人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。以下是我整理的科技人工智能论文的相关 文章 ,欢迎阅读!
人工智能技术推动我国ICT产业发展模式探讨
【摘 要】人工智能是一项前瞻性科学研究,已经成为ICT产业发展的突破口。通过比较国内外ICT产业中人工智能技术研发现状, 总结 我国相关技术和产业的优劣势,有针对性的从国家政策层面和企业层面探讨人工智能技术在促进我国ICT产业发展的对策和建议。
【关键词】人工智能;政策引导;发展模式
0 引言
工信部在2010年工作会议上重点部署了战略性新兴产业的发展,信息和通信技术(Information and Communication Technology, ICT)产业排在首位。当前以智慧城市、智能家居、车联网等构成的物联网、移动互联网等应用为代表的新一代ICT产业不断创新,正在全球范围内掀起新一轮科技革命和产业变革,相关产业布局如图1所示。2013年前后欧美等国家和地区相继启动的人脑研究计划,促进人工智能、神经形态计算和机器人系统的发展。而人工智能就是机器模拟人脑的具体表现形式,以云计算、深度学习、智能搜索等一系列新技术在大规模联网上的应用,已经成为ICT产业进一步发展的重要方向[1-2]。面对人工智能在ICT产业上的迅猛发展,急需对我国在此方面的发展模式进行梳理。
1 国内外人工智能技术在ICT产业的发展现状
从发展脉络看,人工智能研究始终位于技术创新的高地,近年来成果斐然,在智能搜索、人工交互、可穿戴设备等领域得到了前所未有的重视,成为产业界力夺的前沿领域。目前国际ICT产业在人工智能技术上的发展重心涉及以下几个方面。
1.1 搜索引擎方向的发展
信息搜索是互联网流量的关键入口,也是实现信息资源与用户需求匹配的关键手段,人工智能的引入打开了搜索引擎发展的新空间。融合了深度学习技术的搜索引擎正大幅度提升图像搜索的准确率,同时吸纳了自然语言处理和云操作处理技术的搜索引擎,可将语音指令转化为实时搜索结果,另外人工智能搜索引擎可能添加意识情感元素,发展出真正意义上的神经心理学搜索引擎[3]。
从搜索引擎的发展上来看,国内企业起步稍晚,搜索领域较窄,但也有新浪、搜狐、百度、阿里巴巴、腾讯等公司等纷纷运用独特的技术与 商业模式 进行中国式的创新与超越,以及科大讯飞等企事业研究单位在部分方向已经具有了一定的基础,发展态势较好。
1.2 人脑科学助推人工智能技术发展
人工智能技术都是通过机器来模拟人脑进行复杂、高级运算的人脑研究活动。目前基于信息通信技术建立的研究平台,使用计算机模拟法来绘制详细的人脑模型,推动了人工智能、机器人和神经形态计算系统的发展,预计将引发人工智能由低级人脑模拟向高级人脑模拟的飞跃。
谷歌公司早就通过自主研发以及收购等方式来获取人工智能的必要技术,包括使用一万六千个处理器建立的模拟人脑神经系统的、具备学习功能的谷歌大脑。国内该方面的研究发展起步偏重于医学单位,在中华人类脑计划和神经信息学方面具有一定的科研成果,在某些领域达到了国际先进水平,但在新一轮全球人工智能竞赛中,中国至今处于观望和模仿阶段。直至2013年初,百度成立深度学习研究院,提出百度大脑计划,如图2所示,拥有了超越天河二号的超级计算能力,组建起世界上最大的拥有200亿个参数的深度神经网络。作为国内技术最领先的互联网公司,百度此次争得人工智能领域最顶尖的科学家,在硅谷布局人工智能研究,被视为与美国科技巨头直接展开了技术和人才竞争。
1.3 智能终端和可穿戴设备引起产业变革
移动终端通过嵌入人工智能技术破除了时空限制,促进了人机高频互动,穿戴式智能联网设备正在引领信息技术产品和信息化应用发展的新方向。
