算24点的技巧
“巧算24点”是一种数学游戏,游戏方式简单易学,能健脑益智,是一项极为有益的活动.
“巧算24点”的游戏内容如下:一副牌中抽去大小王剩下52张,(如果初练也可只用1~10这40张牌)任意抽取4张牌(称牌组),用加、减、乘、除(可加括号)把牌面上的数算成24.每张牌必须用一次且只能用一次,如抽出的牌是3、8、8、9,那么算式为(9—8)×8×3或3×8+(9—8)或(9—8÷8)×3等.
“算24点”作为一种扑克牌智力游戏,还应注意计算中的技巧问题.计算时,我们不可能把牌面上的4个数的不同组合形式——去试,更不能瞎碰乱凑.这里向大家介绍几种常用的、便于学习掌握的方法:
1.利用3×8=24、4×6=24求解.
把牌面上的四个数想办法凑成3和8、4和6,再相乘求解.如3、3、6、10可组成(10—6÷3)×3=24等.又如2、3、3、7可组成(7+3—2)×3=24等.实践证明,这种方法是利用率最大、命中率最高的一种方法.
2.利用0、11的运算特性求解.
如3、4、4、8可组成3×8+4—4=24等.又如4、5、J、K可组成11×(5—4)+13=24等.
3.在有解的牌组中,用得最为广泛的是以下六种解法:(我们用a、b、c、d表示牌面上的四个数)
①(a—b)×(c+d)
如(10—4)×(2+2)=24等.
②(a+b)÷c×d
如(10+2)÷2×4=24等.
③(a-b÷c)×d
如(3—2÷2)×12=24等.
④(a+b-c)×d
如(9+5—2)×2=24等.
⑤a×b+c—d
如11×3+l—10=24等.
⑥(a-b)×c+d
如(4—l)×6+6=24等.
游戏时,同学们不妨按照上述方法试一试.
需要说明的是:经计算机准确计算,一副牌(52张)中,任意抽取4张可有1820种不同组合,其中有458个牌组算不出24点,如A、A、A、5.
不难看出,“巧算24点”能极大限度地调动眼、脑、手、口、耳多种感官的协调活动,对于培养我们快捷的心算能力和反应能力很有帮助.
三年级数学小论文写法要点如下:
1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;
2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;
3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;
4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;
5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。
人民币中的数学问题
有一天,我跟妈妈去逛商场。妈妈进了超市买东西,让我站在付钱的地方等她。我没什么事,就看着营业员阿姨收钱。看着看着,我忽然发现营业员阿姨收的钱都是1元、2元、5元、10元、20元、50元的,我感到很奇怪:人民币为什么就没有3元、4元、6元、7元、8元、9元或30元、40元、60元呢?我赶快跑去问妈妈,妈妈鼓励我说:“好好动脑筋想想算算,妈妈相信你能自己弄明白为什么的。”我定下心,仔细地想了起来。过了一会儿,我高兴地跳了起来:“我知道了,因为只要有1元、2元、5元就可以随意组成3元、4元、6元、7元、8元、9元,只要有10元、20元、50元同样可以组成30元、40元、60元……”妈妈听了直点头,又向我提了一个问题:“如果只是为了能随意组合的话,那只要1元不就够了吗?干吗还要2元、5元呢?”我说:“光用1元要组成大一点的数就不方便了呀。”这下妈妈露出了满意的笑容,夸奖我会观察,爱动脑筋,我听了真比吃了我最喜欢吃的冰激凌还要舒服。
在此,我也想告诉其他的小朋友:其实生活中到处都有数学问题,只要你多留心观察,多动脑思考,你就会有很多意外的发现,不信你就试一试!
希望能解决您的问题。
算 原本数学就是源自生活
再给你推荐一个
[专题介绍]
工厂和商店有时减价出售商品,通常我们把它称为“打折扣”出售,几折就是百分之几十。
利润问题也是一种常见的百分数应用题,商店出售商品总是期望获得利润,一般情况下,商品从厂家购进的价格称为本价,商家在成本价的基础上提高价格出售,所赚的钱称为利润,利润与成本的百分比称之为利润率。期望利润=成本价×期望利润率。
[经典例题]
例1、某商店将某种DVD按进价提高35%后,打出“九折优惠酬宾,外送50元出租车费”的广告,结果每台仍旧获利208元,那么每台DVD的进价是多少元?(B级)
解:定价是进价的1+35%
打九折后,实际售价是进价的135%×90%=121.5%
每台DVD的实际盈利:208+50=258(元)
每台DVD的进价258÷(121.5%-1)=1200(元)
答:每台DVD的进价是1200元
例2:一种服装,甲店比乙店的进货便宜10%甲店按照20%的利润定价,乙店按照15%的利润定价,甲店比乙店的出厂价便宜11.2元,问甲店的进货价 是多少元?(B级)
分析:
解:设乙店的成本价为1
(1+15%)是乙店的定价
(1-10%)×(1+20%)是甲店的定价
(1+15%)-(1-10%)×(1+20%)=7%
11.2÷7%=160(元)
160×(1-10%)=144(元)
答:甲店的进货价为144元。
例3、原来将一批水果按100%的利润定价出售,由于价格过高,无人购买,不得不按38%的利润重新定价,这样出售了其中的40%,此时因害怕剩余水果会变质,不得不再次降价,售出了全部水果。结果实际获得的总利润是原来利润的30.2%,那么第二次降价后的价格是原来定价的百分之几?(B级)
分析:
要求第二次降价后的价格是原来定价的百分之几,则需要求出第二次是按百分之几的利润定价。
解:设第二次降价是按x%的利润定价的。
38%×40%+x%×(1-40%)=30.2%
X%=25%
(1+25%)÷(1+100%)=62.5%
答:第二次降价后的价格是原来价格的62.5%