您当前的位置:首页 > 发表论文>论文发表

数学分析论文700字

2023-12-06 05:34 来源:学术参考网 作者:未知

数学分析论文700字

数学新课程标准明确指出,义务教育阶段的数学课程应突出体现基础性、普及性和发展性,使数学教育面向全体学生,实行“人人学有价值的数学”。这不禁让我重新对这一理念加以剖析。19世纪恩格斯说:“数学是关于空间形式和数量关系的学科。”而作为数学学科三大部分(数与代数、几何和统计)之一的数与代数部分,它是中小学数学课程中的经典内容,它在义务教育的阶段的数学课程中占有相当重要的地位,有着重要的教育价值。在新的课程标准下,这一学习领域的目标、内容、结构以及教学活动方面都发生了很大的变化。下面从三个方面谈谈自己的感想。
(一)《标准》在总体目标中提出要使学生“经历运用数学符号和图形描述现实世界的过程,建立数感和符号感,发展抽象思维。”
可见,理解数感、符号感让学生在数学学习的过程中建立数感和符号感是非常重要的,是进入数学学习的基础。在义务教育阶段学生要学习整数、小数、分数、有理数、实数等数的概念,这些概念本身是抽象的,但通过数学的学习,使学生能将这些数的概念与它们所表示的实际意义建立起联系,例如,一百万有多大,一把黄豆大约有多少粒等等。在课程标准中,重视对数的意义的理解,培养学生的数感和符号感,淡化过分“形式化”和记忆的要求,使学生在学习数学的过程中自主活动,不仅提高了自身的数学素养,还有助于他们利用数学头脑来理解和解释现实问题。
数学与现实生活是密切相关的。联合国教科文组织早在八十年代初就提出“数学问题解决应作为学校数学教育的中心”。因此,有价值的数学更多地体现在学生用数学的眼光和思维去观察、认识日常生活现象,去解决生活中的问题,获得或提高适应生活的能力。过去教师一直非常重视学生笔算的正确率和熟练度,学生缺乏估算意识与估算方法。但在日常生活中恰恰是估算较笔算用得更为广泛。我们常常需要估计上学、上班所用的时间,估计完成某一任务(烧饭、买菜、做作业等)所需的时间,估计写一篇文章所需的纸量,放置冰箱所需地方的大小,估计一次旅游所需的费用等等。因此,加强估算,培养学生估算意识,发展学生的估算能力,具有重要的价值。新课程标准也反复强调要加强估算,淡化笔算。观察是指人对周围事物或现象进行全面、深入的察看,按照事物或现象的本来面目,研究和确定它们的性质和关系的一种心理现象。数学教学活动中的观察,就是有意识地对事物的数和形的特点进行感知活动,即对符号、字母、数字或文字所表示的数学关系式、命题、几何图形的结构特点进行的察看。
数学教学中必须重视学生观察能力的培养,其理由是显而易见的:

