您当前的位置:首页 > 发表论文>论文发表

有关空间生命科学论文

2023-12-07 06:55 来源:学术参考网 作者:未知

有关空间生命科学论文

随着人们对客观事物认识的不断加深,已经不再满足于停留在易解问题的领地,这其中在生命科学领域的复杂性研究又受到了许多跨学科学者的关注。笔者综述了复杂性的概念、生命科学中的复杂性极其复杂性研究。 关键词 生命科学;复杂性科学;生物复杂性 复杂性科学的概念诞生至今已经20多年,这期间有大批学者从不同的领域入手展开了卓有成效的探索。人们希望更全面深入地从客观世界事物的整体与部分以及层次关联在时空演化的全程描述角度来研究支配客观事物运行的基本规律,建立起新世纪科学技术发展的理论基础,以指导新的发展实践。 这其中在生命科学领域的复杂性研究又受到了许多跨学科学者的关注,也有人将其称之为生物复杂性(biocomplexicity)研究,生物复杂性科学主要探索在一些传统学科间交叉的问题。准确地说,是寻求以定量和整合的途径来深入了解各种生命系统之间复杂的相互作用,其中既包括生物的、行为的、化学的和物理的相互作用,也包括生态的、环境的和社会的综合作用等[1]。 1 复杂性科学研究的概念和范畴 复杂性的定义是相对于简单性而言的,简单性一向是现代自然科学、特别是物理学的一条指导原则。许多科学家相信自然界的基本规律是简单的。还原论的基本思想也就是找出复杂现象或事物背后的简单机制。事实上一些复杂的事物或现象,其背后确实存在简单的规律或过程。 关于复杂性的概念并没有一个统一的说法,而是根据研究的对象有不同提法,比如,从熵的角度:复杂性等于热力学测定的一个系熵和无序;信息的角度:复杂性等于一个系统使一个观测者“惊奇的能力”;分形尺寸:一个系统的“模糊状况”,即在越来越小的尺寸上显示的详细程度;有效的复杂性:一个系统显示“规律性”而不是随机性的程度;体系复杂性:由一个体系结构系统的不同层次所显示的多样性;语法的复杂性:描述一个系统所需要的语言的普遍性程度;热力学深度:将一个系统从头组织在一起所要的热力学资源的数量;时间计算上的复杂性:一部计算机描述一个系统或解决一个问题所需要的时间;空间计算上的复杂性:一部计算机描述一个系统或解决一个问题所需要的存储量[2];等等。 从20世纪30年代系统科学开始兴起,人们逐渐认识到系统大于其组成部分之和,系统具有层次结构和功能结构,系统处于不断地发展变化之中,系统经常与其环境(外界)有物质、能量和信息的交换,系统在远离平衡的状态下也可以稳定(自组织),确定性的系统有其内在的随机性(混沌),而随机性的系统却又有其内在的确定性(突现)。 复杂性科学往往研究的是复杂性系统,复杂系统主要有以下表现:(1)系统各单元之间的联系广泛而紧密,构成一个网络。因此每一单元的变化都会受到其他单元变化的影响,并会引起其他单元的变化。(2)系统具有多层次、多功能的结构,每一层次均成为构筑其上一层次的单元,同时也有助于系统的某一功能的实现。(3)系统在发展过程中能够不断地学习并对其层次结构与功能结构进行重组及完善。(4)系统是开放的,它与环境有密切的联系,能与环境相互作用,并能不断向更好地适应环境的方向发展变化。(5)系统是动态的,它不断处于发展变化之中,而且系统本多对未来的发展变化有一定的预测能力。 一般来说,复杂性研究的基本方法是:(1)定性判断与定量计算相结合。(2)微观分析与宏观综合相结合。(3)还原论与整体论相结合。