您当前的位置:首页 > 发表论文>论文发表

高压油管数模优秀论文

2023-12-07 03:39 来源:学术参考网 作者:未知

高压油管数模优秀论文

随着科学技术特别是信息技术的高速发展,数学建模的应用价值越来越得到众人的重视,

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,以下是一篇关于数学建模教育开展策略探究的论文 范文 ,欢迎阅读参考。

大学数学具有高度抽象性和概括性等特点,知识本身难度大再加上学时少、内容多等教学现状常常造成学生的学习积极性不高、知识掌握不够透彻、遇到实际问题时束手无策,而数学建模思想能激发学生的学习兴趣,培养学生应用数学的意识,提高其解决实际问题的能力。数学建模活动为学生构建了一个由数学知识通向实际问题的桥梁,是学生的数学知识和应用能力共同提高的最佳结合方式。因此在大学数学教育中应加强数学建模教育和活动,让学生积极主动学习建模思想,认真体验和感知建模过程,以此启迪创新意识和 创新思维 ,提高其素质和创新能力,实现向素质教育的转化和深入。

一、数学建模的含义及特点

数学建模即抓住问题的本质,抽取影响研究对象的主因素,将其转化为数学问题,利用数学思维、数学逻辑进行分析,借助于数学 方法 及相关工具进行计算,最后将所得的答案回归实际问题,即模型的检验,这就是数学建模的全过程。一般来说",数学建模"包含五个阶段。

1.准备阶段

主要分析问题背景,已知条件,建模目的等问题。

2.假设阶段

做出科学合理的假设,既能简化问题,又能抓住问题的本质。

3.建立阶段

从众多影响研究对象的因素中适当地取舍,抽取主因素予以考虑,建立能刻画实际问题本质的数学模型。

4.求解阶段

对已建立的数学模型,运用数学方法、数学软件及相关的工具进行求解。

5.验证阶段

用实际数据检验模型,如果偏差较大,就要分析假设中某些因素的合理性,修改模型,直至吻合或接近现实。如果建立的模型经得起实践的检验,那么此模型就是符合实际规律的,能解决实际问题或有效预测未来的,这样的建模就是成功的,得到的模型必被推广应用。

二、加强数学建模教育的作用和意义

(一) 加强数学建模教育有助于激发学生学习数学的兴趣,提高数学修养和素质

数学建模教育强调如何把实际问题转化为数学问题,进而利用数学及其有关的工具解决这些问题, 因此在大学数学的教学活动中融入数学建模思想,鼓励学生参与数学建模实践活动,不但可以使学生学以致用,做到理论联系实际,而且还会使他们感受到数学的生机与活力,激发求知的兴趣和探索的欲望,变被动学习为主动参与其效率就会大为改善。数学修养和素质自然而然得以培养并提高。

(二)加强数学建模教育有助于提高学生的分析解决问题能力、综合应用能力

数学建模问题来源于社会生活的众多领域,在建模过程中,学生首先需要阅读相关的文献资料,然后应用数学思维、数学逻辑及相关知识对实际问题进行深入剖析研究并经过一系列复杂计算,得出反映实际问题的最佳数学模型及模型最优解。因此通过数学建模活动学生的视野将会得以拓宽,应用意识、解决复杂问题的能力也会得到增强和提高。

(三)加强数学建模教育有助于培养学生的创造性思维和创新能力

所谓创造力是指"对已积累的知识和 经验 进行科学地加工和创造,产生新概念、新知识、新思想的能力,大体上由感知力、 记忆力 、思考力、 想象力 四种能力所构成"[1].现今教育界认为,创造力的培养是人才培养的关键,数学建模活动的各个环节无不充满了创造性思维的挑战。

很多不同的实际问题,其数学模型可以是相同或相似的,这就要求学生在建模时触类旁通,挖掘不同事物间的本质,寻找其内在联系。而对一个具体的建模问题,能否把握其本质转化为数学问题,是完成建模过程的关键所在。同时建模题材有较大的灵活性,没有统一的标准答案,因此数学建模过程是培养学生创造性思维,提高创新能力的过程[2].