首先,培养学生的观察能力是实现数学教学目标的需要。《义务教育全日制初级中学数学指导纲要》指出:初中数学教学,必须“使学生掌握数量关系、几何图形的基础知识和基本技能,具有一定的运算能力、处理数据的能力和初步的空间想象力、逻辑思维能力。”心理学告诉我们:感知和知觉是人类认识事物过程的最初级形式,而观察则是知觉的高级状态,是一种有目的、有计划、有步骤、有组织的持久的知觉活动。观察又是一种主动的、对思维起积极作用的感知活动。它不单纯是事物在人的意识中的直接反映过程,还包括积极的思维活动。事实上,在观察过程中,观察者必须根据观察到的现象或特征随时进行分析、比较、抽象、概括,否则就无法通过观察来研究和确定事物或现象的性质和关系。可见,观察是认识的基础,是思想的触觉。离开了观察能力的培养,学生就不可能具备完整的数学能力与数学素养,数学教学的目标也就不可能直正实现。
其次,培养学生的观察能力是全面提高学生数学素质的需要。素质教育呼唤着学科教学以培养学生的创新精神和实践动手能力为宗旨,而创新能力必须以学生的综合素质为基础和前提。初中数学是一门学习简易的数学运算和图形关系知识及其初步应用技能的课程,以现代公民所必需的数学基础知识和技能作为基本的教学内容。数学教学要根据数学本身的特点,着重培养和发展学生的运算能力、处理数据的能力、逻辑思维能力、空间想象能力、数学信息的表达和交流能力。观察能力对于数学学习中各种能力的培养都具有直接或间接的促进作用。无论是图形的识别、数据之间关系的把握,还是基本规律的发现、综合分析能力的提高都离不开认真、仔细的观察。同时,数学活动中的观察并不狭义地指直观的考察,需要眼、脑并用,而且观察的对象也并非都具有直观的形象。因此,观察能力,无疑是学生数学综合能力的重要组成部分。
再次,培养学生的观察能力是提高学生数学学习质量和课堂教学效率的需要。不可否认,现在的初中数学教学中存在着学生学习的质量不高、课堂教学效率低下的弊端。究其原因,当然各种各样,但学生的观察能力滞后,缺乏观察的习惯和基本的能力是其中的一个重要的原因。试想,一个没有观察习惯、毫无观察能力的学生,怎么能够发现图形之间、数据之间的内在关系?惟其如此,学生数学学习的低质量、数学教学的低效率也就不足为怪了。可见,培养并提高学生的观察能力,是改革数学课堂教学的重要切入点和突破口之一。教师在教学的各个环节中,应落实观察的手段,充分显示这一教学观,切实重视对学生观察能力的培养。
那么,数学教学中如何培养学生的观察力呢?笔者以为可着重从以下几个方面入手:
一、 激发浓厚的观察兴趣
学习是由内在的心理因素引起的,内在的动机比外驱力更活跃、更持久,更具有主动性,而兴趣则是内在学习动机的集中体现。激发学生对观察产生浓厚的兴趣,教师可采用许多方法:
以美引趣。学生对美具有一种近乎天然的向往。数学具有自身的魅力,数学美集中在数学的简单、统一、对称、奇异等方面。数学图形所展现的外在形式美、数学的抽象概括性所体现的简单统一的内在美、数量关系与空间形式所呈现的对称美、数学思想所表现的奇异美的原则,充分利用数学自身的特征和特有的美,引导学生通过观察发现并发掘数学中的美,就能激发学生对观察的浓厚兴趣,激励学生求知的强烈愿望。
以用促趣。引导学生观察并解决实际中的数学问题,使学生真正认识观察在解答数学问题的重要作用,更能培养学生持久的观察兴趣。如在一元二次方程与系数的教学中提出如下观察材料:已知X1、X2是方程X2+(K+2)X-1=0的两个根,且X13-11X1=X2,求K的值。对于这个问题,教师通过启发学生得出:X1+X2=-(K+2)①,X1X2=-1②,X13-11X1=X2③,由此,根据与系数运用时含有的特性——对称性,要求学生进行如下观察:1、③式中的X1与X2的指数是否相等;2、能否用X1的倒数表示X2;3、通过②③两式形变等式,能否表示成两根的和与两根的积。在观察中发现简洁、明了的变形,实施解决疑难问题的方案。
以成导趣。成功的体验,能使学生产生愉悦的内心激动,使其增强学习的信心。在数学教学中,学生观察的对象是图形、数量关系、逻辑过程等。教师在教学过程中要尽可能鼓励学生主动观察,为学生创设获得成功的机会和条件。结合教材内容,有意识地向学生介绍数学通过观察发现数学定理、解决数学难题的事例,并设计一些富有趣味性的练习,让学生通过自己的观察、分析,总结概括出数学概念,发现公式、定理的证明,掌握那些特殊题型的解题技巧,品尝成功的喜悦,调动学生主动观察的积极性。
