您当前的位置:首页 > 发表论文>论文发表

初二数学论文400字

2023-12-05 23:37 来源:学术参考网 作者:未知

初二数学论文400字

实数可以直观地看作小数(有限或无限的),它们能把数轴“填满”。实数包括所有的有理数和无理数,比如0、 -4.8、、π 等。但仅仅以枚举的方式不能描述实数的全体。
根据日常经验,有理数集在数轴上似乎是“稠密”的,于是古人一直认为用有理数即能满足测量上的实际需要。以边长为1cm的正方形为例,其对角线有多长?在规定的精度下(比如误差小于0.001厘米),总可以用有理数来表示足够精确的测量结果(比如1.414厘米)。但是,古希腊毕达哥拉斯学派的数学家发现,只使用有理数无法完全精确地表示这条对角线的长度,这彻底地打击了他们的数学理念;他们原以为:
任何两条线段(的长度)的比,可以用自然数的比来表示。
正因如此,毕达哥拉斯本人甚至有“万物皆数”的信念,这里的数是指自然数(1 , 2 , 3 ...),而由自然数的比就得到所有正有理数,而有理数集存在“缝隙”这一事实,对当时很多数学家来说可谓极大的打击;见第一次数学危机。
从古希腊一直到十七世纪,数学家们才慢慢接受无理数的存在,并把它和有理数平等地看作数;后来有虚数概念的引入,为加以区别而称作“实数”,意即“实在的数”。在当时,尽管虚数已经出现并广为使用,实数的严格定义却仍然是个难题,以至函数、极限和收敛性的概念都被定义清楚之后,才由十九世纪末的戴德金、康托等人对实数进行了严格处理。在目前的初等数学中,没有对实数进行严格的定义,而一般把实数看作小数(有限或无限的)。实数的完整定义在几何上,直线上的点与实数一一对应;见数轴。
实数可以分为有理数(如42、)和无理数(如π、√2)两类,也可以分为代数数和超越数(有理数都是代数数),或正数,负数和零三类。实数集合通常用字母R或表示。而Rn表示n 维实数空间。实数是不可数的。实数是实分析的核心研究对象。
实数可以用来测量连续变化的量。理论上,任何实数都可以用无限小数的方式表示,小数点的右边是一个无穷的数列(可以是循环的,也可以是非循环的)。在实际运用中,实数经常被近似成一个有限小数(保留小数点后n位,n为正整数)。在计算机领域,由于计算机只能存储有限的小数位数,实数经常用浮点数来表示。
[编辑]历史

在公元前500年左右,以毕达哥拉斯为首的希腊数学家们认识到有理数在几何上不能满足需要,但毕达哥拉斯本身并不承认无理数的存在。 直到17世纪,实数才在欧洲被广泛接受。18世纪,微积分学在实数的基础上发展起来。直到1871年,德国数学家康托尔第一次提出了实数的严格定义。
[编辑]定义

[编辑]从有理数构造实数
实数可以用通过收敛于一个唯一实数的十进制或二进制展开如{3, 3.1, 3.14, 3.141, 3.1415,…}所定义的序列的方式而构造为有理数的补全。实数可以不同方式从有理数构造出来。这里给出其中一种,其他方法请详见实数的构造。
[编辑]公理化方法
设R是所有实数的集合,则:
集合R是一个域: 可以作加、减、乘、除运算,且有如交换律,结合律等常见性质。
域R是个有序域,即存在全序关系≥,对所有实数x, y和z:
若x ≥ y则x + z ≥ y + z;
若x ≥ 0且y ≥ 0则x'y ≥ 0。
集合R满足戴德金完备性,即任意R的非空子集S (S ⊆ R, S ≠ ∅),若S在R内有上界,那么S在R内有上确界。
最后一条是区分实数和有理数的关键。例如所有平方小于2的有理数的集合存在有理数上界,如1.5;但是不存在有理数上确界(因为不是有理数)。
实数通过上述性质唯一确定。更准确的说,给定任意两个戴德金完备的有序域R1和R2,存在从R1到R2的唯一的域同构,即代数学上两者可看作是相同的。
[编辑]例子

