态表面张力

2.2 油水界面张力

油水界面张力是驱油用表面活性剂的一个重要指标,不同浓度的表面活性剂/聚合物二元体系(聚合物浓度1000mg/L)的界面张力测试结果(图2)表明,该双子表面活性剂的油水界面张力随测试的进行逐渐降低,20min后界面张力即小于0.01 mN/m,达到超低界面张力。双子表面活性剂能在0.05%~0.3%的较宽浓度范围内达到超低的油水界面张力。重烷基苯磺酸盐需要在有碱存在的条件下才能达到超低界面张力[10],而α-烯基磺酸钠即使加碱也无法达到超低界面张力。

图2 双子表面活性剂DWS的油水界面张力

2.3 泡沫稳定性

泡沫的稳定性可以用半衰期来表征,半衰期分为两种,一种是体积衰减半衰期(泡沫体积衰减一半所需要的时间),另一种是析液半衰期(从泡沫中排出一半液体所需要的时间)。表2为用泡沫扫描仪(FoamScan)测得的表面活性剂溶液的泡沫体积衰减半衰期。不同浓度的双子表面活性剂的半衰期都大于60min,比重烷基苯磺酸盐和α-烯烃磺酸盐的稳定性好。

表2 不同表面活性剂的泡沫半衰期

超低油水界面张力是对驱油用表面活性剂的基本要求,目前市场上常见的表面活性剂的油水界面张力都比较高,达不到超低界面张力。界面张力高的原因是这些表面活性剂的亲水性太强,因此要获得较低的界面张力,就要增加表面活性剂疏水基团的长度或个数。疏水基团长度或个数的增加,有利于提高表面活性剂分子间的疏水缔合作用,增加泡沫中表面活性剂液膜的强度,增大液膜的界面粘弹性,泡沫的稳定性将得到提高。因此,在一定程度上获得超低界面张力与提高泡沫稳定性对表面活性剂分子结构的要求方向是一致的。双子表面活性剂(DWS)的两个疏水基团增加了其亲油性,能够与原油达到超低的油水界面张力,同时又具有较好的泡沫稳定性,是驱油用超低界面张力泡沫体系的最好选择。

2.4 泡沫体系配方优化

驱油用泡沫由双子表面活性剂、聚合物和气体组成,表面活性剂、聚合物浓度的高低和气体的多少(气液比)对泡沫的驱油性能有重要影响。为了确定最佳的泡沫体系配方,针对表面活性剂浓度、聚合物浓度和气液比开展了三因素、三水平的正交实验来优化泡沫体系配方。各次实验的实验条件及驱油结果见表3。

表3 正交实验条件与驱油结果

按照极差分析方法对表3中的数据进行分析,分析方法参考文献[11]。把泡沫驱采收率作为评价指标,表3 “表面活性剂浓度” 列中Ⅱ最大,说明表面活性剂浓度的水平0.3%比较好;“泡沫聚合物浓度” 列中Ⅲ最大,说明聚合物浓度水平2000mg/L比较好;“气液比” 列中Ⅲ最大,说明气液比的水平3:1比较好。因此根据泡沫驱采收率得到的最佳驱油条件为表面活性剂浓度0.3%,聚合物浓度2000mg/L,气液比为3:1。级差中 “气液比” 最大,其次为 “聚合物浓度”,说明气液比对泡沫驱采收率的影响幅度最大,其次为聚合物浓度。

2.5 注入方式对泡沫驱采收率的影响

泡沫体系包括双子表面活性剂、聚合物和气体,驱油时可组合成多种注入方式。第一种为气液同时混合注入,先把表面活性剂和聚合物混合成二元液,然后和气体按照一定的气液比同时注入岩心;第二种为气体和液体交替注入(气液分段塞注入),一是表面活性剂、聚合物混合成二元发泡液与气体按照确定的气液比和交替周期交替注入,二是表面活性剂、聚合物和气体分别单独交替注入,即按照确定的交替周期和气液比,先注一个聚合物段塞,再注一个表面活性剂段塞,再注气体段塞,按这样的顺序重复注入。通过岩心驱油实验考察各种注入方式对驱油效果的影响。实验中表面活性剂浓度为0.3%,聚合物浓度为2000mg/L,表面活性剂注入量为0.3PV。岩心水驱后进行不同注入方式的泡沫驱油,实验结果见表4。