二、培养正确的观察方法
初中学生在心理上缺乏观察事物所必须具备的基本素质,在掌握知识经验的水平上缺乏观察的能力和数学教学的特点,因此,只有注重对学生观察方法的指导和培养,才能保证观察的正确性。
首先,要引导学生在观察时把握合理的顺序,养成学生从整体到局部,又由局部到整体的观察习惯。发现不合理的观察方法,应通过示范分析及时指出,加以指正。例如,在几何的起始教学中,对观察材料:已知如图A、B、C、D、E、F是直线上的六点,图中共有几条线段? A B C D E F 教师在指导学生进行观察,得出观察结论后,可进行提问:1、以A为端点的线段有几条?2、以B、C、D、E为端点的线段有几条?3、你的观察顺序与正确的观察顺序有何不同?借此引导学生认识有序观察事物的合理性与重要性。其次,要引导学生懂得观察的渐进性,养成反复观察、仔细观察的习惯。要真正提示内在规律,需要从不同的数学角度出发,进行广泛的观察:既要观察事物表面的、明显的特点,还要观察内在的、隐蔽的特征;既要观察已知的材料,又要观察未知的、隐含的关系。如在等腰三角形的教学中,对于观察材料: A 如图,在△ABC中,AB=AC, P是BC上任意一点,PE⊥AB于E, D PF⊥AC于F,CD⊥AB于D,求证CD=PE+PF。 E F B C P 教师应启发学生按面积之和与大三角形面积相等的数量关系的角度和全等三角形的判定定理的角度进行观察,以求得一题多解。
再次,要引导学生了解常用的观察方法(如分类观察、从一般到特殊的观察、从特殊到一般的观察、对比观察等等),掌握观察的一般步骤:明确观察的目的和任务;制定周密的观察计划,做好有关知识的充分准备;在观察过程中做好观察记录;观察后对得到的材料进行整理、分析、归纳和总结。通过一定时间的训练,让学生能够较为熟练地自主观察。
三、养成良好的观察品质
观察不是消极的注视,不是被动的感知,而是一种“思维的知觉”,是智力发展的基础。因此,在培养学生观察能力时,必须十分重视观察的目的性、全面性、精确性、深刻性等良好观察品质的培养。
1、 培养观察的目的性
初中学生对观察材料缺乏全部感知的能力,总是有选择地以少数事物作为知觉的对象。教师在教学过程中,对观察对象叙述的语言要准确,提出观察任务时目标要明确,分析时要紧紧围绕确定的观察目的。例如,在利用配方法解一元二次方程中,对要求观察的材料:
解下列一元二次方程:①(X-1)2=2,②X2-2X+1=2,③X2-2X-1=0可提出如下观察要求:1、①式左、右两边的代数式有何特征?2、[MSOffice1]②式的左边能否转化为完全平方式?3、式的左边能否转化为完全平方式?通过提问,让学生有目的、分层次地观察,积极主动地感知观察对象,实现观察目的。
2、 培养观察的全面性
观察的全面性,要求通过观察反映事物的全貌以及事物的组成部分和相互联系;在较为复杂结构的图形中全面反映事物的某种属性;指出在某种特定的情况下感知对象所能发生的各种可能性。在观察中,由于学生缺乏对事物之间内在联系的全面理解,导致感知的对象不能反映各种可能的现象经常发生。在教学过程中,教师要帮助学生把握事物的基本属性,在初步观察的基础上,分析观察对象内在的规律性,鼓励学生依照一定的程序,深入观察。同时,教师要及时对观察的结果提出自己的观点,与学生相互讨论,对学生观察中出现的遗漏,要分析原因,加以补救,使观察结论全面、完整。 3、 培养观察的精确性
观察不能仅仅满足于了解事物的全貌,还要精确把握事物的特征,对不同事物既能发现它们的相似点,又能辨别它们的细微差别。教师要充分利用各种教学手段,如列表比较、对比观察等,利用现代教学手段,通过形象直观、富有动感的图片、画面,启迪学生发现观察对象的特征,揭示观察对象的本质。
4、培养观察的深刻性
观察的目的之一是提高学生的思维能力,因此,观察必须始终与思维训练紧密结合,尤其要重视对观察对象隐含条件的发掘,通过观察能力的培养,逐步使学生的数学思考意识抽象概括化、思考对象形式化、思考过程逻辑化、思考结果应用化。
总之,数学教学必须十分重视学生观察能力的培养:要运用多种手段,激发学生的观察兴趣;通过训练,使学生掌握观察的基本方法,具有良好的观察品质,逐步养成主动观察、善于观察的习惯,使数学教学更好地适应素质教育的需要。