15 (整数)
2.121 (有限小数)
1.3333333... (无限循环小数)
π = 3.1415926... (无限不循环小数)
(无理数)
(分数)
[编辑]性质

[编辑]基本运算
在实数域内,可实现的基本运算有加、减、乘、除、平方等,对非负数还可以进行开方运算。实数加、减、乘、除(除数不为零)、平方后结果还是实数。任何实数都可以开奇次方,结果仍是实数;只有非负实数才能开偶次方,其结果还是实数。
[编辑]完备性
作为度量空间或一致空间,实数集合是一个完备空间,它有以下性质:
所有实数的柯西序列都有一个实数极限。
有理数集合就不是完备空间。例如,(1, 1.4, 1.41, 1.414, 1.4142, 1.41421, ...)是有理数的柯西序列,但没有有理数极限。实际上,它有个实数极限。实数是有理数的完备化:这亦是构造实数集合的一种方法。
极限的存在是微积分的基础。实数的完备性等价于欧几里得几何的直线没有“空隙”。
[编辑]完备的有序域
实数集合通常被描述为“完备的有序域”,这可以几种解释。
首先,有序域可以是完备格。然而,很容易发现没有有序域会是完备格。这是由于有序域没有最大元素(对任意元素z,z + 1将更大)。所以,这里的“完备”不是完备格的意思。
另外,有序域满足戴德金完备性,这在上述公理中已经定义。上述的唯一性也说明了这里的“完备”是指戴德金完备性的意思。这个完备性的意思非常接近采用戴德金分割来构造实数的方法,即从(有理数)有序域出发,通过标准的方法建立戴德金完备性。
这两个完备性的概念都忽略了域的结构。然而,有序群(域是种特殊的群)可以定义一致空间,而一致空间又有完备空间的概念。上述完备性中所述的只是一个特例。(这里采用一致空间中的完备性概念,而不是相关的人们熟知的度量空间的完备性,这是由于度量空间的定义依赖于实数的性质。)当然,R并不是唯一的一致完备的有序域,但它是唯一的一致完备的阿基米德域。实际上,“完备的阿基米德域”比“完备的有序域”更常见。可以证明,任意一致完备的阿基米德域必然是戴德金完备的(当然反之亦然)。这个完备性的意思非常接近采用柯西序列来构造实数的方法,即从(有理数)阿基米德域出发,通过标准的方法建立一致完备性。
“完备的阿基米德域”最早是由希尔伯特提出来的,他还想表达一些不同于上述的意思。他认为,实数构成了最大的阿基米德域,即所有其他的阿基米德域都是R的子域。这样R是“完备的”是指,在其中加入任何元素都将使它不再是阿基米德域。这个完备性的意思非常接近用超实数来构造实数的方法,即从某个包含所有(超实数)有序域的纯类出发,从其子域中找出最大的阿基米德域。
[编辑]高级性质
实数集是不可数的,也就是说,实数的个数严格多于自然数的个数(尽管两者都是无穷大)。这一点,可以通过康托尔对角线方法证明。实际上,实数集的势为2ω(请参见连续统的势),即自然数集的幂集的势。由于实数集中只有可数集个数的元素可能是代数数,绝大多数实数是超越数。实数集的子集中,不存在其势严格大于自然数集的势且严格小于实数集的势的集合,这就是连续统假设。该假设不能被证明是否正确,这是因为它和集合论的ZFS公理系统相互独立。
所有非负实数的平方根属于R,但这对负数不成立。这表明R上的序是由其代数结构确定的。而且,所有奇数次多项式至少有一个根属于R。这两个性质使R成为实封闭域的最主要的实例。证明这一点就是对代数基本定理的证明的前半部分。
实数集拥有一个规范的测度,即勒贝格测度。
实数集的上确界公理用到了实数集的子集,这是一种二阶逻辑的陈述。不可能只采用一阶逻辑来刻画实数集:1. Löwenheim-Skolem定理说明,存在一个实数集的可数稠密子集,它在一阶逻辑中正好满足和实数集自身完全相同的命题;2. 超实数的集合远远大于R,但也同样满足和R一样的一阶逻辑命题。满足和R一样的一阶逻辑命题的有序域称为R的非标准模型。这就是非标准分析的研究内容,在非标准模型中证明一阶逻辑命题(可能比在R中证明要简单一些),从而确定这些命题在R中也成立。
[编辑]拓扑性质
实数集构成一个度量空间:x和y间的距离定为绝对值 |x - y|。作为一个全序集,它也具有序拓扑。这里,从度量和序关系得到的拓扑相同。实数集又是1 维的可缩空间(所以也是连通空间)、局部紧致空间、可分空间、贝利空间。但实数集不是紧致空间。这些可以通过特定的性质来确定,例如,无限连续可分的序拓扑必须和实数集同胚。以下是实数的拓扑性质总览:
令为一实数。的邻域是实数集中一个包括一段含有的线段的子集。
是可分空间。
在中处处稠密。
的开集是开区间的联集。
的紧子集是有界闭集。特别是:所有含端点的有限线段都是紧子集。
每个中的有界序列都有收敛子序列。
是连通且单连通的。
中的连通子集是线段、射线与本身。由此性质可迅速导出中间值定理。
区间套定理:设为一个有界闭集的序列,且,则其交集非空。严格表法如下:
.
[编辑]扩展与一般化

