将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)。
因子分析(探索性因子分析)用于探索分析项应该分成几个因子,比如20个量表题项应该分成几个方面较为合适。
因子分析通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。
因子分析应用举例:
1、案例
当前有一份数据,共有12个量表题,希望将此12个量表题使用因子分析浓缩成几个维度,用于探索企业员工满意度的维度情况。研究人员在研究前预期分析项可分为4个维度(也可不事先假定),当然有可能个别项与因子对应关系并不合适,因此有可能对其进行删除处理。
2、操作步骤
将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)
得到的分析结果如下:
第一步:首先判断是否适合进行因子分析
KMO和Bartlett检验结果
SPSSAU对结果进行智能分析
第二步:判断提取的因子个数
第三步:是因子与题项对应关系判断
因子与题项对应关系判断:假设预期为4个因子(变量),分析题项为12个;因子与题项交叉共得到48个数字,此数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个因子(变量),对应12个”因子载荷系数”,针对每个分析项,则有4个”因子载荷系数值”(比如0.765,-0.066,0.093,0.075),选出3个数字绝对值大于0.4的那个值(0.765),如果其对应因子1,则说明此题项应该划分在因子1下面。
第四步:对因子进行命名
本次研究员工满意量表共提取出4个因子,此4个因子对应的题项分别为4个、3个和2个,对4个因子分别进行命名,分别为福利待遇因子、管理及制度因子、员工自主性因子和工作性质因子。
主成分分析与因子分析及SPSS实现
一、主成分分析
(1)问题提出在问题研究中,为了不遗漏和准确起见,往往会面面俱到,取得大量的指标来进行分析。比如为了研究某种疾病的影响因素,我们可能会收集患者的人口学资料、病史、体征、化验检查等等数十项指标。如果将这些指标直接纳入多元统计分析,不仅会使模型变得复杂不稳定,而且还有可能因为变量之间的多重共线性引起较大的误差。有没有一种办法能对信息进行浓缩,减少变量的个数,同时消除多重共线性?这时,主成分分析隆重登场。(2)主成分分析的原理主成分分析的本质是坐标的旋转变换,将原始的n个变量进行重新的线性组合,生成n个新的变量,他们之间互不相关,称为n个“成分”。同时按照方差最大化的原则,保证第一个成分的方差最大,然后依次递减。这n个成分是按照方差从大到小排列的,其中前m个成分可能就包含了原始变量的大部分方差(及变异信息)。那么这m个成分就成为原始变量的“主成分”,他们包含了原始变量的大部分信息。注意得到的主成分不是原始变量筛选后的剩余变量,而是原始变量经过重新组合后的“综合变量”。我们以最简单的二维数据来直观的解释主成分分析的原理。假设现在有两个变量X1、X2,在坐标上画出散点图如下:可见,他们之间存在相关关系,如果我们将坐标轴整体逆时针旋转45°,变成新的坐标系Y1、Y2,如下图:根据坐标变化的原理,我们可以算出:Y1 = sqrt(2)/2 * X1 + sqrt(2)/2 * X2Y2 = sqrt(2)/2 * X1 – sqrt(2)/2 * X2其中sqrt(x)为x的平方根。通过对X1、X2的重新进行线性组合,得到了两个新的变量Y1、Y2。此时,Y1、Y2变得不再相关,而且Y1方向变异(方差)较大,Y2方向的变异(方差)较小,这时我们可以提取Y1作为X1、X2的主成分,参与后续的统计分析,因为它携带了原始变量的大部分信息。至此我们解决了两个问题:降维和消除共线性。对于二维以上的数据,就不能用上面的几何图形直观的表示了,只能通过矩阵变换求解,但是本质思想是一样的。
二、因子分析(一)原理和方法:因子分析是主成分分析的扩展。在主成分分析过程中,新变量是原始变量的线性组合,即将多个原始变量经过线性(坐标)变换得到新的变量。因子分析中,是对原始变量间的内在相关结构进行分组,相关性强的分在一组,组间相关性较弱,这样各组变量代表一个基本要素(公共因子)。通过原始变量之间的复杂关系对原始变量进行分解,得到公共因子和特殊因子。将原始变量表示成公共因子的线性组合。其中公共因子是所有原始变量中所共同具有的特征,而特殊因子则是原始变量所特有的部分。因子分析强调对新变量(因子)的实际意义的解释。举个例子:比如在市场调查中我们收集了食品的五项指标(x1-x5):味道、价格、风味、是否快餐、能量,经过因子分析,我们发现了:x1 = 0.02 * z1 + 0.99 * z2 + e1x2 = 0.94 * z1 – 0.01 * z2 + e2x3 = 0.13* z1 + 0.98 * z2 + e3x4 = 0.84 * z1 + 0.42 * z2 + e4x5 = 0.97 * z1 – 0.02 * z2 + e1(以上的数字代表实际为变量间的相关系数,值越大,相关性越大)第一个公因子z1主要与价格、是否快餐、能量有关,代表“价格与营养”第二个公因子z2主要与味道、风味有关,代表“口味”e1-5是特殊因子,是公因子中无法解释的,在分析中一般略去。同时,我们也可以将公因子z1、z2表示成原始变量的线性组合,用于后续分析。(二)使用条件:(1)样本量足够大。通常要求样本量是变量数目的5倍以上,且大于100例。(2)原始变量之间具有相关性。如果变量之间彼此独立,无法使用因子分析。在SPSS中可用KMO检验和Bartlett球形检验来判断。(3)生成的公因子要有实际的意义,必要时可通过因子旋转(坐标变化)来达到。三、主成分分析和因子分析的联系与区别联系:两者都是降维和信息浓缩的方法。生成的新变量均代表了原始变量的大部分信息且互相独立,都可以用于后续的回归分析、判别分析、聚类分析等等。区别:(1)主成分分析是按照方差最大化的方法生成的新变量,强调新变量贡献了多大比例的方差,不关心新变量是否有明确的实际意义。(2)因子分析着重要求新变量具有实际的意义,能解释原始变量间的内在结构。SPSS没有提供单独的主成分分析方法,而是混在因子分析当中,下面通过一个例子来讨论主成分分析与因子分析的实现方法及相关问题。 一、问题提出 男子十项全能比赛包含100米跑、跳远、跳高、撑杆跳、铅球、铁饼、标枪、400米跑、1500米跑、110米跨栏十个项目,总分为各个项目得分之和。为了分析十项全能主要考察哪些方面的能力,以便有针对性的进行训练,研究者收集了134个顶级运动员的十项全能成绩单,将通过因子分析来达到分析目的。 二、分析过程 变量视图: 数据视图(部分): 菜单选择(分析->降维->因子分析):
打开因子分析的主界面,将十项成绩选入”变量“框中(不要包含总分),如下: 点击”描述“按钮,打开对话框,选中”系数“和”KMO和Bartlett球形度检验“:
上图相关解释:”系数“:为变量之间的相关系数阵列,可以直观的分析相关性。”KMO和Bartlett球形度检验“:用于定量的检验变量之间是否具有相关性。点击”继续“,回到主界面,点击”抽取“,打开对话框。”方法“ =>”主成分“,”输出“=>”未旋转的因子解“和”碎石图“,”抽取“=>”基于特征值“,其余选择默认。
解释:①因子抽取的方法:选取默认的主成分法即可,其余方法的计算结果可能有所差异。②输出:”未旋转的因子解”极为主成分分析结果。碎石图有助于我们判断因子的重要性(详细介绍见后面)。③抽取:为抽取主成分(因子)的方法,一般是基于特征值大于1,默认即可。点击”继续“,回到主界面,点击”确定“,进入分析。输出的主要表格如下:(1)相关性检验因子分析要求变量之间有相关性,所以首先要进行相关性检验。首先输出的是变量之间的相关系数矩阵:
可以直观的看到,变量之间有相关性。但需要检验,接着输出的是相关性检验: 上图有两个指标:第一个是KMO值,一般大于0.7就说明不了之间有相关性了。第二个是Bartlett球形度检验,P值<0.001。综合两个指标,说明变量之间存在相关性,可以进行因子分析。否则,不能进行因子分析。(2)提取主成分和公因子接下来输出主成分结果:
这就是主成分分析的结果,表中第一列为10个成分;第二列为对应的”特征值“,表示所解释的方差的大小;第三列为对应的成分所包含的方差占总方差的百分比;第四列为累计的百分比。一般来说,选择”特征值“大于1的成分作为主成分,这也是SPSS默认的选择。在本例中,成分1和2的特征值大于1,他们合计能解释71.034%的方差,还算不错。所以我们可以提取1和2作为主成分,抓住了主要矛盾,其余成分包含的信息较少,故弃去。下面,输出碎石图,如下: 碎石图来源于地质学的概念。在岩层斜坡下方往往有很多小的碎石,其地质学意义不大。碎石图以特征值为纵轴,成分为横轴。前面陡峭的部分特征值大,包含的信息多,后面平坦的部分特征值小,包含的信息也小。由图直观的看出,成分1和2包含了大部分信息,从3开始就进入平台了。接下来,输出提取的成分矩阵:
上表中的数值为公因子与原始变量之间的相关系数,绝对值越大,说明关系越密切。公因子1和9个运动项目都正相关(注意跑步运动运动的计分方式,时间越短,分数越高),看来只能称为“综合运动”因子了。公因子2与铁饼、铅球正相关,与1500米跑、400米跑负相关,这究竟代表什么意思呢?看来只能成为“不知所云”因子了。(三)因子旋转前面提取的两个公因子一个是大而全的“综合因子”,一个不知所云,得到这样的结果,无疑是分析的失败。不过,不要灰心,我们可以通过因子的旋转来获得更好的解释。在主界面中点击“旋转”按钮,打开对话框,“方法”=>“最大方差法”,“输出”=>“旋转解”。
点击“继续”,回到主界面点击“确认”进行分析。输出结果如下: 这是选择后的成分矩阵。经过旋转,可以看出:公因子1得分越高,所有的跑步和跨栏成绩越差,而跳远、撑杆跳等需要助跑类项目的成绩也越差,所以公因子1代表的是奔跑能力的反向指标,可称为“奔跑能力”。公因子2与铁饼和铅球的正相关性很高,与标枪、撑杆跳等需要上肢力量的项目也正相关,所以该因子可以成为“上肢力量”。经过旋转,可以看出公因子有了更合理的解释。(四)结果的保存在最后,我们还要将公因子储存下来供后续使用。点击“得分”按钮,打开对话框,选中“保存为变量”,方法采用默认的“回归”方法,同时选中“显示因子得分系数矩阵”。
SPSS会自动生成2个新变量,分别为公因子的取值,放在数据的最后。同时会输出一个因子系数表格:
由上图,我们可以写出公因子的表达式(用F1、F2代表两个公因子,Z1~Z10分别代表原始变量):F1 = -0.16*Z1+0.161*Z2+0.145*Z3+0.199*Z4-0.131*Z5-0.167*Z6+0.137*Z7+0.174*Z8+0.131*Z9-0.037*Z10F2同理,略去。注意,这里的变量Z1~Z10,F1、F2不再是原始变量,而是标准正态变换后的变量。
因子分析法是指从研究指标相关矩阵内部的依赖关系出发,把一些信息重叠、具有错综复杂关系的变量归结为少数几个不相关的综合因子的一种多元统计分析方法。
是一种旨在寻找隐藏在多变量数据中、无法直接观察到却影响或支配可测变量的潜在因子、并估计潜在因子对可测变量的影响程度以及潜在因子之间的相关性的一种多元统计分析方法
基本思想
根据相关性大小把变量分组,使得同组内的变量之间相关性较高,但不同组的变量不相关或相关性较低,每组变量代表一个基本结构一即公共因子。
为什么做因子分析
举例说明:在实际门店问题中,往往我们会选择潜力最大的门店作为领航店,以此为样板,实现业绩和利润的突破及未来新店的标杆。选择领航店过程中我们要注重很多因素,比如:
↘所在小区的房价
↘总面积
↘户主年龄分布
↘小区户数
↘门店面积
↘2公里范围内竞争门店数量等
收集到所有的这些数据虽然能够全面、精准的确定领航店的入选标准,但实际建模时这些变量未必能够发挥出预期的作用。主要体现两方面:计算量的问题;变量间的相关性问题。
这时,最简单直接的方案就是削减变量个数,确定主要变量,因子分析以最少的信息丢失为前提,将众多的原有变量综合成少数的综合指标。
因子分析特点
因子个数远小于变量个数;
能够反应原变量的绝大数信息;
因子之间的线性关系不显著;
因子具有命名解释性
因子分析步骤
1.原有变量是否能够进行因子分析;
2.提取因子;
3.因子的命名解释;
4.计算因子得分;五、综合评价
因子与主成分分析的区别
相同:都能够起到处理多个原始变量内在结构关系的作用
不同:主成分分析重在综合原始变适的信息.而因子分析重在解释原始变量间的关系,是比主成分分析更深入的一种多元统计方法
因子分析可以看做是优化后的主成分分析,两种方法有很多共通的地方,但应用方面各有侧重。
因子分析应用场景