我国在智能终端和可穿戴设备芯片的研发方面,还处于探索的阶段,特别是大型芯片企业未进行有力的支持。目前只有君正发布了可穿戴的芯片,制造工艺与国际上还有一定的差距。应该说国内芯片现在还是处于刚刚起步阶段,相比市场对可穿戴设备概念的热捧,用户真正能体验到的可穿戴设备屈指可数,大多停留在概念阶段。
1.4 物联网部分领域发展
全球物联网应用在各国战略引领和市场推动下正在加速发展,所产生的新型信息化正在与传统领域深入融合。总的来看,在公共市场方面发展较快,其中智能电网、车联网、机器与机器通信(Machine-To-Machine, M2M)是近年来发展较为突出的应用领域[4]。
物联网涉及领域众多,各国均上升至国家战略层次积极推动物联网技术研发,我国也在主动推进物联网共性基础能力研究和建立自主技术标准。在射频识别(Radio Frequency Identification, RFID)、M2M、工业控制、标识解析等领域已经获得部分知识产权,其中中高频RFID技术接近国际先进水平,在超高频(800/900MHz)和微波(2.45GHz)RFID空中接口物理层和MAC层均有重要技术突破。在标准方面,已建立传感网标准体系的初步框架,其中多项标准提案已被国际标准化组织采纳。作为国际传感网标准化四大主导国(美国、德国、韩国、中国)之一,我国在制定国际标准时已享有重要话语权。
2 我国ICT产业的政策引导
目前ICT产业的应用范围在不断的延伸,政策的制定必须考虑跨行业的需要,加速产业链的分工、合作和成熟。我国ICT企业正紧跟变革、激励创新、发掘内需,再通过突破瓶颈的ICT政策必将迎来新的机遇和发展。
2.1 国家政策方面的引导
世界发达国家纷纷制定ICT产业发展计划,并将其作为战略性新兴产业的重要组成部分。我国急需在国家政策方面进行引导,试图抢占下一程竞争制高点。政策应呈现如下趋势,破除行业间壁垒,加快制定ICT跨行业标准和产业相关政策。
2.1.1 加强政策顶层设计
成立国家级ICT产业发展机构,尽快确立国家ICT中长期发展战略,落实国家级监管机制、产业协同等各方面的工作,促进ICT产业及相关行业的发展。 2.1.2 加强自主创新能力
将战略性新兴产业作为发展重点,围绕其需求部署创新链,掌握核心关键技术,突破技术瓶颈。加强技术集成和商业模式的创新,加快新产品、新技术、新工艺研发应用。
2.1.3 深化科技体制改革
将企业主体地位予以强化,建立以企业为主、以市场为导向、产学研一体化的创新体系。新体系要确保企业为产业技术研发、技术创新决策、成果转化的主导地位,要促进人才、资源、技术等创新要素向企业流动,要主动与产学研机构开展深度合作,要扶植和壮大创新型企业。
2.2 知识产权方面的引导
2.2.1 专利方面
国际专利纠纷在一定程度上提高了国内企业的专利危机意识,但是由于在国内专利长期并未得到重视及专利技术研发周期长,企业对是否有能力实现布局认识不清[5]。初具国际竞争实力的国内企业应该紧抓全球重大的专利收购机遇,快速提升整体竞争力。针对新技术涉及专利问题应加快系统研究,重视前瞻性专利布局。积极探索统一专利池的构建,增强全产业专利授权及谈判能力,探索构建国内企业面临知识产权危机时的商业保护伞机制。一方面强化自身研发投入,另一方面仍需加强产学研结合、实现高校和科研院所的专利对企业转移。
2.2.2 著作权方面
目前版权产业已经成为国民经济新的增长点和经济发展中的支柱产业。世界知识产权组织在与我国国家版权局的合作调研时发现,2013年我国著作权作品登记共845064件,其中软件著作权登记164349件,同比增长超过18%。物联网、云计算、大数据等 热点 领域软件均呈现出了加速增长态势,如物联网软件著作权共4388件,同比增长70.54%,云计算软件著作权共3017件,同比增长55.04%,明显高于软件登记整体增速。虽然我国软件技术正处在一个高速增长期,但存在着低水平重复、起点较低的问题,仍需坚持不懈的进行引导、创新和保护。
3 ICT相关企业实现方式探讨
经过多年的努力积累,在人工智能究领域我国在不再仅是国外技术的跟随者,已经能够独立自主地进行重大问题的创新性研究,并取得了丰硕的成果。今后我国相关企业应进一步拓展人工智能在ICT产业的应用,并加快构建ICT产业生态系统。我国ICT相关企业在整个产业上应该逐步完成以下几个方面。
3.1 政、学、研、产、用全面推进
政府与科研院所建立合作机制。我国已经在制定多个促进产学研合作的计划,目的是将基础研究、应用研究,以及国家工业未来的发展紧密联系起来。大力资助具有应用前景的科研项目,促进大学与产业界联合申请项目,同时对由企业参与投资开发的项目实行重点关注。企业参与高校的科研项目。鼓励实力雄厚的公司通过向高校提供资金、转让科研设备等形式建立合作关系。高校积极参加企业研发项目。提供多种形式的合作方式,如高校教师充当企业顾问、举办学术讲座或参加企业课题研究,公司科研人员到高校进修并取得学位等。随着高校与政府、企业、研发机构合作的不断深入,努力消除校企之间的空间和物理层面的隔阂。探索建立学校、地方、企业、研发机构四位一体的科技创新体系,尽快形成具有特色优势和规模效益的高新技术产业群。
3.2 加强合作、推进新技术的产业化与商用
通信设备企业可与电信运营商、互联网企业加强合作,共同搭建新型试验网络,验证基于融合技术的网络架构在各场景的运行状况,排查可能出现的问题,推进相关技术、设备以及解决方案的成熟与商用化。加大与科研院所、专利中介、行业协会组织的合作,充分利用各方资源优势。企业应着重关注和影响科研院所的研究方向,协助其加强研发的实用性,提高研发质量。可以采取与校企合作开发、企业牵头申报课题,高校参与、企业设立课题由高校认领、建立联合实验室等方式。合作培育应用生态。企业在推进网络控制平台面向标准化的过程中,应充分考虑和吸纳包括电信运营商、互联网企业及其他各类企业的网络应用创新需求,为网络应用生态体系的形成与繁荣创建良好的技术基础与商业环境。
3.3 全力抢占大数据
我国政府已经认识到大数据在改善公共服务、推动经济发展以及保障国家安全等方面的重大意义。2014年《政府 工作 报告 》明确提出,“以创新支撑和引领经济结构优化升级;设立新兴产业创业创新平台”,在新一代移动通信、集成电路、大数据等方面赶超先进,引领未来产业发展。ICT企业在发展大数据的总体思路应该是:首先,明确国家关于大数据发展的战略目标,促进电信、互联网、金融等拥有海量数据的企业与其他行业进行大数据融合,扩展大数据应用领域;其次,在技术方面需要提高研发的前瞻性和系统性,近期重点发展实时大数据处理、深度学习、海量数据存储管理、交互式数据可视化和应用相关的分析技术等[6];第三,集合产学研用各方力量,统筹规划大数据应用,避免盲目发展;最后,解决个人信息的数据安全性需求。
3.4 重点发展云计算
2014年3月,工信部软件服务业司司长陈伟透露我国云计算综合标准化技术体系草案已形成。在政府建立标准化的同时,ICT企业应以企业的角度积极参与到云计算领域研究中,服务国家云产业发展战略。建议向用户充分开放企业平台资源,推进社会云产业发展;加强技术应用深度,将云计算技术着重应用于信息搜索、数据挖掘等领域,逐渐形成社会资源利用方面高效可行的 方法 技术;广泛展开与社会各界合作,推动社会各类数据资源与企业云计算技术的整合应用。云计算企业拥有丰富的软硬件资源、技术资源以及人力资源,并且服务政府信息化建设意愿强烈。应通过与政府社会资源应用需求相结合,充分发挥企业云计算资源在服务政府信息化建设、社会资源应用方面的潜力。
4 小结
发达国家对人工智能技术在ICT产业应用的研究开展较早,为促进人工智能技术的发展和ICT产业相关技术的发展已经提出并实施了一些行之有效的策略,积累了一定的 经验 。本文通过对比国内外在人工智能技术重点方向发展现状,借鉴他国政策与经验,根据我国的国情及产业发展所处的阶段,提出符合我国目前产业发展现状,适合我国的可借鉴的策略,以期为促进我国人工智能技术在ICT产业发展提供参考。
下一页分享更优秀的>>>科技人工智能论文
未来将扎实推进理论发展,加强新技术整合能力
如今,“智能+”社会已步步临近,社会各界也正积极勾勒未来社会图景。国外人工智能巨头动作不断,在基础技术、应用领域方面都有诸多突破,可以总结为三点:基础研究能力强、跨界创新密集、人才红利持续发挥。
我国在深度学习、识别技术等领域实力突出,在人工智能市场应用层面走在世界前列。但在基础技术、产业链跨界协同、核心人才培养方面则存有短板。业内专家呼吁,未来我国人工智能行业和学界应重点关注以上三项弱点,审时度势、全盘考虑、抓紧谋划、扎实推进,在巩固现有优势的同时,补足短板,推动中国人工智能产业可持续发展。
基础层研究成人工智能“硬指标”
人工智能研究可以分为基础层、技术层、应用层,美国在技术难度大、技术带动效应强的基础层方面,不断取得研究以及实践进展;而中国在基础层方面能力稍弱,在技术层和应用层发力更多。
基础层主要指处理器、芯片等支撑人工智能技术的核心能力;技术层包括自然语言处理、计算机视觉、技术平台等通用技术;应用层是指自动驾驶、智能机器人等实际应用主体。
人工智能浪潮的兴起,使得美国大公司纷纷进军基础层的研究。以芯片为例,美国的芯片制造企业英伟达推出了世界首款120万亿次级处理器Volta V100 GPU,可以将机器学习指令传达的效率从几周的时间缩短至几个小时,帮助客户更加快速地迭代并优化各自产品的上市时间。过去3年中,英伟达为深度学习提供了10倍的性能加速,被评论界称为“摩尔定律的平方”,保持目前的性能提升速率,到2025年,GPU将可实现比CPU快1000倍的性能。
谷歌、亚马逊、微软、苹果等最初并不研发芯片的公司,也开始发力芯片和处理器,这使得美国在全球人工智能基础层研究地位进一步增强。微软公司公布了其人工智能芯片制造项目,展示了一款专门为微软增强现实眼镜HoloLens打造的新型芯片。谷歌已于2016年宣布了其深度学习芯片的研发,并声称,随着语音识别技术的爆发,高性能处理器TPU已为公司省下了打造15个新数据中心的成本。谷歌同时在与生物公司合作开发高效计算DNA信息的芯片。2017年4月,苹果公司宣布苹果将通过自主研发和生产芯片,进一步掌握产业链主导权。消息一出,苹果芯片供应商英国公司Imagination的股价应声暴跌。
但是,中国在芯片基础研发领域仍然落后于美国企业,对进口芯片的需求居高不下。
从事计算机视觉识别的中国公司“旷视科技”品牌与市场中心总经理谢忆楠表示,在图像识别领域,公司同时应用英伟达和英特尔的芯片,目前还没有国产芯片能够完全取而代之。英特尔中国研究院院长宋继强也承认,我国人工智能领域不足之处在于我们原创理论创新、基础人工智能研发能力还不太够。中国学者需要在理论上有所突破。地平线机器人技术创始人余凯表示,在PC电脑与移动互联网时代,我们都错失了如操作系统等基础平台性技术,人工智能时代需要迎头赶上。
中国电子学会发布《中国机器人产业发展报告》指出,我国机器人领域核心技术积累不足,资金投入相对有限且分散,高端市场长期被外资企业占据,很大程度上以依托进口零部件和本体组装、集成为主营业务,虽有一定突破但基本上是被动地、跟随式发展,难以获得产业发展主动权。
计算机学家、图灵奖唯一的华人得主姚期智表示,中国想在2030年实现世界主要人工智能创新中心的战略目标,首先要解决人工智能发展缺少理论的问题。中国在下一波人工智能的发展上,应取得一些原创性的、有知识产权的成果,而不是追赶别人发明的科技。
跨界融合创新为智能生态“必修课”
未来人工智能领域不仅仅是单一的技术和产品,而是一个整合的“生态系统”。数字技术将结合神经研究等医学领域、自动化机械臂等工业领域共同组成人工智能的底层技术。