(4)科学推理与哲学思辨相结合。 复杂科学研究中所用的理论工具:(1)非线性科学——非线性动力系统理论(稳定性和分叉理论、混沌、孤子)和统计力学(分形、标度),及非平衡系统中的复杂和随机现象的研究;(2)计算机模拟——它是十分重要的手段,目前已广泛用于复杂科学的研究中;(3)计算智能;(4)数理逻辑;(5)在不确定条件下的决策技术;(6)综合集成技术;(7)整体优化技术等。 2 生命科学与复杂性研究 生命科学的研究对象都是复杂系统,(具有关联性、多样性、自学习、自组织、开放、动态的特点),生命科学研究的系统正因为其复杂性,对其构成的原因和演化的历程,此前均缺乏了解,也因此吸引了复杂性科学研究者的高度重视。近几十年来,对生物系统所具有的整体性、关联性、网络层次性、统计涨落性、内在和外在的随机性、模糊性、开放性和历史性等这一类复杂系统的典型特征进行了探讨。生物体本身的特点以及生物的进化使得人们的思维方式从单纯的物理学简单系统的研究转变为对生物学的复杂系统的研究[3]。 基因是生命遗传的基本密码,生物体的复杂结构和功能不仅仅是由基因决定的,也是由基因组中大量的非编码信息和非编码基因决定的。因此生物体的复杂结构和功能不仅仅是由基因决定的,也不仅仅是由基因组中大量的非编码信息决定的,而是由这些元素在生物体各个层次上复杂、动态的相互作用决定的。 作为生命系统的指挥和协调中心—神经系统,其中枢功能结构为大脑,近十年来脑功能的科学研究是复杂科学领域中的一个热点。大脑有复杂的结构,它的组织层次按空间尺度有:分子、膜、突触、神经元、核团、回路、网络、层、投射、系统。大脑表现出的某些高级功能是不能在较低的层次上观察到的,其中有些是由各个单元之间的相互作用而涌现出的集体行为。人们的思维规律是不断变化的,但是最低层次的规律是不变的。脑功能的复杂性首先体现在各神经子系统自身的高度非线性、不稳定性和适应性;其次体现在它们之间相互连接的非均匀性及大规模并行等特点。不仅如此,即使在非常简单的神经系统中也存在着令人惊异的复杂性,这反映在它们的功能、演化历史、结构和编码方式。比如,单个神经元放电的时间序列包含复杂多样的时间模式,反映了神经细胞内的复杂的动力学过程[4]。脑电信号是中枢神经系统自发产生的生物电活动,它包含了丰富的神经系统状态和变化的信息,因而在临床和神经电生理研究中得到了广泛的应用。现在人们对EEG建立动力学模型,并研究其中的混沌现象,显示动力学模型方法对于研究大脑正常生理和病理状态具有的意义[5]。 近年来控制领域实现和发展了脑控系统,即基于脑电信号的人机融合控制系统,直接以脑电信号为基础,通过脑机接口来实现控制。“脑控”研究涉及神经科学、计算机科学、控制科学和心理学等多学科交叉。相关研究已经开发出了利用大脑的思维、通过电子接口来控制各种设施的运动状态,并取得预期效果的“脑控技术”,这项技术在医疗等多个方面具有重要的应用价值。 人工生命(Artificial Life)是近10年发展起来的一个新方向,是以进化为主要特征的复杂性研究。人工生命致力于研究生命形式(并不局限于某种特定的载体)的普遍特征。地球上的生命被看成是一种具有特定载体—蛋白质—的特定生命形式,地球上的生命进化也仅仅代表一种特定的进化途径,因此可以用别的物质来构造另类载体的生命形式,赋予它们生命的特征,使其具有进化、遗传、变异等等生命现象,得到生命的普遍行为[2]。 其他如心血管系统中的心率变异性和管腔应变问题;动态病(以异常时间组织结构为特征的疾病,如周期性发热、周期性关节肿胀等)的预防、治疗和数学建模问题;生态系统的种群繁殖问题;流行病中的疾病传染规律;生化反应的动力学过程;免疫系统中信号产生、传递和转导的动力学过程等都体现了生物系统的复杂性,属于复杂性科学研究的范畴。 因为生命体的多样性和复杂性决定了临床医学本身的复杂性;疾病是复杂的,不仅生命体本身病理过程复杂,而且心理、社会、环境等因素都会影响病理过程;许多复杂性疾病,如心血管疾病、癌症、艾滋病等皆是生命体多层次、多层面因素作用的结果。现代医学是在还原论指导下对生命和疾病局部的、分离的认识,仍停留在分析和描述的水平上;所以需要借助复杂性研究方法。在研究方法和观念上有所突破。 祖国传统中医学独特的思维方法和对复杂系统整体状态的把握与复杂性研究有类似的思路。中医学对人体内部的相互作用以及人体与环境的相互作用提出了众多的命题,为现代医学研究准备了丰富的素材,对中医的理论体系的认识还必须运用物理学、生物学、数学、控制论、系统论等学科的最新知识。 复杂性科学对我们来说是一个充满未知的领域,研究方法上既有还原论,也有综合论和系统论,这两种思想正在经历碰撞并开始出现融合的趋势。但是在研究对象上,它研究的问题并不是刚刚出现,而是因为人们认识的深度和它本身的难度,使这一类问题被搁置了起来。目前,对复杂性的研究已经分别在一些学科取得了初步的进展,随着科技的进步、人类对自然和自身认识的深化,生命科学中的复杂性问题必然会被逐步地认识和解决。

跪求一篇关于生命的起源的论文,字数在3000字左右

生命的起源
从古至今人们都希望了解地球上的生命是从哪里来的?生命究竟是怎样产生的?这不仅是科学家感兴趣的问题,也是普通人们所感兴趣的问题,它已困扰了人类几千年。由于生命现象的复杂性质,直到上世纪初,生命起源的研究才成为科学研究中的一个重要领域。远古的时候,人类的智力还很低下,认识能力也很有限,对世界上千姿万态、繁茂复杂的生物,特别是对人类自身是从哪里来的,充满了困惑和神秘感。因此,人们把这个大千世界中未知的神秘现象,编成了各种各样的神话和传说。我国古代就有女娲造人的神话故事。也有“白羊化石”、“腐草化茧”、“腐肉生蛆”的说法。
  由于受到研究手段的限制,人类对于生命起源的研究只是到了近代才形成了科学的认识和方法,并确认了生命活动是物质运动的形式之一,它的物质基础是碳、氢、氧、氮,此外还有少量的硫、钙、磷和其它20几种微量元素,以及由这些元素在地球环境中自发产生的蛋白质、核酸、糖类、脂类、水和无机盐等。其中,蛋白质与核酸是生物体最重要的组成部分,也是区别生命和非生命的基本依据。蛋白质的分子量很大,由几千个或百万个氨基酸分子构成,具有十分复杂的化学结构和空间结构,是一切生命的基础。在生命活动中,蛋白质起着极为重要的作用,如构成生物体的骨架,催化生物化学过程,调节生长、发育、生殖等生理机能。核酸同蛋白质一样,也是生物大分子化合物,基本单元是核苷酸,由磷酸和核糖分子联成长链。核酸有两大类,一种是脱氧核糖核酸,简称DNA,是遗传基因的化学实体,存在于细胞核中,具有特殊的双螺旋结构。另一种叫核糖核酸,简称RNA,存在于细胞质中。因此,生命科学家们力求通过深入了解生命体的分子结构和组成。