因子分析方法主要用于三种场景,分别是:
l 信息浓缩 :将多个分析项浓缩成几个关键概括性指标。比如将多个问卷题浓缩成几个指标。如果偏重信息浓缩且关注指标与分析项对应关系,使用因子分析更为适合。
l 权重计算 :利用方差解释率值计算各概括性指标的权重。在信息浓缩的基础上,可进一步计算每个主成分/因子的权重,构建指标权重体系。
l 综合竞争力 :利用成分得分和方差解释率这两项指标,计算得到综合得分,用于综合竞争力对比(综合得分值越高意味着竞争力越强)。此类应用常见于经济、管理类研究,比如上市公司的竞争实力对比。
因子分析案例
现在有 12 个地区的 5 个经济指标调查数据(总人口、学校校龄、总雇员、专业服务、中等房价),为对这 12 个地区进行综合评价,请确定出这 12 个地区的综合评价指标。( 综合竞争力应用场景 )
同一指标在不同地区是不同的,用单一某一个指标难以对12个地区进行准确的评价,单一指标只能反映地区的某一方面。所以,有必要确定综合评价指标,便于对比。因子分析方法就可以应用在这个案例中。
5 个指标即为我们分析的对象,我们希望从这5个可观测指标中寻找出潜在的因素,用这些具有综合信息的因素对各地区进行评价。
下图spss因子分析的操作界面主要包括5方面的选项,变量区只能选择数值型变量,分类型变量不能进入该模型。
spss软件为了消除不同变量间量纲和数量级对结果的影响,在该过程中默认自动进行标准化处理,因此不需要对这些变量提前进行标准化处理。
描述统计选项卡
希望看到各变量的描述统计信息,要对比因子提取前后的方差变化,选定“单变量描述性”和“原始分析结果”;
现在是基于相关矩阵提取因子,所以,选定相关矩阵的“系数和显著性水平“,
另外,比较重要的还有 KMO 和球形检验,通过KMO值,我们可以初步判断该数据集是否适合采用因子分析方法,kmo结果有时并不会出现,这主要与变量个数和样本量大小有关。
抽取选项卡:在该选项卡中设置如何提取因子
提取因子的方法有很多,最常用的就是主成分法。
因为参与分析的变量测度单位不同,所以选择“相关矩阵”,如果参与分析的变量测度单位相同,则考虑选用协方差矩阵。
经常用到碎石图对于判断因子的个数很有帮助,一般都会选择该项。关于特征值,一般spss默认只提取特征值大于1的因子。收敛次数比较重要,可以从首次结果反馈的信息进行调整。
因子旋转选项卡
因子分析要求对因子给予命名和解释,是否对因子旋转取决于因子的解释。
旋转就是坐标变换,使得因子系数向1 和 0 靠近,对公因子的命名和解释更加容易。旋转方法一般采用”最大方差法“即可,输出旋转后的因子矩阵和载荷图,对于结果的解释非常有帮助。
如果不经旋转因子已经很好解释,那么没有必要旋转,否则,应该旋转。
保存因子得分
要计算因子得分就要先写出因子的表达式。因子是不能直接观察到的,是潜在的。但是可以通过可观测到的变量获得。
因子分析模型是原始变量为因子的线性组合,现在我们可以根据回归的方法将模型倒过来,用原始变量也就是参与分析的变量来表示因子。从而得到因子得分。因子得分作为变量保存,对于以后深入分析很有用处。
结果解读:验证数据是否适合做因子分析
参考kmo结果,一般认为大于0.5,即可接受。同时还可以参考相关系数,一般认为分析变量的相关系数多数大于 0.3,则适合做因子分析;
KMO=0.575 检验来看,不是特别适合因子分析,基本可以通过。
结果解读:因子方差表
提取因子后因子方差的值均很高,表明提取的因子能很好的描述这 5 个指标。
方差分解表表明,默认提取的前两个因子能够解释 5 个指标的 93.4%。碎石图表明,从第三个因子开始,特征值差异很小。综上,提取前两个因子。
结果解读:因子矩阵
旋转因子矩阵可以看出,经旋转后,因子便于命名和解释。
因子 1主要解释的是中等房价、专业服务项目、中等校平均校龄,可以命名为社会福利因子;
因子 2 主要解释的是其余两个指标,总人口和总雇员。可以命名为人口因子。
因子分析要求最后得到的因子之间相互独立,没有相关性,而因子转换矩阵显示,两个因子相关性较低。可见,对因子进行旋转是完全有必要的。
结果解读:因子系数
因子得分就是根据这个系数和标准化后的分析变量得到的。在数据视图中可以看到因子得分变量。
结论
经过因子分析实现了目的,找到了两个综合评价指标,人口因子和福利因子。