[附]参考文献
1.浙江省教育委员会:《义务教育全日制初级中学数学教学指导纲要》,浙江教育出版社,1997年11月9第二版).
2.王子兴: 《中学数学教育心理研究》,湖南师范大学出版社,1999年5月9 第一版)
3.朱智贤: 《思维发展心理学》,北京师范大学出版社,1986年版.

从中筛选点有用的写吧!!!

用数学方法分析经济生活中的现象,求一篇论文700字左右,答了加分

如何认识经济研究中数学方法的运用在学术界历来争议很大。自从1969年首届诺贝尔经济学奖授予将数学和统计方法应用于经济分析的荷兰经济学家丁伯根以后,在世界范围内出现了一股经济研究数学化的热潮。经济研究中这种倾向性的风气,对我国经济理论界产生了很大影响,一些经济理论文章出现了大段大段数学公式的推导,个别学术性经济类杂志(并非是计量经济学或统计学杂志)此类文章甚至占了1/2到2/3,对此不少经济学家产生了疑惑:难道这就是经济理论研究的方向,这类研究可以解决或阐明我国经济体制改革中的一些现实问题吗?
一、经济研究离不开数学
一部科学史揭示了这样一个事实:凡属“科学”范畴的各个学科,都是在人类社会活动实践的基础上产生的。学科的划分和不同学科各自特征的归纳都是“人为”因素作用的结果,就内在本质而言,各学科之间相互作用、相互影响、相互渗透的关联性极为明显,不惟自然科学与社会科学各自内部的学科,就是两类学科之间也是如此。
经济学是研究社会资源配置及社会经济关系的一门科学。基于资源存量与流量的可度量性,为了使资源配置更加公平、效率更高,经济学有必要借助于数学这一严密、精确、实用的思维工具。基于在资源配置过程中所形成的经济关系涉及到经济制度、社会心理、价值观念等难以量化的因素,经济学作为一种以思辨定性分析为主的实证性科学,不可能以数学作为经济研究中基本的或者说万能的工具。
关于数学方法在经济学中的作用问题,在理论界历来争议就很大,这种论争至少已有100年之久。从“反对数学的蒙昧主义”,到断言没有数学就没有任何科学,见仁见智,意见可谓大相径庭。
作为实际经济活动的理论概括和抽象的经济学,从其萌发到形成始终没有离开过数学。一方面,数的概念是在漫长的生产活动过程中产生的,另一方面生产活动也总是需要经济类的不同学科,诸如人口学、市场学、劳动工资学、价格学、财政学、金融学、会计学等等无一不与计数、计量、计算有关。离开数的概念,离开算的方法,可以说就不会有这些学科。
经济活动的实践决定了经济理论的研究也离不开数量,并且在经济学中运用数学的程度与数学本身的发展密切相关。纵观数学的历史,其可分为有质的区别的四个基本阶段。第一阶段,计数、算术时期(终止于纪元前5世纪);第二阶段,初等数学即常量数学时期(终止于17世纪);第三阶段,变量数学时期(终止于19世纪);第四阶段,现代数学时期。现代数学时期突出的特点是,多种多样的数学分支不断成长,数学的对象和应用范围大大扩展,并且以更高的理论抽象和概括揭示出了数学中最一般的统一的概念。
尽管数学的概念和结论极为抽象,但是它们都是从现实中来的,并且能在其他学科中、在社会生活实践中得以广泛应用,这也许是数学不仅具有无限的生命力且对于各个学科都有巨大影响和吸引力的根由所在。正如恩格斯在《反杜林论》中所说,应用数学来研究现实世界的这种可能性的根源在于:数学从这个世界本身提取出来,并且仅仅表现这个世界所固有的关系的形成部分,因此才能够一般地加以应用。