实数集可以在几种不同的方面进行扩展和一般化:
最自然的扩展可能就是复数了。复数集包含了所有多项式的根。但是,复数集不是一个有序域。
实数集扩展的有序域是超实数的集合,包含无穷小和无穷大。它不是一个阿基米德域。
有时候,形式元素 +∞和 -∞加入实数集,构成扩展的实数轴。它是一个紧致空间,而不是一个域,但它保留了许多实数的性质。
希尔伯特空间的自伴随算子在许多方面一般化实数集:它们可以是有序的(尽管不一定全序)、完备的;它们所有的特征值都是实数;它们构成一个实结合代数。

初二数学论文怎么写(2)

  初二数学论文篇二
  初二数学两极分化的成因和对策

  【摘要】初中数学出现两极分化是一种危险信号,预示着部分初二数学学困生面对初三难度更大的数学学习会有放弃的可能,而数学在整个初中学科中地位显著,所以初二学生一旦有放弃数学学习的心理将会产生十分严重的后果。避免初中数学两极分化是初中数学教学的重要课题。本文分析了产生初二数学两极分化的原因,提出了避免两极分化的对策。

  【关键词】初中数学 两极分化 原因 对策

  从每年各地统计的数据来看,进入初二的学生,数学学习两级分化呈现出较严重的趋势,数学学困生所占比例大,这种状况直接影响着大面积提高数学教学的质量,也影响着中考的成绩。初中数学出现两级分化是一个危险信号,说明部分学生数学能力已跟不上数学教学进度,而接下来的初三数学教学难度会进一步加大,部分学困生有可能面对越来越艰巨的学习任务而放弃数学学习。而数学在整个初中学科中地位显著,放弃数学学习的后果可想而知。所以,避免或减少数学两极分化显得尤为重要。那么,形成初中阶段数学两极分化有一些什么原因,如何有效避免初中数学的两极分化,有哪些可行性措施和策略可以避免初中数学的两极分化呢?笔者根据自己多年的初中数学实践,现谈谈在此方面的点滴感悟,希望能对抑制初中数学的两极分化带来一些启示。

  一、初中数学出现两极分化的原因

  初中数学出现分化的原因是多方面的,限于篇幅,这里无法一一罗列,但有三方面的原因是不能不被提及的,这三方面的原因分别为:一方面是因为初二学生对数学学习的热情有的随着成绩的稳中向好而加强,而部分数学学习困难者面对越来越多的困难和压力而数学学习的步伐无法跟上队伍,成绩也呈现大幅度的下降趋势,且兴趣也越来越谈,学习数学的激情正在消退,产生了数学厌学心理;一方面是因为学困生掌握数学知识、技能不够全面、系统,没有形成较好的数学认知结构,也没有形成一定的数学学习能力,不能为连续学习提供必要的认知基础。所以就打退堂鼓,产生放弃的心理认同;一方面是因为学生个体思维方式和学习方法无法适应数学学习的要求。这些都是制约初中数学两极分化的重要原因。