从原来的 5 个指标挖掘出 2 个潜在的综合因子。可以对12 个地区给出客观评价。
可以根据因子1或因子2得分,对这12个地区进行从大到小排序,得分高者被认为在这个维度上有较好表现。
因子分析就是将大量的彼此可能存在相关关系的变量,转换成较少的彼此不相关的综合指标的多元统计方法。。 下面我们主要从下面四个方面来解说:
[if !supportLineBreakNewLine]
[endif]
实际应用
理论思想
建立模型
[if !supportLineBreakNewLine]
[endif]
分析结果
[if !supportLineBreakNewLine]
[endif]
一、实际应用
在市场调研中,研究人员关心的是一些研究指标的集成或者组合,这些概念通常是通过等级评分问题来测量的,如利用李克特量表取得的变量。每一个指标的集合(或一组相关联的指标)就是一个因子,指标概念等级得分就是因子得分。因子分析在市场调研中有着广泛的应用,主要包括:(1)消费者习惯和态度研究(U&A)(2) 品牌形象和特性研究(3)服务质量调查(4) 个性测试(5)形象调查(6) 市场划分识别(7)顾客、产品和行为分类在实际应用中,通过因子得分可以得出不同因子的重要性指标,而管理者则可根据这些指标的重要性来决定首先要解决的市场问题或产品问题。
[if !supportLineBreakNewLine]
[endif]
二、理论思想
因子分析(Factor Analysis)是一种数据简化的技术。它通过研究众多变量之间的内部依赖关系,探求观测数据中的基本结构,并用少数几个独立的不可观测变量来表示其基本的数据结构。这几个假想变量能够反映原来众多变量的主要信息。原始的变量是可观测的显式变量,而假想变量是不可观测的潜在变量,称为因子。主成分分析利用的是“降维”的思想,利用原始变量的线性组合组成主成分。在信息损失较小的前提下,把多个指标转化为几个互补相关的综合指标。因子分析是主成分分析的扩展和推广,通过对原始变量的相关系数矩阵内部结构的研究,导出能控制所有变量的少数几个不可观测的综合变量,通过这少数几个综合变量去描述原始的多个变量之间的相关关系。。
[if !supportLineBreakNewLine]
[endif]
因子分析的数学模型可以表示为Xp×1=Ap×m·Fm×1+ep×1,其中X为可实测的p维随机向量,它的每个分量代表一个指标或变量。
F=(F1, F2,...,Fm)T为不可观测的m维随机向量,它的各个分量将出现在每个变量之中,所以称它们为公共因子。矩阵A称为因子载荷矩阵,矩阵中的每一个元素称为因子载荷,表示第i个变量在第j个公共因子上的载荷,它们需要由多次观测X所得到的样本来估计。
向量e称为特殊因子,其中包括随机误差,它们满足条件:
(1)Cov(F,e)=0,即F与e不相关。
(2)Cov(Fi,Fj)=0,i≠j ,Var(Fi)=Cov(Fi, Fj)=I ,即向量F的协方差矩阵为m阶单位阵。(
3)Cov(ei,ej)=0,i≠j ,Var(ei)=σi2,即向量e的协方差矩阵为p阶对角阵。因子分析的基本思想是通过变量的相关系数矩阵内部结构的分析,从中找出少数几个能控制原始变量的随机变量Fi(i=1,2,...,m),选取公共因子的原则是使尽可能多地包含原始变量中的信息,建立模型X=A· F+e ,忽略e,以F代替X,用它再现原始变量X的众多分量之间的相关关系,达到简化变量降低维数的目的。
[if !supportLineBreakNewLine]
[endif]
三、建立模型
[if !supportLineBreakNewLine]
[endif]
因子分析的基本步骤如下。
对数据进行标准化处理,
估计因子载荷矩阵,
因子旋转,建立因子分析数学模型的目的不仅要找出公共因子并对变量进行分组,更重要的是要知道每个公共因子的意义,以便对实际问题作出科学分析。当因子载荷矩阵A的结构不便对主因子进行解释时,可用一个正交阵右乘A(即对A实施一个正交变换)。由线性代数知识,对A施行一个正交变换,对应坐标系就有一次旋转,便于对因子的意义进行解释。
估计因子得分以公共因子表示原因变量的线性组合,而得到因子得分函数。我们可以通过因子得分函数计算观测记录在各个公共因子上的得分,从而解决公共因子不可观测的问题。
