引 言
在现代工业中,生产过程的机械化、自动化已成为突出的主题。随着工业现代化的进一步发展,自动化已经成为现代企业中的重要支柱,无人车间、无人生产流水线等等,已经随处可见。同时,现代生产中,存在着各种各样的生产环境,如高温、放射性、有毒气体、有害气体场合以及水下作业等,这些恶劣的生产环境不利于人工进行操作。
工业机械手是近代自动控制领域中出现的一项新的技术,是现代控制理论与工业生产自动化实践相结合的产物,并以成为现代机械制造生产系统中的一个重要组成部分。工业机械手是提高生产过程自动化、改善劳动条件、提高产品质量和生产效率的有效手段之一。尤其在高温、高压、粉尘、噪声以及带有放射性和污染的场合,应用得更为广泛。在我国,近几年来也有较快的发展,并取得一定的效果,受到机械工业和铁路工业部门的重视。
本课题拟开发物料搬运机械手,采用日本三菱公司的FX2N系列PLC,对实验室现有的TVT—99D机械手模型进行开发。该装置机械部分有滚珠丝杠、滑轨、汽缸、气控机械抓手等;电气方面由步进电机、驱动模块、传感器、开关电源、电磁阀、旋转码盘、操作台等部件组成。我们利用可编程技术,结合相应的硬件装置,控制机械手完成各种动作。
本课题是有我和徐立同同学合作共同完成,在整个设计过程中徐立同同学主要负责硬件方面如接线、画各个电气设备的电路接线图等;而我则是主要负责软件部分,在实际的设计调试过程中我主要负责PLC的接线编程、调试等工作。当然了硬件和软件是不分家的,谁也离不开谁,因此,在整个设计过程中各种方案的敲定与实施均是由我们俩个在指导老师的帮助下共同研究、推敲、讨论试验调试中确定的。为了能够实现机械手可在空间抓放物体,动作灵活多样,适用于可变换生产品种的中小批量自动化生产,广泛应用于柔性自动线。再加上本课题开发的机械手采用的日本三菱公司的FX2N系列PLC控制,是一种按预先设定的程序进行工件的搬运的自动化装置,可部分代替人工在高温和危险的作业区进行单调持久的作业,并要实现根据工件的简单的变化要求随时更改相关控制参数。为达到这些要求,我们设计的控制方案尽量在我们力所能及的范围内选择最佳的方案。如在本设计中遇到的对直流电机的控制问题中,在控制直流电机正反转的问题上通过老师的指导我们想到了两种控制方案:一种是在原设备的基础上加上四个继电器实现其控制功能;另一种则是根据三菱公司的FX2N系列PLC的输出端的内部电路的特点,可以在不增加其他设备的情况下实现控制要求。我在最大限度的满足工艺流程和控制要求的同时,还要考虑要有很高的性价比,因此我们选择了后一种方案。也许后一种方案有其弊端,但目前还没有发现。望大家多多指教。
当然了,由于我们水平的限制和时间的仓促,在很多地方的控制方案还不是很理想,同时还遗留有很多的问题,需要进一步的研究中才能解决,望各位老师和广大同学批评和指教。
铝合金电阻点焊广泛应用于航空航天、电子、车辆及轻工部门等领域,在现代制造业中具有重要的地位。然而,由于铝合金电阻点焊在连续点焊过程中存在焊点质量不稳定和电极使用效率低等问题,限制了电阻点焊在这些领域内的应用和推广。造成这一问题的主要原因是点焊过程中电极端面的铜铝合金化现象,而电极端面较高的温度与压力分布又对合金化反应起决定性作用。电阻点焊过程是一个高度非线性、多物理场耦合(热、电、力)作用的复杂过程。焊接时间的短暂性,熔池形成过程的不可见性,都给试验观察带来了困难,因此,本文拟采用数值模拟的方法,以ANSYS软件为工具,对铝合金点焊过程中铜铝合金化的反应机制进行模拟研究。具体研究成果如下:本文根据弹塑性理论和接触性理论对电阻点焊预压阶段的接触行为进行数值分析,获得了铝合金点焊接触面的初始接触区域。并在此基础上,根据点焊过程的基本方程,建立了铝合金电阻点焊过程的热、电、力耦合模型。利用所建立的耦合模型对铝合金点焊的温度场、应力场进行数值模拟分析,结果表明:在点焊初始阶段,由于接触电阻的分布很不均匀,造成接触面上的局部区域产生很高的温度,甚至能达到铜铝之间产生合金化反应的温度。但这种加热不均匀的现象持续时间非常短,且大部分分布在电极端面的边缘处,该处也为应力集中处。为了进一步研究铜铝合金化反应的机理,本文建立了一种基于铜和铝扩散反应进行的有限元模型。由于热传导方程和扩散方程在表达形式上的相似性,所以用模拟热传导的方式来模拟铝在铜电极中的单向扩散过程,以温度分布表示扩散浓度的分布情况。通过对扩散反应的分析,提出了在点焊过程中发生铜铝合金化的可靠性理论:铜和铝在电极压力的作用下形成机械混合物,并以原子扩散的形式不断进行原子级别上的混合,形成铝在铜中的固溶体α(Cu),当铝元素在铜基中的含量超过5.65%,并且达到铜铝的共晶反应温度时,便生成了铜铝金属间化合物。另外,在高温高压下电极端部会产生塑性变形,提高电极内部的位错密度,利于铝原子的扩散。
这款机械手使用的是TT直流减速电机。
直流减速电机的优点就是控制简单,不足就是转动角度控制不精确。
为了精确控制机械手的张开/闭合以及抬升/放下等动作,我们在两个活动关节的地方,为电机增加了两个光电码盘。当码盘转动时,每两个黑白辐条经过光电反射传感器,传感器的OUT输出端就产生一个脉冲。我们对产生的脉冲进行计数,就可以知道这个关节的电机转动了多少度,即能换算出机械手的动作范围。
信号输出:红色:VCC;白色:OUT;黑色:GND。
对于对抬升/下降角度要求不高的场合,我们还设置了两个限位开关,只要机械手抬升或下降到一定位置时,碰触开关就会闭合,这样“红色”和“黑色”端口就会短路。
更多资料,请见: