教育 教学的最终目的就是实现课堂教学的有效性,培养学生的综合能力。小学数学学科是小学阶段的基础学科,学好小学数学对于学生的发展具有至关重要的作用。下面是我为大家整理的小学数学论文,供大家参考。
摘要:回归生活的小学数学启蒙教育为小学生提供一个极其有效的教育途径,当学生在生活中发现疑问之时,便可以运用自己已经掌握的数学知识与概念来解除生活中的疑难,数学便随之而出现。因此,数学教师要引领学生于生活中去发现、去感受、去运用数学。
关键词:小学数学;启蒙教育;回归生活
一、引领学生于生活中去发现数学
我们这个生活大环境中,处处留有数学的身影,身边多彩的事物都可为我们提供所需的数学信息。例如,背书包回家途中会发现车、行人、植物、建筑的数量信息,在教室中学生会发现桌、椅、黑板、同学的数量信息。这些信息就在我们的身边,只要我们老师注意去引导学生,让他们亲身去体验、去观察,就会让学生得到锻炼,他们的注意力、观察力及 记忆力 都将得到非常有效的锻炼。学生在锻炼的同时,也就切切实实地寻找到他们自己身边实实在在的数学,这就会使学生对身边的数学产生学习兴趣,真正地体验到学习数学的乐趣所在。
二、引领学生于生活中去感受数学
引领学生去建立数学的概念,让学生从另外的一个角度,从不同的出发点去观察、描述身边的事物。因为生活是万象的、多彩的,数学也是同样的,并是具体而抽象的。例如,数字1可以指新的一天,又可以指一间房、一朵花、一道题。数学自身就没有较具体的实际意义,可是当他与其他事物相互结合,就会有较为全新的意义。在学生的眼中,他们目睹的生活中的事物如房子、鲜花、汽车等等,当变为数学概念之时,就成了3间房子、4朵鲜花、5辆汽车,生活中较为常见的事物就有了新的意义,学生观察周围世界的角度或方式都将发生改变,数学就会随之而进入学生的大脑之中,成了学生观察与动脑思考的主要方式,使小学生在生活中充分感受数学的存在。
三、引领学生于生活中去运用数学
当我们的学生如能将较为抽象的数学概念与他们身边的事物结合在一起,进行有意的观察,许多数学问题就会呈现在学生的面前。例如,怎样在公路两旁安装路灯、在路旁植树、给教室的墙壁进行粉刷等等。这时,我们教师就要引导学生利用数学概念进行分析、理解,进行简单的实际运用,去解决简单的问题。同时,数学概念也能随之而定下来,让我们的学生完全有能力独立去解决这些实际问题,在应用数学概念及其简单运算解决学生自己所面临的问题时,真正的数学便产生了。所以,数学来源于生活,产生于生活,数学的产生总是伴随着解决问题而产生,这是学习过程中一件较为美好的事情。数学的规律不是以人们的意志为转移的,我们的发现规律便是自身的一个个体验。
教育部门倡导的新课标的实施,使小学学校教育的方方面面都有了很多的变化。这次改革给学校的教学带来了曙光,像是一盏指路灯,让教育有了方向和目标。数学教学从中得到了许多启发,最重要的是使其教学方法有了很大的转变。小学数学在小学教育阶段是一门任务很重的学科,而且也是教授起来有一定难度的学科。因为数学语言很抽象,没有感情色彩,而小学阶段的学生还不具备深层理解的能力,学习起来很容易没有热情。新课标的颁布,让教师得到了很多适合学生自主学习的方法,这也给他们提供了一个新的体验。
一、开展以学生为主的课堂教学,采用分组教学
新课标背景下的课堂教学,教师首先应该改变的是旧式的教学思想,努力培养学生学习的主动性,这是改变教学方法的基础和根本。课堂上,教师应当扮演的是协助学生进行主动学习的“伙伴”,而不是学习的监督人,给予学生更多主动学习的信心。比如,在进行小学数学教学时,教师应当与学生一同进入和感受数学的神奇,而不是当一个旁观者,让他们主动地去学习,成为课堂的小主人。从教学方法角度来看,分组教学是一种十分实用、简单的教学方法,在小学数学教学中,可以组织学生自愿结成一个小团队,以此为单位来参加教学活动。教师运用提问答题的形式,将学生分成若干小组,选择几个关于本节课相关的问题,让学生进行讨论。在讨论的过程中,学生可以整合大家的想法来对知识有一个更深的理解,帮助学生学会合作学习。通过别人的意见,打开自己的未知一面,促使学生能够多面发展。
二、加强师生合作交流,增强课堂的和谐氛围