(四)加强数学建模教育有助于提高学生科技论文的撰写能力

数学建模的结果是以论文形式呈现的,如何将建模思想、建立的模型、最优解及其关键环节的处理在论文中清晰地表述出来,对本科生来说是一个挑战。经历数学建模全过程的磨练,特别是数模论文的撰写,学生的文字语言、数学表述能力及论文的撰写能力无疑会得到前所未有的提高。

(五)加强数学建模教育有助于增强学生的团结合作精神并提高协调组织能力建模问题通常较复杂,涉及的知识面也很广,因此数学建模实践活动一般效仿正规竞赛的规则,三人为一队在三天内以论文形式完成建模题目。要较好地完成任务,离不开良好的组织与管理、分工与协作[3].

三、开展数学建模教育及活动的具体途径和有效方法

(一)开展数学建模课堂教学

即在课堂教学中,教师以具体的案例作为主要的教学内容,通过具体问题的建模,介绍建模的过程和思想方法及建模中要注意的问题。案例教学法的关键在于把握两个重要环节:

案例的选取和课堂教学的组织。

教学案例一定要精心选取,才能达到预期的教学效果。其选取一般要遵循以下几点。

1. 代表性:案例的选取要具有科学性,能拓宽学生的知识面,突出数学建模活动重在培养兴趣提高能力等特点。

2. 原始性:来自媒体的信息,企事业单位的 报告 ,现实生活和各学科中的问题等等,都是数学建模问题原始资料的重要来源。

3. 创新性:案例应注意选取在建模的某些环节上具有挑战性,能激发学生的创造性思维,培养学生的创新精神和提高创造能力。

案例教学的课堂组织,一部分是教师讲授,从实际问题出发,讲清问题的背景、建模的要求和已掌握的信息,介绍如何通过合理的假设和简化建立优化的数学模型。还要强调如何用求解结果去解释实际现象即检验模型。另一部分是课堂讨论,让学生自由发言各抒己见并提出新的模型,简介关键环节的处理。最后教师做出点评,提供一些改进的方向,让学生自己课外独立探索和钻研,这样既突出了教学重点,又给学生留下了进一步思考的空间,既避免了教师的"满堂灌",也活跃了课堂气氛,提高了学生的课堂学习兴趣和积极性,使传授知识变为学习知识、应用知识,真正地达到提高素质和培养能力的教学目的[4].

(二)开展数模竞赛的专题培训指导工作

建立数学建模竞赛指导团队,分专题实行教师负责制。每位教师根据自己的专长,负责讲授某一方面的数学建模知识与技巧,并选取相应地建模案例进行剖析。如离散模型、连续模型、优化模型、微分方程模型、概率模型、统计回归模型及数学软件的使用等。学生根据自己的薄弱点,选择适合的专题培训班进行学习,以弥补自己的不足。这种针对性的数模教学,会极大地提高教学效率。

(三)建立数学建模网络课程

以现代 网络技术 为依托,建立数学建模课程网站,内容包括:课程介绍,课程大纲,教师教案,电子课件,教学实验,教学录像,网上答疑等;还可以增加一些有关栏目,如历年国内外数模竞赛介绍,校内竞赛,专家点评,获奖心得交流;同时提供数模学习资源下载如讲义,背景材料,历年国内外竞赛题,优秀论文等。以此为学生提供良好的自主学习网络平台,实现课堂教学与网络教学的有机结合,达到有效地提高学生数学建模综合应用能力的目的。[5,6]

(四)开展校内数学建模竞赛活动

完全模拟全国大学生数模竞赛的形式规则:定时公布赛题,三人一组,只能队内讨论,按时提交论文,之后指导教师、参赛同学集中讨论,进一步完善。笔者负责数学建模竞赛培训近 20 年,多年的实践证明,每进行一次这样的训练,学生在建模思路、建模水平、使用软件能力、论文书写方面就有大幅提高。多次训练之后,学生的建模水平更是突飞猛进,效果甚佳。

如 2008 年我指导的队荣获全国高教社杯大学生数学建模竞赛的最高奖---高教社杯奖,这是此赛设置的唯一一个名额,也是当年从全国(包括香港)院校的约 1 万多个本科参赛队中脱颖而出的。又如 2014 年我校 57 队参加全国大学生数学建模竞赛,43 队获奖,获奖比例达 75%,创历年之最。

(五)鼓励学生积极参加全国大学生数学建模竞赛、国际数学建模竞赛

全国大学生数学建模竞赛创办于 1992 年,每年一届,目前已成为全国高校规模最大的基础性学科竞赛, 国际大学生数学建模竞赛是世界上影响范围最大的高水平大学生学术赛事。参加数学建模大赛可以激励学生学习数学的积极性,提高运用数学及相关工具分析问题解决问题的综合能力,开拓知识面,培养创造精神及合作意识。

四、结束语

数学建模本身是一个创造性的思维过程,它是对数学知识的综合应用,具有较强的创新性,而高校数学教学改革的目的之一是要着力培养学生的创造性思维,提高学生的创新能力。因此应将数学建模思想融入教学活动中,通过不断的数学建模教育和实践培养学生的创新能力和应用能力从而提高学生的基本素质以适应社会发展的要求。

参考文献:

[1]辞海[M].上海辞书出版社,2002,1:237.

[2]许梅生,章迪平,张少林。 数学建模的认识与实践[J].浙江科技学院学报,2003,15(1):40-42.

[3]姜启源,谢金星,一项成功的高等教育改革实践[J].中国高教研究,2011,12:79-83.

[4]饶从军,王成。论高校数学建模教学[J].延边大学学报(自然科学学版),2006,32(3):227-230.

[5]段璐灵。数学建模课程教学改革初探[J].教育与职业,2013,5:140-142.

[6]郝鹏鹏。工程网络课程教学的实践与思考[J]科技视界,2014,29:76-77.

大部分数学知识是抽象的,概念比较枯燥,造成学生学习困难,而数学建模的运用,在很大程度上可以将抽象的数学知识转化成实体模型,让学生更容易理解和学习数学知识。教师要做的就是了解并掌握数学建模的方法,并且把这种 教学方法 运用到数学教学中。

对教师来说,发现好的教学方法不是最重要的,而是如何把方法与教学结合起来。通过对数学建模的长期研究和实践应用,笔者 总结 了数学建模的概念以及运用策略。

一、数学建模的概念

想要更好地运用数学建模,首先要了解什么是数学建模。可以说,数学建模就像一面镜子,可以使数学抽象的影像产生与之对应的具体化物象。

二、在小学数学教学中运用数学建模的策略

1.根据事物之间的共性进行数学建模

想要运用数学建模,首先要对建模对象有一定的感知。教师要创造有利的条件,促使学生感知不同事物之间的共性,然后进行数学建模。

教师应做好建模前的指导工作,为学生的数学建模做好铺垫,而学生要学会尝试自己去发现事物的共性,争取将事物的共性完美地运用到数学建模中。在建模过程中,教师要引导学生把新知识和旧知识结合起来的作用,将原来学习中发现的好方法运用到新知识的学习、新数学模型的构建中,降低新的数学建模的难度,提高学生数学建模的成功率。如在教学《图形面积》时,教师可以利用不同的图形模板,让学生了解不同图形的面积构成,寻找不同图形面积的差异以及图形之间的共性。这样直观地向学生展示图形的变化,可以加深学生对知识的理解,提高学生的学习效率。

2.认识建模思想的本质

建模思想与数学的本质紧密相连,它不是独立存在于数学教学之外的。所以在数学建模过程中,教师要帮助学生正确认识数学建模的本质,将数学建模与数学教学有机结合起来,提高学生解决问题的能力,让学生真正具备使用数学建模的能力。

建模过程并不是独立于数学教学之外的,它和数学的教学过程紧密相连。数学建模是使人对数学抽象化知识进行具体认识的工具,是运用数学建模思想解决数学难题的过程。因此,教师要将它和数学教学组成一个有机的整体,不仅要帮助学生完成建模,更要带领学生认识数学建模的本质,领悟数学建模思想的真谛,并逐渐引导学生使用数学建模解决数学学习过程中遇到的问题。

3.发挥教材在数学建模上的作用

教材是最基础的教学工具,在数学教材中有很多典型案例可以利用在数学建模上,其中很大一部分来源于生活,更易于小学生学习和理解,有助于学生构建数学建模思想。教师要利用好教材,培养学生的建模能力,帮助学生建造更易于理解的数学模型,从而提高学生的学习效率。如在教学加减法时,教材上会有很多数苹果、香蕉的例题,这些就是很好的数学模型,因为贴近生活,可以激发学生的学习兴趣,培养学生数学建模的能力,所以教师应该深入研究教材。