  二、避免初二数学两极分化的办法

  1.在初中数学学习中要形成提前完成预习,课内重视听讲,课后及时复习的习惯

  良好的预习习惯是学习新知识,巩固旧知识的不二法门,初二学生应在数学新知识接受之前提前预习,除了提前对数学课程进行学习外,每天晚上都应预习第二天的数学知识,课堂上才能更好的听讲,有更多的收获。数学能力的培养主要在课堂上进行,所以要重视课内的学习,要在课堂内寻求正确的数学学习方法。上课时要紧跟教师的思路,积极展开思维预测下面的步骤,比较自己的解题思路与教师所讲的有哪些出入。特别要抓住基础知识和基本技能的学习,课后要及时复习不留疑点。首先要在做各种习题之前将教师所讲的数学知识点回忆一遍,正确掌握各类公式的推理过程。要独立完成每一道数学作业,勤于思考,不懂即问,形成良好的解题习惯。在每个阶段的数学学习中要进行整理和归纳总结,把知识的点、线、面结合起来交织成数学知识网络,纳入自己的数学知识体系。

  2.熟悉各种数学题型,勤于练兵,提炼数学解题技巧

  千锤百炼才成钢,数学学习也一样,只有在数学知识的海洋中劈波斩浪,迎头搏击,才能立于潮头。所以要想学好数学,多做题目是难免的,要熟悉掌握各种题型的解题思路,要从简单的题型开始,以数学教材上的习题为准,反复练习打好基础,再找一些课外的习题,以帮助开拓思路,提高自己的分析、解决问题能力,掌握一般的解题规律。对于一些易错题,可在自己的错题集写出解题思路和正确的解题过程,加深对错误题的认识,提高免错能力。在平时要养成良好的解题习惯。让自己的精力高度集中,使大脑兴奋,思维敏捷,能够进入最佳状态,在考试中能运用自如。实践证明:越到关键时候,你所表现的解题习惯与平时练习无异。如果平时解题时随便、粗心、大意,往往在考试中会暴露充分,故在平时养成良好的解题习惯是非常重要的。

  3.以良好的心态对待各种数学考试。

  数学考试是检验数学学习效果的重要方式之一,进入初二阶段,数学考试也会有一些适当的增加,但每次考试成绩也只是代表一个阶段的成绩,无法代表整个初二学年的成绩,每个阶段学生的努力会刷新每一次成绩,只要努力成绩是可以提高的。学生对待考试要有良好的心态,不以一次成绩论英难,自己在任何时候都要情绪稳定,思路正常,要克服浮躁情绪,对自己要有信心。在考试前要做好考前准备,练练常规题,把自己的思路展开,切忌考试时去提高解题的速度。对于一些容易的基础题要争取拿全分,对于一些难题,也要尽量拿分,考试中要学会尝试得分,使自己的水平发挥正常甚至发挥超常。

  三、对待初中数学两极分化中的学生应采取的措施

  虽然我们避免两极分化,但初中数学的两极分化不会因我们的努力而完全阻止。那么在两极分化后初中数学教师必须采取一些措施防止两极分化的拉大。如在布置数学作业时,要注意难易程度,要注意加强对学困生的辅导、转化,督促他们认真完成布置的作业。对作业做得较好或作业有所进步的学困生要及时表扬鼓励。数学教师要注意克服急躁冒进的情绪,如对学困生加大、加重作业量的做法是不可取的。对待数学学困生,要放低要求,采取循序渐进的原则、谆谆诱导的方法,从起点开始,耐心地辅导他们一点一滴地补习功课,让他们逐步提高。数学学困生学习被动,依赖性强。往往对数学概念、公式、定理、法则死记硬背,不愿动脑筋,一遇到问题就问老师,甚至扔在一边不管,教师在解答问题时,要注意启发式教学方法的应用,逐步让他们自己动脑,引导他们分析问题,解答问题。不要给他们现成答案,要随时纠正他们在分析解答中出现的错误,逐步培养他们独立完成作业的习惯。对数学学困生不仅要关心爱护和耐心细致地辅导,还要与严格要求相结合,不少数学学困生就是因为学习意志不强,生活懒惰,思想不集中,作业不及时完成或抄袭,根本没有预习、复习的习惯等。因此教师要特别注意检查学困生的作业完成情况,在教学过程中,要对他们提出严格的要求,督促他们认真学习。要有意识地出一些比较容易的数学题目,培养学困生的信心,对他们知识薄弱的地方要进行个别辅导,这样还可使有些学困生经过努力也有得较高分的机会,让他们有成就感,逐步改变他们头脑中在数学学习上总比别人低一等的印象。从而培养他们的自信心和自尊心,激励他们积极争取,努力向上,进而达到转化的目的。