以人工智能为依托的机器人一方面会以“软件”形式融入社会,如自动翻译、图像识别等。另一方面也将通过集成“硬件”深入到百姓生活中,如特种机器人、医疗机器人等。
正是在这种“共识”的指引下,“不务正业”几乎成为美国人工智能巨头都在做的事,从IBM、苹果,到谷歌、脸书、英伟达,所有的人工智能巨头都在尝试软件、硬件、应用场景的联通,不再单一专注于自己的传统业务,而是着眼布局未来。 2016年9月,谷歌、微软、脸书、亚马逊、IBM更是组成人工智能联盟,大有形成合力、制定行业标准之意。
目前,谷歌的跨界非常广泛,跨越了芯片、机器学习平台、软件、云计算等各个领域。其人工智能学习系统TensorFlow目前是全世界应用最为广泛的人工智能软件平台。研发芯片起家的高通,也推出了自己的摄像头Spectra Module,旨在优化VR、AR的效果。最近,这一摄像头又添加了一些新的功能,如深度检测和生物认证,用户可以通过虹膜扫描来解锁认证。
IBM中国研究院认知交互技术总监秦勇表示,IBM打造人工智能平台,最终目的就是形成生态圈,可以满足客户的不同需要。比如IBM的WDC(Watson Developer Cloud),已经有很多应用程序编程接口公布出来,比如知识图谱、语音识别、计算机视觉、性格分析、对话管理等等。在教育领域和芝麻街合作,利用人工智能帮助小孩,用游戏的方式来做辅助学习。这一平台还和美敦力(Medtronic)合作,提前两三小时就可以准确预测一个人的血糖指标。
英伟达不仅有芯片,还发布了高效的深度学习软件平台,为客户提供综合全面的服务,其客户涵盖汽车、虚拟现实、图像识别、基因分析等各领域。电商起家的亚马逊,凭借其深度学习能力,崛起成为人工智能的巨头。去年,其发布的三大人工智能技术(图像识别、自动语音发音、语音互动)广受欢迎,中国的社群电商软件“小红书”就利用了亚马逊的人工智能技术开发了人脸识别痘痘的功能。
除以技术优势加速全链条布局外,国外巨头凭借投资并购等资本运作手段,提升自身技术实力,在人工智能领域迅速占据制高点,也有部分巨头在我国建立产业基地,抢占中国市场。如微软收购位于多伦多的人工智能初创企业Maluuba,谷歌收购数据科学公司Kaggle。库卡也宣布建设中国二期厂房,继续扩大产能。
而中国人工智能产业的跨界互动能力不足,部分企业存在短期套利思维。业内人士认为,从技术到产品的跨越非常之困难。不同于硅谷技术公司的“一呼百应、迅速抱团”,中国企业之间的“门户之见”较深,产业链倾向于为了短期利益,维护已有的客户链条,而不会积极拥抱新产品,这使得一项技术需要投产时,找生产商就十分困难,更别提以后的推广、应用了。
另一方面,中国科学院自动化研究所复杂系统管理与控制国家重点实验室主任王飞跃认为,目前市场上有很多风险基金来主导基础研究型公司,这对正常的创新过程会产生一定负面影响。特定阶段确实需要一些特殊的措施,但无论如何要给有能力、愿意做研究的人一个安静的空间,这才是科研创新真正的源头。
王飞跃认为,很多人蜂拥而至进入智能行业,其中不乏“语言创新”、炒作概念的PPT公司,好多核心硬件还要从外国进口,企业技术能力“配不上”它的名字,这是需要我们反思的地方。
《中国机器人产业发展报告》建议,围绕市场需求,加强新技术之间的整合能力,打造“政产学研用”紧密结合的协同创新载体。既要围绕智慧工厂、智能家居和智慧城市开展细分领域示范工程,也要打造重点领域机器人应用系统集成商和综合解决方案服务商,推进全产业链协同发展。
人才队伍建设是产业发展“脊梁柱”
任何产业的发展都依赖高素质的人才。美国人工智能产业的发展,得益于过去几十年来高校、科研院所没有停止过的探索,美国从而成为世界人工智能人才的最大输出地。而中国人工智能人才则较为稀缺。