数学建模是一种很好的数学教学方法,教师要充分利用这种教学方法,真正做到实践与理论完美结合。

1、层次分析法,简称AHP,是指将与决策总是有关的元素分解成目标、准则、方案等层次,在此基础之上进行定性和定量分析的决策方法。该方法是美国运筹学家匹茨堡大学教授萨蒂于20世纪70年代初,在为美国国防部研究"根据各个工业部门对国家福利的贡献大小而进行电力分配"课题时,应用网络系统理论和多目标综合评价方法,提出的一种层次权重决策分析方法。

2、多属性决策是现代决策科学的一个重要组成部分,它的理论和方法在工程设计、经济、管理和军事等诸多领域中有着广泛的应用,如:投资决策、项目评估、维修服务、武器系统性能评定、工厂选址、投标招标、产业部门发展排序和经济效益综合评价等.多属性决策的实质是利用已有的决策信息通过一定的方式对一组(有限个)备选方案进行排序或择优.它主要由两部分组成:(l) 获取决策信息.决策信息一般包括两个方面的内容:属性权重和属性值(属性值主要有三种形式:实数、区间数和语言).其中,属性权重的确定是多属性决策中的一个重要研究内容;(2)通过一定的方式对决策信息进行集结并对方案进行排序和择优。

3、灰色预测模型(Gray Forecast Model)是通过少量的、不完全的信息,建立数学模型并做出预测的一种预测方法.当我们应用运筹学的思想方法解决实际问题,制定发展战略和政策、进行重大问题的决策时,都必须对未来进行科学的预测.预测是根据客观事物的过去和现在的发展规律,借助于科学的方法对其未来的发展趋势和状况进行描述和分析,并形成科学的假设和判断。

4、Dijkstra算法能求一个顶点到另一顶点最短路径。它是由Dijkstra于1959年提出的。实际它能出始点到 其它 所有顶点的最短路径。

Dijkstra算法是一种标号法:给赋权图的每一个顶点记一个数,称为顶点的标号(临时标号,称T标号,或者固定标号,称为P标号)。T标号表示从始顶点到该标点的最短路长的上界;P标号则是从始顶点到该顶点的最短路长。

5、Floyd算法是一个经典的动态规划算法。用通俗的语言来描述的话,首先我们的目标是寻找从点i到点j的最短路径。从动态规划的角度看问题,我们需要为这个目标重新做一个诠释(这个诠释正是动态规划最富创造力的精华所在)从任意节点i到任意节点j的最短路径不外乎2种可能,1是直接从i到j,2是从i经过若干个节点k到j。所以,我们假设Dis(i,j)为节点u到节点v的最短路径的距离,对于每一个节点k,我们检查Dis(i,k) + Dis(k,j) < Dis(i,j)是否成立,如果成立,证明从i到k再到j的路径比i直接到j的路径短,我们便设置Dis(i,j) = Dis(i,k) + Dis(k,j),这样一来,当我们遍历完所有节点k,Dis(i,j)中记录的便是i到j的最短路径的距离。

6、模拟退火算法是模仿自然界退火现象而得,利用了物理中固体物质的退火过程与一般优化问题的相似性从某一初始温度开始,伴随温度的不断下降,结合概率突跳特性在解空间中随机寻找全局最优解。

7、种群竞争模型:当两个种群为争夺同一食物来源和生存空间相互竞争时,常见的结局是,竞争力弱的灭绝,竞争力强的达到环境容许的最大容量。使用种群竞争模型可以描述两个种群相互竞争的过程,分析产生各种结局的条件。

8、排队论发源于上世纪初。当时美国贝尔电话公司发明了自动电话,以适应日益繁忙的工商业电话通讯需要。这个新发明带来了一个新问题,即通话线路与电话用户呼叫的数量关系应如何妥善解决,这个问题久久未能解决。1909年,丹麦的哥本哈根电话公司A.K.埃尔浪(Erlang)在热力学统计平衡概念的启发下解决了这个问题。

9、线性规划是运筹学中研究较早、发展较快、应用广泛、方法较成熟的一个重要分支,它是辅助人们进行科学管理的一种数学方法.在经济管理、交通运输、工农业生产等经济活动中,提高经济效果是人们不可缺少的要求,而提高经济效果一般通过两种途径:一是技术方面的改进,例如改善生产工艺,使用新设备和新型原材料.二是生产组织与计划的改进,即合理安排人力物力资源.线性规划所研究的是:在一定条件下,合理安排人力物力等资源,使经济效果达到最好.一般地,求线性目标函数在线性约束条件下的最大值或最小值的问题,统称为线性规划问题。满足线性约束条件的解叫做可行解,由所有可行解组成的集合叫做可行域。决策变量、约束条件、目标函数是线性规划的三要素。