表4 不同注入方式下泡沫驱油结果

表4中编号为1、2、3的实验为聚合物、表活剂和气体完全分开注的岩心驱油实验,交替周期为0.1 PV和0.05PV,即驱替时先注0.1 PV聚合物,再注0.1 PV的表面活性剂,再按气液比注入气体,重复以上步骤直至注完聚合物、表面活性剂各0.3PV,最后跟0.2PV的聚合物保护段塞和后续水。在表4所示的交替周期和气液比条件下,采用3种物质完全分开注入的方式,泡沫驱可在聚驱后平均提高采收率15.63%。表4中编号为4、5的实验为气体和表面活性剂、聚合物组成的二元发泡液交替注入,在发泡液用量与实验1 、2、3相同的条件下,气体与二元液交替注入时的泡沫驱采收率比完全分开注入时的效果好。实验6的注入方案为先注0.1 PV聚合物前置段塞,然后气体和表面活性剂溶液(含200mg/L中分聚合物)同时注入,最后注入0.2PV聚合物保护段塞。与前几个实验相比,在节省聚合物用量的条件下,混合注入的泡沫驱采收率接近18%,比气体与二元液交替注入的效果相当。图3为3种不同注入方式所对应的压力曲线。第一条曲线为气体和表面活性剂溶液(含200 mg/L中分聚合物)同时注入的压力曲线,在注聚合物前置段塞和气液同时混合注入阶段注入压力一直持续上升,注后续聚合物保护段塞时压力上升不明显,显示了泡沫具有很好的封堵岩心孔隙的能力。第二条曲线为气体和二元液(聚合物和表面活性剂混合)交替注入的压力曲线,注二元体系时压力上升,转注气体后压力先上升,然后开始下降,随着实验的进行,整体注入压力呈阶梯式上升,但注化学剂结束时的最高压力比气液同时注入的低。第三条曲线为聚合物、表面活性剂和气体完全分开交替注入的压力曲线,注聚合物时压力上升,注表面活性剂时压力略有下降,注气体时压力下降,虽然整体的注入压力在逐渐升高,但是比气体和二元液交替注入时压力要低。驱替时间是气液混合同时注入时耗时最短,3种物质完全分开交替注入的耗时最长,气体与二元液交替注入时居中。

这些结果表明,对于泡沫驱油,气液同时混合注入是最好的注入方式,其次是气体与二元液交替注入。目前现场试验时,工艺上难以实现气体和液体同时注入,因此推荐选用气体和表面活性剂/聚合物二元液交替注入的方式。

图3 不同注入方式下的泡沫驱压力曲线

2.6 交替注入周期对泡沫驱采收率的影响

泡沫驱油时,现场选择的是气体和二元液(表面活性剂+聚合物)交替注入,这就涉及一个交替周期或交替频率的问题。通过评价不同交替周期下的岩心泡沫驱油效果来优选气液交替周期。水驱、聚驱条件与前面相同,泡沫液中表面活性剂浓度为0.3%,聚合物浓度为2000mg/L,发泡液注入量为0.3PV,气液比为3:1。注完泡沫体系后,再注入0.2PV的聚合物保护段塞。聚驱后无碱超低界面张力泡沫体系在人造3层非均质岩心上交替注入时的驱油效果见表5。

实验结果表明,无论采取何种注入方式,聚驱后泡沫驱采收率均能提高16个百分点以上。在其他条件相同时,随交替次数的增多,聚驱后泡沫驱采收率呈增加趋势。同混合注入方式相比,采用交替注入方式泡沫驱采收率略有降低。因此现场试验时,要尽可能缩短交替周期。

表5 不同交替周期聚驱后岩心驱油结果

3 结 论

1)25℃时双子表面活性剂(DWS)的表面张力约为25mN/m,接近于碳氢表面活性剂理论上的最低表面张力,显示了非常高的表面活性。能在较宽的浓度范围内与原油达到超低的油水界面张力,具有比烷基苯磺酸盐和α-烯烃磺酸盐更好的泡沫稳定性。

2)泡沫体系配方中,气液比对泡沫驱采收率的影响最大,其次是聚合物浓度,较好的泡沫体系配方为表面活性剂浓度0.3%,聚合物浓度2000 mg/L,气液比3:1。

3)气体和表面活性剂/聚合物二元液混合注入的压力升幅最大,耗时最短,泡沫驱采收率最高。气体、表面活性剂与聚合物3种物质完全分开交替注入时压力升幅最小,耗时最长,采收率最小。气体与二元液交替注入时的压力和采收率居中。

4)泡沫驱现场试验选用气体与表面活性剂/聚合物二元液交替注入的方式,交替周期越短泡沫驱采收率越高。

参考文献

[1]Huh C,Rossen W R.Aproximate pore-level modeling for apparent viscosity of polymer-enhanced foam in porous media.SPE 99653,2006.