  初二数学学习中出现两极分化是必然结果,我们不必大惊小怪,要理性面对,并想方设法缩小差距,认真做好培优转困工作,只要我们注意方式方法,采取行之有效的措施,就一定会收到缩小两极分化的良好效果。初二数学教师任重道远,期待着都能勇挑重担,一往直前地把缩小数学两极分化工作落实在自己的教学行动中。

  【参考文献】

  1.石燕宁:农村初中数学两极分化的原因及对策分析[J],《中学教学参考》,2012.19.

  2.张占武:初中数学差生的学习障碍成因分析及转化[J],《吉林教育》,2010.2.

  (作者单位:546100广西来宾市第三中学)

  
看了“初二数学论文怎么写”的人还看:

1. 2000字的初中数学论文怎么写

2. 初中数学小论文范文

3. 初中数学论文范文

4. 有关初中数学小论文范文

5. 数学小论文的范文

数学论文 400字

数字的历史

公元500年前后,随着经济、文化以及佛教的兴起和发展,印度次大陆西北部的旁遮普地区的数学一直处于领先地位。天文学家阿叶彼海特在简化数字方面有了新的突破:他把数字记在一个个格子里,如果第一格里有一个符号,比如是一个代表1的圆点,那么第二格里的同样圆点就表示十,而第三格里的圆点就代表一百。这样,不仅是数字符号本身,而且是它们所在的位置次序也同样拥有了重要意义。以后,印度的学者又引出了作为零的符号。可以这么说,这些符号和表示方法是今天阿拉伯数字的老祖先了。
两百年后,团结在伊斯兰教下的阿拉伯人征服了周围的民族,建立了东起印度,西从非洲到西班牙的撒拉孙大帝国。后来,这个伊斯兰大帝国分裂成东、西两个国家。由于这两个国家的各代君王都奖励文化和艺术,所以两国的首都都非常繁荣,而其中特别繁华的是东都——巴格达,西来的希腊文化,东来的印度文化都汇集到这里来了。阿拉伯人将两种文化理解消化,从而创造了独特的阿拉伯文化。
大约700年前后,阿拉伯人征眼了旁遮普地区,他们吃惊地发现:被征服地区的数学比他们先进。用什么方法可以将这些先进的数学也搬到阿拉伯去呢?
771年,印度北部的数学家被抓到了阿拉伯的巴格达,被迫给当地人传授新的数学符号和体系,以及印度式的计算方法(即我们现在用的计算法)。由于印度数字和印度计数法既简单又方便,其优点远远超过了其他的计算法,阿拉伯的学者们很愿意学习这些先进知识,商人们也乐于采用这种方法去做生意。
后来,阿拉伯人把这种数字传入西班牙。公元10世纪,又由教皇热尔贝•奥里亚克传到欧洲其他国家。公元1200年左右,欧洲的学者正式采用了这些符号和体系。至13世纪,在意大利比萨的数学家费婆拿契的倡导下,普通欧洲人也开始采用阿拉伯数字,15世纪时这种现象已相当普遍。那时的阿拉伯数字的形状与现代的阿拉伯数字尚不完全相同,只是比较接近而已,为使它们变成今天的1、2、3、4、5、6、7、8、9、0的书写方式,又有许多数学家花费了不少心血。
阿拉伯数字起源于印度,但却是经由阿拉伯人传向四方的,这就是它们后来被称为阿拉伯数字的原因。