10、非线性规划:非线性规划是一种求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。运筹学的一个重要分支。20世纪50年代初,库哈(H.W.Kuhn) 和托克 (A.W.Tucker) 提出了非线性规划的基本定理,为非线性规划奠定了理论基础。这一方法在工业、交通运输、经济管理和军事等方面有广泛的应用,特别是在“最优设计”方面,它提供了数学基础和计算方法,因此有重要的实用价值。

数学建模全国优秀论文相关 文章 :

★ 数学建模全国优秀论文范文

★ 2017年全国数学建模大赛获奖优秀论文

★ 数学建模竞赛获奖论文范文

★ 小学数学建模的优秀论文范文

★ 初中数学建模论文范文

★ 学习数学建模心得体会3篇

★ 数学建模论文优秀范文

★ 大学生数学建模论文范文(2)

★ 数学建模获奖论文模板范文

★ 大学生数学建模论文范文

机电系毕业论文范文

上面那篇没有发全,你自己到这里看吧 那里还有一篇不错,太多了,发布出来发展“机电一体化”的思路和对策 主题词:机电一体化、对策一、机电一体化技术发展历程及其趋势自电子技术一问世,电子技术与机械技术的结合就开始了,只是出现了半导体集成电路,尤其是出现了以微处理器为代表的大规模集成电路以后,"机电一体化"技术之后有了明显进展,引起了人们的广泛注意.(一)"机电一体化"的发展历程1.数控机床的问世,写下了"机电一体化"历史的第一页;2.微电子技术为"机电一体化''带来勃勃生机;3.可编程序控制器、"电力电子"等的发展为"机电一体化"提供了坚强基础;4.激光技术、模糊技术、信息技术等新技术使"机电一体化"跃上新台阶.(二)"机电一体化"发展趋势1.光机电一体化.一般的机电一体化系统是由传感系统、能源系统、信息处理系统、机械结构等部件组成的.因此,引进光学技术,实现光学技术的先天优点是能有效地改进机电一体化系统的传感系统、能源(动力)系统和信息处理系统.光机电一体化是机电产品发展的重要趋势.2.自律分配系统化——柔性化.未来的机电一体化产品,控制和执行系统有足够的“冗余度”,有较强的“柔性”,能较好地应付突发事件,被设计成“自律分配系统”。在自律分配系统中,各个子系统是相互独立工作的,子系统为总系统服务,同时具有本身的“自律性”,可根据不同的环境条件作出不同反应。其特点是子系统可产生本身的信息并附加所给信息,在总的前提下,具体“行动”是可以改变的。这样,既明显地增加了系统的适应能力(柔性),又不因某一子系统的故障而影响整个系统。3.全息系统化——智能化。今后的机电一体化产品“全息”特征越来越明显,智能化水平越来越高。这主要收益于模糊技术、信息技术(尤其是软件及芯片技术)的发展。除此之外,其系统的层次结构,也变简单的“从上到下”的形势而为复杂的、有较多冗余度的双向联系。4.“生物一软件”化—仿生物系统化。今后的机电一体化装置对信息的依赖性很大,并且往往在结构上是处于“静态”时不稳定,但在动态(工作)时却是稳定的。这有点类似于活的生物:当控制系统(大脑)停止工作时,生物便“死亡”,而当控制系统(大脑)工作时,生物就很有活力。仿生学研究领域中已发现的一些生物体优良的机构可为机电一体化产品提供新型机体,但如何使这些新型机体具有活的“生命”还有待于深入研究。这一研究领域称为“生物——软件”或“生物系统”,而生物的特点是硬件(肌体)——软件(大脑)一体,不可分割。看来,机电一体化产品虽然有向生物系统化发展趋,但有一段漫长的道路要走。5.微型机电化——微型化。目前,利用半导体器件制造过程中的蚀刻技术,在实验室中已制造出亚微米级的机械元件。当将这一成果用于实际产品时,就没有必要区分机械部分和控制器了。届时机械和电子完全可以“融合”,机体、执行机构、传感器、CPU等可集成在一起,体积很小,并组成一种自律元件。这种微型机械学是机电一体化的重要发展方向。三、典型的机电一体化产品机电一体化产品分系统(整机)和基础元、部件两大类。典型的机电一体化系统有:数控机床、机器人、汽车电子化产品、智能化仪器仪表、电子排版印刷系统、CAD/CAM系统等。典型的机电一体化元、部件有:电力电子器件及装置、可编程序控制器、模糊控制器、微型电机、传感器、专用集成电路、伺服机构等。这些典型的机电一体化产品的技术现状、发展趋势、市场前景分析从略。四、北京发展“机电一体化”而临的形势和任务机电一体化工作主要包括两个层次:一是用微电子技术改造传统产业,其目的是节能、节材,提高工效,提高产品质量,把传统工业的技术进步提高一步;二是开发自动化、数字化、智能化机电产品,促进产品的更新换代。前者是面上的工作,普及工作;后者是提高工作,深层次工作。(一)北京“机电一体化”工作面临的形势1.北京用微电子技术改造传统工业的工作量大而广,有难度(1)在700余家北京市属工业系统的企业中,有60%以上的企业用微电子技术改造机床设备、工业窑炉、风机电泵、生产过程的任务还未完成需要量的一半。(2)北京工业系统还有2000余台机床设备亟需用微电子技术进行改造;在已改造的近6500台机床设备中,大约有15%需进一步改造。(3)北京工业系统尚有近250座工业炉窑亟需用电子信息技术进行改造;且610座已改造过的工业炉窑也很有进一步应用模糊技术进行二次改造的必要。(4)北京工业系统CAD应用还有较大差距。目前,北京工业品设计,CAD应用率仅17%(而美、日等国已超过85%;国内先进地区也超过了30%);CAD的覆盖率才达到11%(而全国CAD应用工程领导小组指出,“八五”期间大中型企业要达到35%,中小型骨干企业要达到15%—20%;到“九五”时,按国务委员宋健的要求,基本上要甩掉绘图板)。(5)北京工业系统共有改造价值的各种风机电泵装机容量50万千瓦,尚49万多千瓦用变调速技术进行改造的任务,占总任务量的99.5%左右。(6)工业是全市能源消耗大户。1992年,北京工业系统占全市能耗总量的59.5%。而北京是一个能源严重缺乏的城市,1992年北京工业系统万元产值能耗折合标煤为2.47吨,比上海的1.57吨高57%,比天津的2.15吨高14%,比先进的工业化国家高近9倍。因此,北京工业系统节能降耗的任务非常重,而电力电子技术是节能降耗的王牌。2.北京用机电一体化技术加速产品更新换代,提高市场占有率的呼声高,有压力。北京市的工业产品大约有3万种,每年约开发试制新产品3000种,更新周期很长。由于更新换代速度跟不上市场变化的需要,影响了北京工业产品的竞争能力。