[2]Sydansk R D.Polymer-enhanced foams(part 1):Laboratory development and evaluation.SPE25168,1994.

[3]Sydansk R D.Polyer-enhanced foams(part 2):Propagation through high-permeability sand pack.SPE25175,1994.

[4]张贤松,王其伟,隗合莲.聚合物强化泡沫复合驱油体系试验研究[J].石油天然气学报,2006,28(2):137~138.

[5]赵长久,麻翠杰,杨振宇,等.超低界面张力泡沫体系驱先导性矿场试验研究[J].石油勘探与开发,2005,32(1):127~130.

[6]高峰.喇嘛甸油田泡沫复合驱油效果室内研究[J].大庆石油地质与开发,2007,26(4):109~113.

[7]崔正刚,孙静梅,张天林,等.重烷基苯磺酸钠微乳体系及超低界面张力性质[J].无锡轻工大学学报,1998,17(2):50~55.

[8]王金涛,王万绪,王丰收,等.糖苷基季铵盐与α-烯基磺酸钠复配体系的表面活性[J].日用化学工业,2009,39(3):162~165.

[9]朱步瑶,赵国玺.论表面活性剂水溶液的最低表面张力[J].精细化工,1985,4:1~4.

[10]张国印,伍晓林,廖广志,等.三次采油用烷基苯磺酸盐类表面活性剂研究[J].大庆石油地质与开发,2001,20(2):26~27.

[11]杨立军,司栋,李怀玉,等.利用正交实验法确定稠油井加药参数[J].油气田地面工程,2004,23(6):28~29.

求绿色化学论文一篇要有参考文献 复制也要复制冷门的

  绿色化学又称环境无害化学、环境友好化学、清洁化学。绿色化学是设计研究没有或只有尽可能少的环境负作用,并在技术上、经济上可行的化学品和化学过程。包括原料和试剂在反应中的充分利用(原子经济性),它是实现化学污染防治的基本方法和科学手段,是一门从源头上阻止污染的化学,绿色化学适用各种化学领域。是用化学的技术和方法去减少或消灭那些对人类健康、社区安全、生态环境有害的原料、催化剂、溶剂、试剂和产物、副产物等的使用和产生。它是实现污染预防的基本的和重要的科学手段,包括许多化学领域,如合成、催化、工艺、分离和分析监测等。

  一、绿色化学是一种理念,它说明了化学对对环境的负面作用是可以避免的。

  绿色化学的理想在于不再使用有毒、有害的物质,不再产生废物,不再处理废物。它是一门从源头上阻止污染的化学。这种预防化学污染的新理念和新实践正日益被人们认识、接受和重视。绿色化学的最大特点在于它是在始端就采用实现污染预防的科学手段,因而过程和终端均为零排放或零污染。它研究污染的根源--污染的本质在哪里,它不是去对终端或过程污染进行控制或进行处理。绿色化学关注在现今科技手段和条件下能降低对人类健康和环境有负面影响的各个方面和各种类型的化学过程。绿色化学主张在通过化学转换获取新物质的过程中充分利用每个原子,具有"原子经济性",因此它既能够充分利用资源,又能够实现防止污染。很明显,绿色化学要求负作用尽可能小,它是一种理念,是人们应该倾力追求的目标。