经济学对数学的应用范围伴随着数学的发展在不断扩大。在19世纪之前,经济学主要运用的是初等数学。从威廉·配第的《赋税论》(1662)、《政治算术》(1676),到魁奈的《经济表》(1758),都是利用数字、图表和简单的计算去描述分析国民财富的状况和变化。从19世纪起,经济学的研究引入了变量和函数的概念,数学方法的运用更为普遍。其中,考纳德的《财富理论的数学原理研究》(1838)是一本有意识地运用数学公式来说明经济问题的著作。此后,屠能的以实际数量为根据的经验公式(1850)、瓦尔拉的均衡交易理论(1874)、哈罗德的经济增长模型(1948)、丁伯根的包括48个方程式的大型经济增长模型(1939)、刘易斯的“二元经济”模型(1954)、托宾的中值—变量模型(1958)以及20世纪70年代至90年代索洛和罗曼的经济增长模型等等,一大批运用数学方法研究经济问题的论著纷纷问世。这些著作的共同特点是既使用了一般经济概念和传统经济方法,同时又使用了从最简单的数学符号到最新的数学方法。
从经济学与数学形影相随的发展历程可以获知,数学能为经济学提供特有的、严密的分析方法,它同定性分析中常用的逻辑学一样,是一种认识世界的工具。但是数学的应用只有与具体现象的深刻理论和严格的“质”的规定性相结合才有意义,否则经济研究会陷入毫无实在内容的公式与数学的游戏之中。
二、经济研究中运用数学方法出现的偏差
现在关于数学在经济研究中运用问题的争论焦点,不是经济学要不要运用数学方法,而是如何运用数学方法问题。对于前者,经济活动中对数学广泛应用的实践和经济理论运用数学方法研究成果的不断推出已经作出了肯定回答,而对于后者却众说纷纭,莫衷一是。由此使得经济学在运用数学方法时出现了严重偏差,影响了研究效果,发展下去有可能使我国经济研究步入歧途。
经济研究中应用数学方法存在的主要问题有:
1.运用范围过泛过滥。数学运用的界域是可以量化的事物,经济研究的视野是人类一切经济活动和社会关系。并非所有的经济活动和经济关系都是可以量化的,尤其是社会经济关系,它受到制度的、道德的、文化的、历史的诸多社会因素的影响,这些因素几乎大部分是无法量化的。如若硬是将不可量化的因素用数学公式将它们的关系表达出来,似乎怎么说都有道理,因为它们根本不存在运算关系,也无法运用数量的计算去考证对错。尽管数学也是反映人的思维的一种语言,但并非所有的科学都能转化为数学的语言。像物理学、化学、生物学这些与数学紧密关联的学科也是如此,有些问题即使将其转化为数学关系式,也不一定具有可解性。而以人类社会活动为研究对象的社会科学对数学的运用所受的限制就更多了,试图将经济学非人性化,以至将经济活动中的人“机械化”,将人的活动程序化、公式化,这无疑是经济研究的一种自我毁灭。
不看对象、不问条件、一门心思运用数学方法去求解经济问题,很容易使经济学沉湎于方法论的探寻,拘泥于微观经济体的研究,而对于涉及宏观经济体制变革、机制设计以及社会关系调整等全局性的问题有所轻视和忽略。正如理查德·布隆克所说,现代经济学越来越热衷于复杂的数学计算,沾沾自喜于美妙的数学模型,玩弄神秘。其结果是导致经济学逐步地与每日生活的丰富性、复杂性和非理性相脱离。近几年的经济研究动态已显露出这方面的一些令人忧虑的迹象。
2.对数学模型约束条件的取舍过于随意。几乎所有的理论都是在设定若干前提和假设条件的基础上确立的。如会计学中会计主体、持续经营、会计期间和货币计量等四个会计假定,西方经济学中“经济人”及“完全市场化”的假定等。数学方法逻辑严密性和计算准确性的性质决定了任何一个数学模型都要受到若干条件的约束,只有假定这些条件满足,该数学模型才能成立。方程越复杂所受的约束条件越多。现在一些经济学家建立数学模型对于约束条件,一是根本不去考虑,二是过于简化,三是约束条件的确定十分随意,仅从模型本身的需要出发而不考虑是否符合客观实际要求