现代科学认为,生命的诞生是物质不断运动变化的结果。这一变化分为两个阶段,一是在生命系统诞生之前的“化学进化”阶段,为生命的诞生准备有机材料。二是生命诞生之后,由低级到高级、由简单到复杂的漫长“生物进化”过程。在地球形成之初,原本没有生命,只存在无机物。通过长时间的地球演化,含有甲烷、氨、氢等小分子无机物气体在紫外光、电离辐射、雷电等能量的作用下,逐步生成了有机小分子物质,如核苷酸、氨基酸,使原始的海洋成为一种“原始生命汤”。这个过程,是生命形成漫长历史的第一步,今天已经被科学家用放电实验室重现出来。
此后,“原始生命汤”中的这些有机小分子,历经长期的相互作用,在有硫、磷、金属等土壤的适当条件下进行缩合或聚合反应,逐步形成有机高分子物质,如蛋白质、核酸等分子。这是生命诞生历程的第二步。随着海洋中的蛋白质、核酸分子越积越多,浓度增加,在某种情况下,又被分离、凝聚成小滴,并脱离原来的海洋环境,构成可与外界进行简单物质交换的多分子体系。由多分子体系逐步演变,特别是由于蛋白质和核酸的相互作用,最终出现了有原始新陈代谢功能,并且可以进行自我复制的原始微生物——细菌。这一阶段是生命形成过程中最关键、最复杂的一个环节,但是至今科学家们尚未通过科学实验获得验证。遗传基因的生物学原理,发现生命起源之谜
  在我们生活的这个物质世界中,由各种元素和分子构成的物质实体都具有相对的稳定性,其原因就在于原子内部正、负电荷的相互作用力,总是趋向于保持平衡和相对稳定的状态。这是地球上一切宏观物体可以长久保持稳定状态的物理条件。根据爱因斯坦的质能关系,虽然所有的稳定元素都可以转化为巨大的能量,但是它们都不会“主动”释放出内部的能量。天然核能的释放只存在于少量的带放射性的重元素当中,核物理学研究对此已经做出了充分的证明。
  物质转化为能量,需要具备一定的条件,在太阳的演化运动中就会将一部分物质质量转化为能量。参与强相互作用的氢核,在太阳的核聚变反应中转变为氦核,消耗一定的质量并释放出巨大的能量。在地球的物理条件下,并不存在自然的核聚变反应能力,作为行星的演化运动,只包含引力作用力、电磁作用力和促使重元素产生放射性衰变的弱作用力。由于构成地球的物质大部分是稳定的元素,因此,引力作用力和电磁作用力,在地球范围内起着主导作用。在我们生活的环境中,原子或分子之间的电磁作用关系总是趋向于保持相对平衡和相对稳定的状态。如果没有外加能量作用,地球表面的各种客体物质不会持续的产生化学反应。按照相同的原理,由于构成生物分子的各种物质都来自于地球表面,它们的生化反应与其它客体物质在微观或宏观上的电磁作用关系也自然具有统一的物理和化学性质。因此在任何生物体内的正、负电荷都必须保持平衡关系,否则这个生物就无法存活。
  地球上一切宏观物体都是由各种各样的元素构成的,使质子、中子结合为原子核的作用力是强核力,各种原子一旦形成就非常稳定很难被破坏。由原子结合成各类分子或固体物质的作用力是电磁力,电磁力虽然比强核力要小得多,但是分子或固体也是十分稳定的。同样的原理,生物分子的结合力也是电磁力。由于原子内部的电磁作用关系具有天然的相对稳定性,所以维持生命的运动就需要有能量的持续输入,而地球上生物活动的能量来源,主要是太阳对地球表面持续不断的光辐射和少量的地热能。植物通过光合作用吸收了太阳辐射的能量,将其转化为机体内分子间的动能,使生物体始终保持活力进行生长和繁殖。动物将植物作为食物获得生长和生存所需的养分,并且通过吸收氧气在体内进行化学反应获得生命运动所需的能量。  