  要预防化学污染,最关键的问题应该是从小培养具有环境保护意识的人,学生最早系统地学习化学知识是在中等基础教育阶段,这就需要将绿色化学思想贯穿于中学化学教育的全过程中。把绿色化学融合于中学课程教材改革和课堂教学改革之中,使绿色化学成为中学化学教育的一个重要的组成部分,这是中学化学教育的崭新课题。要把绿色化学的理念贯穿到整个化学教育之中,首先,化学教育工作者要树立可持续发展的观念,绿色化学有利于保护人类赖以生存的环境、实现人类社会的可持续发展。其次,化学教育必须体现绿色化学的新内容,要在课程教材中体现绿色化学的理念,使绿色化学的思想和内容贯穿于从基础教育到高等教育的始终。教师在课堂教学、实验等方面,要始终贯彻绿色化学的思想;要让学生了解绿色化学,树立起绿色意识,培养学生从事绿色化学研究与开发的能力。从绿色化学的角度来看,中学化学中许多物质的制取反应、化学工艺等等都是值得讨论和重新考虑的。这给改革课堂教学、培养学生的创新精神和创新能力提供了良好的契机。绿色化学不但有重大的社会、环境和经济效益,而且说明化学的负面作用是可以避免的,显现了人的能动性。绿色化学体现了化学科学、技术与社会的相互联系和相互作用,是化学科学高度发展以及社会对化学科学发展的作用的产物,对化学本身而言是一个新阶段的到来。作为新世纪的一代,不但要有能力去发展新的、对环境更友好的化学,以防止化学污染;而且要让年轻的一代了解绿色化学、接受绿色化学、为绿色化学作出应有的贡献
  二、在化学实验教学中要渗透绿色化学的思想。

  化学实验教学不仅可以使学生观察到用语言难以表达清楚的清晰的实验现象,增强直观的感性认识,而且能培养学生观察、描述、分析问题和解决问题的能力。但实验必定会涉及到有害、有毒的物质,从某种意义上讲学校中环境污染主要来源于化学实验。因此,化学实验教学中要力求利用最少的实验药品,获得最佳的实验效果,最大限度的减少废弃物,提高学生的环境意识是非常必要的,也是切实可行的。如微型实验;封闭式一体化实验;利用实验~投影放大等多媒体手段实验教学。

  1、节约药品,最大限度减少污染源

  微型化学实验是在实验操作技术是以尽可能少的试剂来获取所需的化学信息的实验方法。它具有现象明显、效果良好、节约实验材料和时间、减少污染、安全、便于携带等优点。在微小型的仪器中,用尽可能少的试剂来进行实验(一般为常规量的十分之一至千分之一)。因为只有仪器微型化了,才能减少试剂在器皿上的附着量,同时还应尽可能减少中间产物的转移过程,以减少试剂在器皿上的附着。所以,微型化学实验不是常规实验的简单微缩,也不是对常规实验的补充,更不是与常规实验的对立,它是在绿色化学思想下用预防化学污染的新实验思想、新方法和新技术对常规实验进行改革和发展的必然结果。尽可能小剂量是微型化学实验的核心,它是没有终止的,是动态发展趋势,它使每一个化学工作者无论在何种实验条件中都在考虑:“为了保护环境,只要能达到实验目的,我能不能把实验技术、方法、仪器和设计等改革一下,使改革后的实验相对于改革前,尽可能少用一点试剂? ”“尽可能小剂量实验”是一种思维方向,为了追求新的“尽可能小剂量实验”,解放人们的思想,推动化学实验的不断改变,这是化学实验改革和发展的动力之一,是绿色化学思想在化学实验中的具体体现。在日常的化学实验教学中,怎样才能实现“尽可能小剂量实验”呢?请使用微型实验仪器。

  2、创新改进实验,减少环境污染

  在现行中学化学教材中,有些实验指明了药品浓度,有些实验没有指明了药品浓度。我对许多涉及药品浓度的实验探索和改进。既节约了药品、保证了实验效果,又减少了环境污染。1.指示剂浓度的减少,指示剂酚酞、石蕊等原浓度为0.5%~1.0%,经改进可减少到0.1%~0.25%,也可以相应减少酒精的用量。2.对苯酚性质,苯酚溶液浓度由2%降至0.5%~1.0 %,溴水浓度也可降低为橙红(稍浓)。3.对定性检验剂硝酸银浓度改进,配制银氨溶液,硝酸银浓度、氨水浓度可由2%降为1%。一般离子检验,硝酸银浓度0.1%就足够了。4.浓度对化学平衡的影响,硫氰酸钾、三氯化铁溶液的浓度可由0.01mol/L降为0.0005mol/L,0.1mol/L不变。这些改动实验药品的浓度都增强了实验效果。降低实验药品浓度的例子还很多,作为化学实验工作者,应具有绿色化学的思想,并指导日常工作,尽可能地降低实验药品浓度,减少药品的损耗,预防环境污染。