上面说到开展小组合作的讨论形式,增进学生相互交流,在小学数学的教学中,师生之间的交流也同样重要,融洽的师生交流可以解除学生的焦虑情绪,让他们在遇到学习困难时轻而易举地解决问题。虽然在课堂中教师不再是主导者,但是教师仍然是课堂活动的重要参与人,是学生自主学习的最佳助手。在学生小组讨论的时候,教师也可以加入其中,抛掉原有身份,把自己当成学生的朋友,走进他们的世界,才能帮助自己了解学生的真实想法。教师在互动中应当鼓励学生勇于表达自己的想法,不要因为不确定或是被取笑,而将自己隔离在活动外。教师多与学生互动,建立友好的关系,为课堂的和谐气氛构建打下良好的基础,学生只有在和谐的氛围里才能没有压力地学习,能够快乐地学习。
三、要看到学生的多面特质,对学生进行积极评价
人的发展是分阶段的,每个人的发展都不相同。教师要能够认清这一点,不能要求每一个人都达到完美,要试着看到学生的不同特质,在尊重学生个性发展的基础上,采用更加灵活的教学方法,才能真正提升教学效果,与此同时,学生如果能够得到教师的肯定,对增加他们的自信心有很大的帮助。在日常的教学中,通过一些有针对性的教学活动,多发现学生的不同面,真正实现因材施教。比如,当教师发现有的学生对画图很有感觉,说明这些学生的 想象力 强于他人;有的学生对算数题特别在行,能够很准确地得出答案,而且比别的学生计算快;有的学生对应用题擅长,说明他很有逻辑头脑。对于学生自己擅长的一面,教师要给予积极正面的评价,学生得到教师的肯定,能增加学习数学的动力,自信心也会得到提升。
四、开展实践教学,促使学生数学思维的发展
小学数学的教学课堂可以带入到生活当中,换句话说,学校教育要同实际生活相结合,很多数学的定理都是在生活实践中获得的。有一个很著名的从生活实践中找到解决方法的 故事 。 传说 有一个国王召见阿基米德,让他来鉴定金子的纯度,苦想多日也找不到解决方法,在他洗澡时,发现身体进入水盆里的水位高于身体未进入时的水位。他联想到可以把东西放到水里,通过计算溢出的水得到答案,从这个生活实践中得到了检验金子真假的方法,不仅完成了任务,还得到了伟大的发现。所以,小学数学教师可以适当地给学生布置一些动手的作业,增强数学学习的实践性,而不只是学习抽象的数学课本文字。比如,安排一个帮助家长购买盐的课外作业,规定一定的数量,让学生计算需要花费的金额。或是收集家里的水电收费存单,根据金额算出家里使用水电的情况,还能够算出一年的用电用水数量。通过家庭生活中的一些点滴事情,培养学生数学思维的发展。
五、运用先进技术教学,提高教学效率
在数学课堂中,教师可以运用多媒体技术进行教学活动,以前的教学工具,像挂图、卡片都是静态的,对数学教学起不到太大的作用。但是教师通过运用多媒体软件制作设计,可以给学生带来有声音有动画的学习体验,能将枯燥的数学课堂变得有活力。这种氛围的营造下,学生能够自主去学习知识,教师也能高质量地轻松地完成授课任务。在认识三角形这节课时,教师可以事先搜集一些三角形形状的多样图形,像道路两边上车辆提示牌、一些房屋的屋顶、埃及的金字塔等,通过大家熟悉的一些事物形状,再加上多媒体动画的设计来认识和学习三角形。教师有效地应用先进技术能够帮助自己的教学,让学生快乐地学习,教师轻松地教授。综上所述,教师仅有教学和学科专业知识是不够的,更要有适合让学习者接受知识的教学方法。最可怕的是教师空有学识却不能传授给学生,某种意义上讲,这也就不能称之为教师了。新课标下,教师要摒弃以前的落后教学方法,学习其他优秀的教师的教学 经验 ,再结合自己班级学生的特点,适当地运用多媒体教学,得到属于自己的一套教学方法。教师要跟着发展的要求一起向前进步,这样才能把我国的学校教育做得更加优秀,学生们学到真的本领。
小学数学论文范文精选相关 文章 :
1. 关于小学数学毕业论文范文
2. 小学数学小论文范文
3. 关于数学的论文范文
4. 初中数学论文范文精选
5. 古典文学论文精选范文
6. 小学德育论文范文大全
数学小论文一
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。
数学小论文二
各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
数学小论文三
数学是什么
什么是数学?有人说:“数学,不就是数的学问吗?”
这样的说法可不对。因为数学不光研究“数”,也研究“形”,大家都很熟悉的三角形、正方形,也都是数学研究的对象。
历史上,关于什么是数学的说法更是五花八门。有人说,数学就是关联;也有人说,数学就是逻辑,“逻辑是数学的青年时代,数学是逻辑的壮年时代。”
那么,究竟什么是数学呢?