急求小学五年级数学小论文,好的我会给50~100分,不要太深奥,700~800字左右!

1、生活中的数学
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。
现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。
在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢?
例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。
再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。
正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。
……
由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。
瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢?
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.
可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域

大学数学论文

2017大学数学论文范文

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。但是特殊函数往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。下面是我整理的关于几类特殊函数的性质及应用的数学论文范文,欢迎大家阅读。

几类特殊函数的性质及应用

【摘要】本文将对数学分析中特殊函数,诸如伽玛函数、贝塔函数贝塞尔函数等超几何数列函数,具有特殊的性质和特点,在现实中得到大量的运用的函数。本文主要以简单介绍以上三种特殊函数性质,及其在其它领域的应用,诸如利用特殊函数求积分,利用特殊函数解相关物理学问题。本文首先以回顾学习几类常见特殊函数概念、性质,从而加深读者理解,然后以相关实例进行具体分析,从而达到灵活应用的目的。

【关键词】特殊函数;性质;应用;伽马函数;贝塔函数;贝塞尔函数;积分

1.引言

特殊函数是指一些具有特定性质的函数,一般有约定俗成的名称和记号,例如伽玛函数、贝塔函数、贝塞尔函数等。它们在数学分析、泛函分析、物理研究、工程应用中有着举足轻重的地位。许多特殊函数是微分方程的解或基本函数的积分,因此积分表中常常会出现特殊函数,特殊函数的定义中也经常会出现积分。传统上对特殊函数的分析主要基于对其的数值展开基础上。随着电子计算的发展,这个领域内开创了新的研究方法。

由于特殊函数是数学分析中的一种重要工具,因此特殊函数的学习及应用非常重要。本文归纳出特殊函数性质、利用特殊函数在求积分运算中的应用、特殊函数在物理学科方面的应用,利用Matlab软件画出一些特殊函数的图形,主要包含内容有:定义性质学习,作积分运算,物理知识中的应用,并结合具体例题进行了详细的探究和证明。

特殊函数定义及性质证明

特殊函数学习是数学分析的一大难点,又是一大重点,求特殊函数包含很多知识点,有很多技巧,教学中可引导学生以探究学习的方式进行归纳、总结;一方面可提高学生求函数极限的技能、技巧;另一方面也可培养学生的观察、分析、归类的能力,对学生的学习、思考习惯,很有益处。

特殊函数性质学习及其相关计算,由于题型多变,方法多样,技巧性强,加上无固定的规律可循,往往不是用一种方法就能解决的,它是多种方法的灵活运用,也是各种思想方法的集中体现,因此难度较大。解决这个问题的途径主要在于熟练掌握特殊函数的特性和一些基本方法。下面结合具体例题来探究特殊函数相关性质及应用。

2.伽马函数的性质及应用

2.1.1伽马函数的定义:

伽马函数通常定义是:这个定义只适用于的区域,因为这是积分在t=0处收敛的条件。已知函数的定义域是区间,下面讨论Г函数的两个性质。

2.1.2Г函数在区间连续。

事实上,已知假积分与无穷积分都收敛,则无穷积分在区间一致收敛。而被积函数在区间D连续。Г函数在区间连续。于是,Г函数在点z连续。因为z是区间任意一点,所以Г函数在区间连续。

2.1.3,伽马函数的递推公式

此关系可由原定义式换部积分法证明如下:

这说明在z为正整数n时,就是阶乘。

由公式(4)看出是一半纯函数,在有限区域内的奇点都是一阶极点,极点为z=0,-1,-2,...,-n,....

2.1.4用Г函数求积分

2.2贝塔函数的性质及应用

2.2.1贝塔函数的定义:

函数称为B函数(贝塔函数)。

已知的定义域是区域,下面讨论的三个性质:

贝塔函数的性质

2.2.2对称性:=。事实上,设有

2.2.3递推公式:,有事实上,由分部积分公式,,有

由对称性,

特别地,逐次应用递推公式,有

而,即

当时,有

此公式表明,尽管B函数与Г函数的定义在形式上没有关系,但它们之间却有着内在的联系。这个公式可推广为

2.2.4

由上式得以下几个简单公式:

2.2.5用贝塔函数求积分

例2.2.1

解:设有

(因是偶函数)

例2.2.2贝塔函数在重积分中的应用

计算,其中是由及这三条直线所围成的闭区域,

解:作变换且这个变换将区域映照成正方形:。于是

通过在计算过程中使用函数,使得用一般方法求原函数较难的问题得以轻松解决。

2.3贝塞尔函数的性质及应用

2.3.1贝塞尔函数的定义

贝塞尔函数:二阶系数线性常微分方程称为λ阶的贝塞尔方程,其中y是x的未知函数,λ是任一实数。

2.3.2贝塞尔函数的'递推公式

在式(5)、(6)中消去则得式3,消去则得式4

特别,当n为整数时,由式(3)和(4)得:

以此类推,可知当n为正整数时,可由和表示。

又因为

以此类推,可知也可用和表示。所以当n为整数时,和都可由和表示。

2.3.3为半奇数贝塞尔函数是初等函数

证:由Г函数的性质知

由递推公式知

一般,有

其中表示n个算符的连续作用,例如

由以上关系可见,半奇数阶的贝塞尔函数(n为正整数)都是初等函数。

2.3.4贝塞尔函数在物理学科的应用:

频谱有限函数新的快速收敛的取样定理,.根据具体问题,利用卷积的方法还可以调节收敛速度,达到预期效果,并且计算亦不太复杂。由一个函数的离散取样值重建该函数的取样定理是通信技术中必不可少的工具,令

称为的Fourier变换。它的逆变换是

若存在一个正数b,当是b频谱有限的。对于此类函数,只要取样间隔,则有离散取样值(这里z表示一切整数:0,)可以重建函数,

这就是Shannon取样定理。Shannon取样定理中的母函数是

由于Shannon取样定理收敛速度不够快,若当这时允许的最大取样间隔特征函数Fourier变换:

以下取样方法把贝塞尔函数引进取样定理,其特点是收敛速度快,且可根据实际问题调节收敛速度,这样就可以由不太多的取样值较为精确地确定函数。

首先建立取样定理

设:

其中是零阶贝塞尔函数。构造函数:

经计算:

利用分部积分法,并考虑到所以的Fourier变换。

通过函数卷积法,可加快收敛速度,使依据具体问题,适当选取N,以达到预期效果,此种可调节的取样定理,计算量没有增加很多。取:

类似地

经计算:

经计算得:

则有:设是的Fourier变换,

记则由离散取样值

因为,故该取样定理收敛速度加快是不言而喻的,通过比较得,计算量并没有加大,而且N可控制收敛速度。

例2.4,利用

引理:当

因为不能用初等函数表示,所以在求定积分的值时,牛顿-莱布尼茨公式不能使用,故使用如下计算公式

首先证明函数满足狄利克雷充分条件,在区间上傅立叶级数展开式为:

(1)

其中

函数的幂级数展开式为:

则关于幂级数展开式为: (2)

由引理及(2)可得

(3)

由阶修正贝塞尔函数

其中函数,且当为正整数时,取,则(3)可化为

(4)

通过(1)(4)比较系数得

又由被积函数为偶函数,所以

公式得证。

3.结束语

本文是关于特殊函数性质学习及其相关计算的探讨,通过对特殊函数性质的学习及其相关计算的归纳可以更好的掌握特殊函数在日常学习中遇到相关交叉学科时应用,并且针对不同的实例能够应用不同的特殊函数相关性质进行证明、计算,从而更加简洁,更加合理的利用特殊函数求解相关问题。有些特殊函数的应用不是固定的,它可以通过不止一种方法来证明和计算,解题时应通过观察题目结构和类型,选用一种最简捷的方法来解题。

参考文献:

[1] 王竹溪.特殊函数概论[M].北京大学出版社,2000.5,90-91.

[2] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[3] 刘玉琏.数学分析讲义(下册)[M].高等教育出版社,2003,331.

[4]王坤.贝塔函数在积分计算中的应用.[J]科技信息,2012(34)

[5] 王纪林.特殊函数与数学物理方程[M].上海交通大学出版社,2000,96-98.

[6] 陶天方.由特殊函数表达的快速取样定理 [J]. 上海大学学报(自然科学版),1997,8(4):368-371.

[7]饶从军,王成.让数学建模活动促进数学教学改革[J].中央民族大学学报(自然科学版),2004,2.

[8]赵宜宾.一类特殊函数定积分的求解[J].防灾技术高等专科学校学报,2010,1(3):38-39.

[9]董林.降次公式的探究—兼论一个猜想的证明[J].教学通报,1992.2.

[10] 李德新.利用对称原理计算定积分的三种方法[J].高等数学研究,2004,7(6):41—42.

[11]翟忠信,龚东山.高等数学的教与学[J].高等理科教育,2004(6):29—34.

[12]胡淑荣. 函数及应用[J]. 哈尔滨师范大学学报.2002,18(4):12~15.

分析错题原因数学700字

同学,试卷分析要你自己对着试卷分析,我们看不到试卷是没用的.
试卷分析,主要就是:
1.你对试卷考核的知识点是否掌握,列出你还不明白的,如果有些题目是蒙的,也写到这里面.
2.错题分析,简要剖析下错的题目,写出错的原因,再整理一下以后再做这类题怎么办.
3.最后再写出总结以及对错误的反省.
就这样,600字很好就凑出来的,如果你对试卷分析的认真的话,最好再做一本错题集,有好处的;如果只是应付的话,废话多点,开头结尾就写长点,试卷内容少写点.
其实啊只有自己整理出来的,对你才是有用的.

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页