腾讯研究院发布的《中美两国人工智能产业发展全面解读》,从企业人数分布可以看出中美之间的巨大差异。报告显示,截至2017年6月,美国共有1078家人工智能企业,员工数量为78700名;中国有592家人工智能企业,员工数量为39200名,约为美国的50%。分领域来看,在处理器/芯片领域,美国员工人数是中国的13.8倍,美国17900人,中国1300人。中国在技术层领域的企业人数也远远落后于美国,仅在智能机器人领域人才稍多,为6400人,是美国同领域人数的3倍。
根据全球职场社交平台“领英”的数据,7成美国人工智能人才从业10年以上,而中国仅有4成相关人才有这样的从业经验。报告分析,这源于中国人工智能产业起步比美国晚,人才培养模式尚存差距。
中国高校在很长时间内并没有人工智能专业,而美国是人工智能概念的诞生地,基本上大院校都有人工智能专业和研究方向。根据美国国家科技委员会的人工智能全球大学排名,前20名中有16所是美国大学,这些大学源源不断地向科技企业输送人才。
业内人士表示,由于人才匮乏,人工智能工程师的年薪水涨船高。博士毕业进入企业,起薪或可高达百万元,“否则根本留不住人”。而且,即便这样的人也很难“上手就用”,都要在公司经过数月至一年的专业培训。
目前,中国正在快速追赶美国人工智能人才的培养步伐。从论文发表数量来看,华人作者的领先优势日益明显。在“深度学习”领域,中国的论文数量从2014年开始超越美国。专家认为,人才培养是“智能+”发展的关键,而且,人才培养要与重点项目相结合,真正做到核心人才本土化、核心项目自主化。
《中国机器人产业发展报告》建议,应建立机器人行业亟须的多层次、多类型技能人才培养体系,建立校企联合培养人才的新机制。同时,建立培养标准体系,运用职业培训和职业资格制度加深与汽车、电子、化工、消防等相关行业合作,实现人才培养与企业需求的良好对接。
国务院2017年印发《新一代人工智能发展规划》,提到将“加快培养聚集人工智能高端人才”。伴随着巨大的市场需求和应用场景,我国有望吸引更多人才来华从事人工智能行业。
在面向2030年对我国人工智能发展进行的战略性部署中,我国新一代人工智能发展规划也明确提出了我国人工智能发展的“三步走”目标:
第一步,到2020年,人工智能总体技术和应用与世界先进水平同步,人工智能产业进入国际第一方阵,成为我国新的重要经济增长点;第二步,到2025年,人工智能基础理论实现重大突破、技术与应用部分达到世界领先水平,人工智能产业进入全球价值链高端,成为带动我国产业升级和经济转型的主要动力,智能社会建设取得积极进展;到2030年,人工智能理论、技术与应用总体达到世界领先水平,我国成为世界主要人工智能创新中心,人工智能产业竞争力达到国际领先水平。
专家认为,要想让机器人渗透到人们生活,真正实现智能社会,一定要把相应的基础设施建设好,建立知识库、大数据库、面向各类具体问题的智能系统等。“这不仅要有技术,还涉及整个社会体系、服务体系和治理体系等。”业内人士呼吁,要加快机器人向各领域的应用,实现人机协调、跨界融合、共创分享,营造有利于机器人发展的良好生态。
瑞银研究报告显示:至2030年AI每年将为亚洲贡献经济价值高达1.8万亿至3.0万亿美元,将对金融服务、医疗保健、制造、零售和交通等行业产生巨大影响。这些行业加起来,相当于目前亚洲GDP的三分之二。
据统计,2000至2016年,中国人工智能企业数量累计增长1477家,融资规模达27.6亿美元。其中,2014至2016年三年是中国人工智能发展最为迅速的时期。这三年里新增的人工智能企业数量占累计总数的55.38%。另据艾瑞咨询公开数据,中国人工智能产业规模2016年已突破100亿元。
面对优势,还需戒骄戒躁;面对补足,还需踏实补强;我国应在人工智能产业发展的浪潮中争当“弄潮儿”。
未来已来,当时代的钟声缓缓敲响,新科技革命和产业变革将是最难掌控但必须面对的不确定性因素之一,抓住了就是机遇,抓不住就是挑战,必须在日新月异的科技大变革中、在国际合作与竞争的征程中加速前进。