初二数学论文600字

魅力无比的定理证明
——勾股定理的证明

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。

【附录】
一、【《周髀算经》简介】
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。
《周髀算经》使用了相当繁复的分数算法和开平方法。

二、【伽菲尔德证明勾股定理的故事】
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。

转引自:中“数学的发现”栏目。图无法转贴,请查看原文。

魅力无比的定理证明
——勾股定理的证明

勾股定理是几何学中的明珠,所以它充满魅力,千百年来,人们对它的证明趋之若骛,其中有著名的数学家,也有业余数学爱好者,有普通的老百姓,也有尊贵的政要权贵,甚至有国家总统。也许是因为勾股定理既重要又简单,更容易吸引人,才使它成百次地反复被人炒作,反复被人论证。1940年出版过一本名为《毕达哥拉斯命题》的勾股定理的证明专辑,其中收集了367种不同的证明方法。实际上还不止于此,有资料表明,关于勾股定理的证明方法已有500余种,仅我国清末数学家华蘅芳就提供了二十多种精彩的证法。这是任何定理无法比拟的。
在这数百种证明方法中,有的十分精彩,有的十分简洁,有的因为证明者身份的特殊而非常著名。
首先介绍勾股定理的两个最为精彩的证明,据说分别来源于中国和希腊。
1.中国方法
画两个边长为(a+b)的正方形,如图,其中a、b为直角边,c为斜边。这两个正方形全等,故面积相等。