  “绿色化学”是当今社会提出的一个新概念。在“绿色化学工艺”中,理想状态是反应物中原子全部转化为欲制得的产物,即原子利用率为100%(原子经济性)。原子的利用率越高,意味着生产过程中废物的排放量越少,对环境的影响也越小。“绿色化学”是指从技术、经济上设计出可行的化学反应,尽可能减少对环境的负作用。20世纪90年代初,国际上提出了“预防污染”这一新概念。绿色化学是“预防污染”的根本手段,它的目标是研究和寻找能充分利用的无毒害原材料,最大限度地节约能源,在化工生产各环节都实现净化和无污染的反应途径。绿色化学是“预防污染”的根本手段,而对污染物的处理,最根本的方法就是杜绝污染源。关于化工厂的选址,应充分考虑环境问题,要符合“省资源、节能源,省污染,减成本”的绿色化学要求。

各位大虾帮忙,下个文献,双水相的性质研究,哈米克,华东理工大学

本论文以双水相应用研究为背景,首先考察了传统阴离子表面活性剂一十二烷基硫酸钠(SDS)和带有相反电荷的阳离子表面活性剂包括传统阳离子表面活性剂一十二烷基三甲基溴化铵和偶联阳离子表面活性剂(12-3-12、C120H、C140H)混合体系双水相的相行为及性质。结果表明,在适当的条件下,偶联正离子表面活性剂-12-3-12、C120H、C140H和传统的正离子表面活性剂相似,能与负离子表面活性剂(SDS)混合形成平衡共存的双水相体系。但双水相的性质与传统表面活性剂双水相的性质有很大的差异。此体系中双水相区域为单一的阳离子表面活性剂双水相区域,且成相区内两表面活性剂混合比随溶液浓度改变基本呈线性变化。该混合体系双水相的成相时间较长,而且随着溶液浓度和混合比的变化而改变。形成双水相的表面活性剂最低浓度要求与混合体系的临界胶束浓度有关,临界胶束浓度越大,对应的形成双水相的表面活性剂最低浓度要求越高。对于疏水性较强的表面活性剂混合体系,由于两者相互作用较强导致乳白凝胶物甚至是白色沉淀出现,而引起双水相的缺失,提高体系温度可以获得双水相。
   在此基础上,以CTAB/SDS/H20及Gemini/SDS/H20为研究对象,探讨了聚合物PEG对表面活性剂双水相性质的影响。研究表明,聚合物PEG的加入一方面可以改变溶剂的性质,另一方面影响正、负离子表面活性剂之间的相互作用,进而影响双水相相区的分布。此外,聚合物PEG的加入在较大程度上提高了溶液的粘度导致溶液中各种聚集体运动缓慢,达到平衡的时间相对较长,最终延长了双水相的成相时间。
   在考察盐对聚合物/表面活性剂双水相体系(Gemini(12-3-12,2Br-)/SDS/PEG)性质的影响时发现,盐对12-3-12,2Br-/SDS/PEG体系双水相性质有重要的影响,首先体现在原有阳离子双水相区域(ATPS-C)的拓展(形成双水相的最低表面活性剂总浓度降低,两表面活性剂的配比范围加宽)且其具有向阳离子偶联表面活性剂含量增大的方向移动的趋势,加宽程度及移动幅度与阴离子半径的大小有关;其次是新双水相区域(ATPS-A)的出现,即盐的加入使原本缺失的阴离子双水相区域出现。盐的加入使形成双水相的时间及双水相达到平衡所需的时间均大大缩短。与无盐体系相比,含盐体系的双水相有更强的萃取作用。
   对同时含有离子液体和表面活性剂的混合体系性质研究表明,离子液体C6[MIM]Br、C8[MIM]Br和币离子表面活性剂相似,它们也能与传统负离子表面活性剂十二烷基硫酸钠SDS混合水溶液在适当的条件下形成双水相。混合溶液性质随着离子液体中碳链的变化而表现出明显的差异;离子液体的取代烷基链长是双水相形成与否的重要影响因素,当烷基取代基的碳数大于或等于6时,双水相/才会形成。
   特殊的复配体系离子液体(C8[mim]Br)/偶联阴离子表面活性剂(C12H25OOCCH2(COONa)-CH2(COONa)COOCl2H25.2Br/水在一定条件下也能够形成双水相,且双水相性质与传统正、负离子表面活性剂形成的双水相的性质相似。这些研究无论对于理论发展还是实际应用都将具有重大的意义。
   此外,还以异丙醇及硫酸铵混合水溶液体系为研究对象,研究该体系双水相的相图及一些基本性质,为其进一步在萃取、分离方面的应用提供基础数据

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页