生命产生时的这种自然状况,给我们提供了这样一个信息,地球表面的热运动是生命现象产生的必要条件。火山喷发出的大量灰烬在高温的海水中被反复搅拌,空气与水反复融合将地球表面的各种物质反复混合交融在一起,从而使构成生物分子的二十多种元素得以形成必要的联系。虽然我们现在还不能深入地了解在这种条件下的自组织过程是怎样进行的,但是热运动与生命产生的必然联系是非常明确的。让生活在今天的人类难以想象的是,如此有序的生命现象居然产生于自然的混沌之中。自然界的神奇就在于,从表面的无序中自发地蕴藏着有序。
  虽然地球形成于大约46亿年前,可地壳内依然是不断滚动着的炽热岩浆,地震、火山喷发等地质构造运动,仍然在持续的进行当中。然而与地球不同的是,水星、金星、火星等其它类地行星,都是早在38~40亿年前,就都完成了地质的演化构造运动,固体核表面的地质状况,数十亿年来也没有多大的改变。
  根据行星演化的一般原理,在地球演化的初期,较重的元素在构成原始行星气团中心的引力作用下向内收缩,由重元素放射性衰变产生的能量将气团加热,地球开始进入化合物的产生阶段,并形成高温的液态岩浆。其它一些较轻的元素在高温环境中被逐渐分离出来,它们主要是碳、氢、氧、氮等元素,这些被分离出来的元素在高温高压环境下又很快结合成一些气体化合物,生成气态水、甲烷、二氧化碳、氨等,此后这些气体构成了原始地球大气圈的主要成分。因此,当地球的温度逐步下降以后由于地表的自然冷却岩石地壳开始形成,在经历一段时间的地质构造运动之后,地球的表面物质运动就会相对稳定下来。但地壳下面仍然是滚动的岩浆,地震和火山喷发还在频繁发生。因此有理由认为,在地球演化的初期就产生了一种抑制地球正常演化的作用力,使地球放缓了演化的进程。那么这种作用力又从何而来呢?它是来自于地球本身还是来自于地球的外部呢?
这种作用力来自地球内部,来自水分子的物理运动与各种有机分子化合运动且对地表的降温起到了促进作用,使地球在早期的演化运动中就形成了相对稳定的地壳。同时也奠定了生命运动的物质基础,形成了生命运动与地球整体之间的作用关系。
  随着地壳的逐步稳定、隔热能力的增强、地表温度的下降、地表水圈的形成,悬浮在大气中的各种有机固体物质和尘埃在降雨作用下,纷纷沉降到地球表面与海水融合在一起。一个生命的摇篮,就在各种物质有序与无序的相互作用中被自发的创造出来。地球表面的这种物理和化学状况,不仅延缓了地球的地质构造运动,同时也为生命运动的产生创造了必要的条件。
  几十亿年来,地球的地质构造运动、太阳的光辐射和生物活动三者之间复杂的作用关系形成了地球特殊的演化进程,而生命运动始终是地球演化运动的积极推动者,生物活动不仅持续地改造着地质、地貌和大气环境,同时也推动了自身的演化和进化,创建起一个又一个生机勃勃绚丽多彩的大千世界。人类的出现是生命运动最杰出的创造,是无数生物前赴后继的结果。发生在地球上的全部故事,都是由许多复杂条件和偶然性因素构成的,因此善待地球这个唯一的家园也是人类必须要肩负的责任。
纵观生命的起源,生命的发站是一个伟大的工程,是一个惊奇的过程。在生命的起源中,每个元素都是不可缺少的一部分,每个元素都发挥着着各自的作用,缺少了任何一种,地球也不会发展到现在的形态。在这些元素中,地球的地质构造运动、太阳的光辐射和生物活动又是各种元素中最关键的、重要的部分。在生命的运动和发展中起到了关键的作用。生命从开的无机物到合成有机物,再到形成简单的生物,逐渐的由低级到高级的演变。经历漫长的演变过程,地球上的生物逐渐开始丰富起来才有了这绚丽的现代世界。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页