数模论文格式要求

数模论文格式要求

在个人成长的多个环节中,大家都不可避免地会接触到论文吧,论文是进行各个学术领域研究和描述学术研究成果的一种说理文章。那么你知道一篇好的论文该怎么写吗?以下是我收集整理的数模论文格式要求,希望对大家有所帮助。

一、写好数模论文的重要性

1.数模论文是评定参与者的成绩好坏、高低、获奖级别的惟一依据.

2.数模论文是培训(或竞赛)活动的最终成绩的书面形式。

3.写好论文的训练,是科技论文写作的一种基本训练。

二、数模论文的基本内容

1,评阅原则:

假设的合理性;

建模的创造性;

结果的合理性;

表述的清晰程度

2,数模论文的结构

0、摘要

1、问题的提出:综述问题的内容及意义

2、模型的假设:写出问题的合理假设,符号的说明

3、模型的.建立:详细叙述模型、变量、参数代表的意义和满足的条件,进行问题分析,公式推导,建立基本模型,深化模型,最终或简化模型等

4、模型的求解:求解及算法的主要步骤,使用的数学软件等

5、模型检验:结果表示、分析与检验,误差分析等

6、模型评价:本模型的特点,优缺点,改进方法

7、参考文献:限公开发表文献,指明出处

8、附录:计算框图、计算程序,详细图表

三、需要重视的问题

0、摘要

表述:准确、简明、条理清晰、合乎语法。

字数300-500字,包括模型的主要特点、建模方法和主要结果。可以有公式,不能有图表

简单地说,摘要应体现:用了什么方法,解决了什么问题,得到了那些主要结论。还可作那些推广。

1、建模准备及问题重述:

了解问题实际背景,明确建模目的,搜集文献、数据等,确定模型类型,作好问题重述。

在此过程中,要充分利用电子图书资源及纸质图书资源,查找相关背景知识,了解本问题的研究现状,所用到的基本解决方法等。

2、模型假设、符号说明

基本假设的合理性很重要

(1)根据题目条件作假设;

(2)根据题目要求作假设;

(3)基本的、关键性假设不能缺;

(4)符号使用要简洁、通用。

3、模型的建立

(1)基本模型

1)首先要有数学模型:数学公式、方案等

2)基本模型:要求完整、正确、简明,粗糙一点没有关系

(2)深化模型

1)要明确说明:深化的思想,依据,如弥补了基本模型的不足……

2)深化后的模型,尽可能完整给出

3)模型要实用,有效,以解决问题有效为原则。数学建模面临的、是要解决实际问题,不追求数学上的高(级)、深(刻)、难(度)。

▲能用初等方法解决的、就不用高级方法;

▲能用简单方法解决的,就不用复杂方法;

▲能用被更多人看懂、理解的方法,就不用只有少数人看懂、理解的方法。

4)鼓励创新,但要切实,不要离题搞标新立异,数模创新可出现在

▲建模中:模型本身,简化的好方法、好策略等;

▲模型求解中;

▲结果表示、分析,模型检验;

▲推广部分。

5)在问题分析推导过程中,需要注意的:

▲分析要:中肯、确切;

▲术语要:专业、内行;

▲原理、依据要:正确、明确;

▲表述要:简明,关键步骤要列出;

▲忌:外行话,专业术语不明确,表述混乱、繁琐,冗长。

4、模型求解

(1)需要建立数学命题时:命题叙述要符合数学命题的表述规范,论证要尽可能严密;

(2)需要说明计算方法或算法的原理、思想、依据、步骤。若采用现有软件,要说明采用此软件的理由,软件名称;

(3)计算过程,中间结果可要可不要的,不要列出。

(4)设法算出合理的数值结果。

5、模型检验、结果分析

(1)最终数值结果的正确性或合理性是第一位的;

(2)对数值结果或模拟结果进行必要的检验。

当结果不正确、不合理、或误差大时,要分析原因,对算法、计算方法、或模型进行修正、改进;

(3)题目中要求回答的问题,数值结果,结论等,须一一列出;

(4)列数据是要考虑:是否需要列出多组数据,或额外数据;对数据进行比较、分析,为各种方案的提出提供可依赖的依据;

(5)结果表示:要集中,一目了然,直观,便于比较分析。(最好不要跨页)

▲数值结果表示:精心设计表格;可能的话,用图形图表形式。

▲求解方案,用图示更好

(6)必要时对问题解答,作定性或规律性的讨论。最后结论要明确。

6.模型评价

优点要突出,缺点不回避。若要改变原题要求,重新建模则可在此进行。推广或改进方向时,不要玩弄新数学术语。

7、参考文献

规范格式:

[1] 陈理荣,数学建模导论(M),北京:北京邮电大学出版社,1999.

[2] 楚扬杰,快速聚类分析在产品市场区分中的应用(J),武汉理工大学学报,2004,23(2),20-23.

8、附录

详细的数据、表格、图形,计算程序均应在此列出。但不要错,错的宁可不列。主要结果数据,应在正文中列出。

9、关于写答卷前的思考和工作规划 ▲答卷需要回答哪几个问题――建模需要解决哪几个问题▲问题以怎样的方式回答――结果以怎样的形式表示▲每个问题要列出哪些关键数据――建模要计算哪些关键数据▲每个量,列出一组还是多组数――要计算一组还是多组数……