左图与右图各有四个与原直角三角形全等的三角形,左右四个三角形面积之和必相等。从左右两图中都把四个三角形去掉,图形剩下部分的面积必相等。左图剩下两个正方形,分别以a、b为边。右图剩下以c为边的正方形。于是
a2+b2=c2。
这就是我们几何教科书中所介绍的方法。既直观又简单,任何人都看得懂。
2.希腊方法
直接在直角三角形三边上画正方形,如图。
容易看出,
△ABA’ ≌△AA’’ C。
过C向A’’B’’引垂线,交AB于C’,交A’’B’’于C’’。
△ABA’与正方形ACDA’同底等高,前者面积为后者面积的一半,△AA’’C与矩形AA’’C’’C’同底等高,前者的面积也是后者的一半。由△ABA’≌△AA’’C,知正方形ACDA’的面积等于矩形AA’’C’’C’的面积。同理可得正方形BB’EC的面积等于矩形B’’BC’C’’的面积。
于是,
S正方形AA’’B’’B=S正方形ACDA’+S正方形BB’EC,
即 a2+b2=c2。
至于三角形面积是同底等高的矩形面积之半,则可用割补法得到(请读者自己证明)。这里只用到简单的面积关系,不涉及三角形和矩形的面积公式。
这就是希腊古代数学家欧几里得在其《几何原本》中的证法。
以上两个证明方法之所以精彩,是它们所用到的定理少,都只用到面积的两个基本观念:
⑴ 全等形的面积相等;
⑵ 一个图形分割成几部分,各部分面积之和等于原图形的面积。
这是完全可以接受的朴素观念,任何人都能理解。
我国历代数学家关于勾股定理的论证方法有多种,为勾股定理作的图注也不少,其中较早的是赵爽(即赵君卿)在他附于《周髀算经》之中的论文《勾股圆方图注》中的证明。采用的是割补法:
如图,将图中的四个直角三角形涂上朱色,把中间小正方形涂上黄色,叫做中黄实,以弦为边的正方形称为弦实,然后经过拼补搭配,“令出入相补,各从其类”,他肯定了勾股弦三者的关系是符合勾股定理的。即“勾股各自乘,并之为弦实,开方除之,即弦也”。
赵爽对勾股定理的证明,显示了我国数学家高超的证题思想,较为简明、直观。
西方也有很多学者研究了勾股定理,给出了很多证明方法,其中有文字记载的最早的证明是毕达哥拉斯给出的。据说当他证明了勾股定理以后,欣喜若狂,杀牛百头,以示庆贺。故西方亦称勾股定理为“百牛定理”。遗憾的是,毕达哥拉斯的证明方法早已失传,我们无从知道他的证法。
下面介绍的是美国第二十任总统伽菲尔德对勾股定理的证明。
如图,
S梯形ABCD= (a+b)2
= (a2+2ab+b2), ①
又S梯形ABCD=S△AED+S△EBC+S△CED
= ab+ ba+ c2
= (2ab+c2)。 ②
比较以上二式,便得
a2+b2=c2。
这一证明由于用了梯形面积公式和三角形面积公式,从而使证明相当简洁。
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证明。5年后,伽菲尔德就任美国第二十任总统。后来,人们为了纪念他对勾股定理直观、简捷、易懂、明了的证明,就把这一证法称为勾股定理的“总统”证法,这在数学史上被传为佳话。
在学习了相似三角形以后,我们知道在直角三角形中,斜边上的高把这个直角三角形所分成的两个直角三角形与原三角形相似。
如图,Rt△ABC中,∠ACB=90°。作CD⊥BC,垂足为D。则
△BCD∽△BAC,△CAD∽△BAC。
由△BCD∽△BAC可得BC2=BD ? BA, ①
由△CAD∽△BAC可得AC2=AD ? AB。 ②
我们发现,把①、②两式相加可得
BC2+AC2=AB(AD+BD),
而AD+BD=AB,
因此有 BC2+AC2=AB2,这就是
a2+b2=c2。
这也是一种证明勾股定理的方法,而且也很简洁。它利用了相似三角形的知识。
在对勾股定理为数众多的证明中,人们也会犯一些错误。如有人给出了如下证明勾股定理的方法:
设△ABC中,∠C=90°,由余弦定理
c2=a2+b2-2abcosC,
因为∠C=90°,所以cosC=0。所以
a2+b2=c2。
这一证法,看来正确,而且简单,实际上却犯了循环证论的错误。原因是余弦定理的证明来自勾股定理。
人们对勾股定理感兴趣的原因还在于它可以作推广。
欧几里得在他的《几何原本》中给出了勾股定理的推广定理:“直角三角形斜边上的一个直边形,其面积为两直角边上两个与之相似的直边形面积之和”。
从上面这一定理可以推出下面的定理:“以直角三角形的三边为直径作圆,则以斜边为直径所作圆的面积等于以两直角边为直径所作两圆的面积和”。
勾股定理还可以推广到空间:以直角三角形的三边为对应棱作相似多面体,则斜边上的多面体的表面积等于直角边上两个多面体表面积之和。
若以直角三角形的三边为直径分别作球,则斜边上的球的表面积等于两直角边上所作二球表面积之和。
如此等等。

【附录】
一、【《周髀算经》简介】
《周髀算经》算经十书之一。约成书于公元前二世纪,原名《周髀》,它是我国最古老的天文学著作,主要阐明当时的盖天说和四分历法。唐初规定它为国子监明算科的教材之一,故改名《周髀算经》。《周髀算经》在数学上的主要成就是介绍了勾股定理及其在测量上的应用。原书没有对勾股定理进行证明,其证明是三国时东吴人赵爽在《周髀注》一书的《勾股圆方图注》中给出的。
《周髀算经》使用了相当繁复的分数算法和开平方法。

二、【伽菲尔德证明勾股定理的故事】
1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德。他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨。由于好奇心驱使,伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么。只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形。于是伽菲尔德便问他们在干什么?那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀。”小男孩又问道:“如果两条直角边长分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不假思索地回答道:“那斜边的平方一定等于5的平方加上7的平方。”小男孩又说:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心里很不是滋味。
于是,伽菲尔德不再散步,立即回家,潜心探讨小男孩给他出的难题。他经过反复思考与演算,终于弄清了其中的道理,并给出了简洁的证明方法。
回答者:zhang_1118 - 江湖新秀 五级 2-19 17:47
中“数学的发现”栏目。图无法转贴,请查看原文。

补充回答:

这又详细证法,还有图,自己看看

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页