伟大的革命导师恩格斯,站在辩证唯物主义的理论高度,通过深刻分析数学的起源和本质,精辟地作出了一系列科学的论断。恩格斯指出:“数学是数量的科学”,“纯数学的对象是现实世界的空间形式和数量关系”。根据恩格斯的观点,较确切的说法就是:数学——研究现实世界的数量关系和空间形式的科学。
数学可以分成两大类,一类叫纯粹数学,一类叫应用 数学。
纯粹数学也叫基础数学,专门研究数学本身的内部规律。中小学课本里介绍的代数、几何、微积分、概率论知识,都属于纯粹数学。纯粹数学的一个显著特点,就是暂时撇开具体内容,以纯粹形式研究事物的数量关系和空间形式。例如研究梯形的面积计算公式,至于它是梯形稻田的面积,还是梯形机械零件的面积,都无关紧要,大家关心的只是蕴含在这种几何图形中的数量关系。
应用数学则是一个庞大的系统,有人说,它是我们的全部知识中,凡是能用数学语言来表示的那一部分。应用数学着限于说明自然现象,解决实际问题,是纯粹数学与科学技术之间的桥梁。大家常说现在是信息社会,专门研究信息的“信息论”,就是应用数学中一门重要的分支学科, 数学有3个最显著的特征。
高度的抽象性是数学的显著特征之一。数学理论都算有非常抽象的形式,这种抽象是经过一系列的阶段形成的,所以大大超过了自然科学中的一般抽象,而且不仅概念是抽象的,连数学方法本身也是抽象的。例如,物理学家可以通过实验来证明自己的理论,而数学家则不能用实验的方法来证明定理,非得用逻辑推理和计算不可。现在,连数学中过去被认为是比较“直观”的几何学,也在朝着抽象的方向发展。根据公理化思想,几何图形不再是必须知道的内容,它是圆的也好,方的也好,都无关紧要,甚至用桌子、椅子和啤酒杯去代替点、线、面也未尝不可,只要它们满足结合关系、顺序关系、合同关系,具备有相容性、独立性和完备性,就能够构成一门几何学。
体系的严谨性是数学的另一个显著特征。数学思维的正确性表现在逻辑的严谨性上。早在2000多年前,数学家就从几个最基本的结论出发,运用逻辑推理的方法,将丰富的几何学知识整理成一门严密系统的理论,它像一根精美的逻辑链条,每一个环节都衔接得丝丝入扣。所以,数学一直被誉为是“精确科学的典范”。
广泛的应用性也是数学的一个显著特征。宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,生物之谜,日用之繁,无处不用数学。20世纪里,随着应用数学分支的大量涌现,数学已经渗透到几乎所有的科学部门。不仅物理学、化学等学科仍在广泛地享用数学的成果,连过去很少使用数学的生物学、语言学、历史学等等,也与数学结合形成了内容丰富的生物数学、数理经济学、数学心理学、数理语言学、数学历史学等边缘学科。
各门科学的“数学化”,是现代科学发展的一大趋势。
数的由来和发展
人类是动物进化的产物,最初也完全没有数量的概念。但人类发达的大脑对客观世界的认识已经达到更加理性和抽象的地步。这样,在漫长的生活实践中,由于记事和分配生活用品等方面的需要,才逐渐产生了数的概念。比如捕获了一头野兽,就用1块石子代表。捕获了3头,就放3块石子。"结绳记事"也是地球上许多相隔很近的古代人类共同做过的事。我国古书《易经》中有"结绳而治"的记载。传说古代波斯王打仗时也常用绳子打结来计算天数。用利器在树皮上或兽皮上刻痕,或用小棍摆在地上计数也都是古人常用的办法。这些办法用得多了,就逐渐形成数的概念和记数的符号。
古罗马的数字相当进步,现在许多老式挂钟上还常常使用。实际上,罗马数字的符号一共只有7个:I(代表1)、V(代表5)、X(代表10)、L(代表50)、C(代表100)、D(代表500)、M(代表1,000)。这7个符号位置上不论怎样变化,它所代表的数字都是不变的。它们按照下列规律组合起来,就能表示任何数:
1.重复次数:一个罗马数字符号重复几次,就表示这个数的几倍。如:"III"表示"3";"XXX"表示"30"。
2.右加左减:一个代表大数字的符号右边附一个代表小数字的符号,就表示大数字加小数字,如"VI"表示"6","DC"表示"600"。一个代表大数字的符号左边附一个代表小数字的符号,就表示大数字减去小数字的数目,如"IV"表示"4","XL"表示"40","VD"表示"495"。
3.上加横线:在罗马数字上加一横线,表示这个数字的一千倍。如:"XV"表示 "15,000","CLXV"表示"165,000"。
现在世界通用的数码1、2、3、4、5、6、7、8、9、0,人们称之为阿拉伯数字。实际上它们是古代印度人最早使用的。后来阿拉伯人把古希腊的数学融进了自己的数学中去,又把这一简便易写的十进制位值记数法传遍了欧洲,逐渐演变成今天的阿拉伯数字。
随着生产、生活的需要,人们发现,仅仅能表示自然数是远远不行的。如果分配猎获物时,5个人分4件东西,每个人人该得多少呢?于是分数就产生了。中国对分数的研究比欧洲早1400多年!自然数、分数和零,通称为算术数。自然数也称为正整数。
随着社会的发展,人们又发现很多数量具有相反的意义,比如增加和减少、前进和后退、上升和下降、向东和向西。为了表示这样的量,又产生了负数。正整数、负整数和零,统称为整数。如果再加上正分数和负分数,就统称为有理数。有了这些数字表示法,人们计算起来感到方便多了。