10、答卷要求的原理 ▲ 准确――科学性 ▲ 条理――逻辑性 ▲ 简洁――数学美 ▲ 创新――研究、应用目标之一,人才培养需要 ▲ 实用――建模。实际问题要求。

四、建模理念

1. 应用意识:要让你的数学模型能解决或说明实际问题,其结果、结论要符合实际;模型、方法、结果要易于理解,便于实际应用;站在应用者的立场上想问题,处理问题。

2. 数学建模:用数学方法解决问题,要有数学模型;问题模型的数学抽象,方法有普适性、科学性,不局限于本具体问题的解决。相同问题上要能够推广。

3. 创新意识:建模有特点,要合理、科学、有效、符合实际;要有普遍应用意义;不单纯为创新而创新

五、格式要求

参赛论文写作格式

论文题目(三号黑体,居中)

一级标题(四号黑体,居中)

论文中其他汉字一律采用小四号宋体,单倍行距。论文纸用白色A4,上下左右各留出2.5厘米的页边距。

首页为论文题目和作者的专业、班级、姓名、学号,第二页为论文题目和摘要,论文从第三页开始编写页码,页码必须位于每页页脚中部,用阿拉伯数字“1”开始连续编号。

第四页开始论文正文

正文应包括以下八个部分:

问题提出: 叙述问题内容及意义;

基本假设: 写出问题的合理假设;

建立模型: 详细叙述模型、变量、参数代表的意义和满足的条件及建模的思想;

模型求解: 求解、算法的主要步骤;

结果分析与检验:(含误差分析);

模型评价: 优缺点及改进意见;

参考文献: 限公开发表文献,指明出处;

参考文献在正文引用处用方括号标示参考文献的编号,如[1][3]等。参考文献按正文中的引用次序列出,其中

书籍的表述方式为:

[编号] 作者,书名,出版地:出版社,出版年

参考文献中期刊杂志论文的表述方式为:

[编号] 作者,论文名,杂志名,卷期号:出版年

参考文献中网上资源的表述方式为:

[编号] 作者,资源标题,网址,访问时间(年月日)

附录:计算框图,原程序及打印结果。

六、分工协作取佳绩

最好三人一组,这三人中尽量做到一人数学基础较好,一人应用数学软件和编程的能力较强,一人科技论文写作水平较好。科技论文的写作要求整篇论文的结构严谨,语言要有逻辑性,用词要准确。

三人之间要能够配合得起来。若三人之间配合不好,会降低效率,导致整个建模的失败。

在合作的过程中,最好是能够找出一个组长,即要能够总揽全局,包括任务的分配,相互间的合作和进度的安排。

在建模过程中出现意见不统一时,要尊重为先,理解为重,做到“给我一个相信你的理由”和“相信我,我的理由是……”,不要作无谓的争论。要善于斗争,勇于妥协。

还要注意以下几点:

注意存盘,以防意外

写作与建模工作同步

注意保密,以防抄袭

数学建模成功的条件和模型:

有兴趣,肯钻研;有信心,勇挑战;有决心,不怕难;有知识,思路宽;有能力,能开拓;有水平,善协作;有办法,点子多;有毅力,轻结果。

全国大学生数学建模竞赛,一般都有哪些问题?

2020年,共有来自中国、美国、英国、马来西亚的1470所院校/校区的45680支队伍(本科41826队、专科3854队),共计13万多人报名参加比赛。

全国大学生数学建模竞赛的比赛宗旨为“创新意识 团队精神 重在参与 公平竞争”。

比赛的试题及优秀论文全都展现在“全国大学生数学建模竞赛”的官网上。就拿2017年来举例,一共有四个试题,分别为:A题-CT系统参数标定及成像;B题-“拍照赚钱”的任务定价;C题-颜色与物质浓度辨识;D题 -巡检线路的排班。

赛题题型结构形式一般由三个部分构成:实际问题背景,若干假设条件,要求回答的问题。

第一部分中会涉及到社会、经济、管理、生活、环境、自然现象、工程技术、现代科学等各个领域出现的新问题,会给出一个比较确切的问题。不过总体而言,涵盖面非常宽广,需要参赛者广泛涉猎各种数学模型。

第二部分则会分成以下几种情况:只有过程、规则等概念性的假设,不给出相关数据;给出从实际的样本中得到的统计型数据;给出图形和参数;藏着某些可自由发挥的补充假设条件,参赛者可以根据自己的模型需要去收集数据。

第三部分通常会有好几个需要回答的问题,通常有些问题需要给出确定性的答案,也就是根据模型得出的数学结果;后面则会有发散性的问题,要求给出优化方案等。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页