[if !supportLineBreakNewLine]
[endif]
因子分析案例:
[if !supportLineBreakNewLine]
[endif]
题目:以下给出了中国历年国民经济主要指标统计(1992~2000)数据。试用因子分析对这些指标提取公因子并写出提取的公因子与这些指标之间的表达式。
一、数据输入
二、操作步骤 1、进入SPSS,打开相关数据文件,选择“分析”|“降维”|“因子”命令。2、选择进行因子分析的变量。在对话框的左侧列表框中,依次选择“工业总产值”“国内生产总值”“货物周转量”“原煤”“发电量”“原油”进入“变量”列表框。
3、选择输出系数相关矩阵。
单击“因子分析”对话框中的“描述”按钮,弹出“因子分析:描述”对话框。在“相关性矩阵”选项组中选中“KMO和巴特利特的球形度检验”复选框,单击“继续”按钮返回“因子分析”对话框。
4、设置对提取公因子的要求及相关输出内容。
单击“因子分析”对话框中的“提取”按钮,在“输出”选项组中选中“碎石图”复选框。
5、设置因子旋转方法。单击“因子分析”对话框中的“旋转”按钮,在“方法”选项组中选中“最大方差法”单选按钮。
6、设置有关因子得分的选项。单击“得分”按钮,选中“显示因子得分系数矩阵”复选框。
7、其余设置采用系统默认值即可。单击“确定”按钮,等待输出结果。
[if !supportLineBreakNewLine]
[endif]
四、结果分析
1、KMO检验和巴特利特检验结果KMO检验是为了看数据是否适合进行因子分析,其取值范围是0~1。其中0.9~1表示极好,0.8~0.9表示可奖励的,0.7~0.8表示还好,0.6~0.7表示中等,0.5~0.6表示糟糕,0~0.5表示不可接受。如下表所示,本例中KMO的取值为0.657,表明可以进行因子分析。巴特利特检验是为了看数据是否来自于服从多元正态分布的总体。本例中显著性值为0.000,说明数据来自正态分布总体,适合进一步分析。
2、变量共同度变量共同度表示的是各变量中所含原始信息能被提取的公因子所解释的程度。如下表所示,因为本例中所有变量共同度都在85%以上,所以提取的这几个公因子对各变量的解释能力很强。
3
4、碎石图有两个成分的特征值超过了1,只考虑这两个成分即可。
5、旋转成分矩阵第一个因子在工业总产值、国内生产总值、货物周转量、发电量及原油上有较大的载荷,所以其反映的是除原煤以外的其他变量的信息,第二个因子在原煤这一变量上有较大的载荷,反映的是原煤这一变量的信息。
6、成分得分系数矩阵给出了成分得分系数矩阵,据此可以直接写出各公因子的表达式。值得一提的是,在表达式中各个变量已经不是原始变量而是标准化变量。表达式如下:F1=0.194*工业总产值+0.216*国内生产总值+0.206*货物周转量+0.003*原煤+0.211*发电量+0.212*原油F2=0.311*工业总产值-0.002*国内生产总值-0.154*货物周转量+0.853*原煤-0.124*发电量+0.036*原油
分析结论:
[if !supportLineBreakNewLine]
[endif]
通过分析,我们可以知道:
由结果分析1、知,本例很适合使用因子分析。
由结果分析2、3、4可知,本例适合选前两个公因子进行分析,因为这已足够替代原来的变量,它们几乎涵盖了原变量的全部信息。
结果分析5给出了本例中的两个公因子及其所反映的变量。
结果分析6给出了公因子与标准化形式的变量之间的表达式。
[if !supportLineBreakNewLine]
[endif]
参考案例数据:
[if !supportLineBreakNewLine]
[endif]
[if !supportLists]【1】 [endif]spss统计分析与行业应用案例详解(第四版) 杨维忠,张甜,王国平 清华大学出版社
[if !supportLists]【2】 [endif](获取更多知识,前往gz号程式解说)
原文来自
因子分析要小心使用的。
1.你在做问卷前,必须把可能的因子分类考虑清楚。
2.通过分析把因子分类好之后,需要把几个主因子逻辑分类,就是把主因子命名。
3.你所说的正负相关性,那就是你要考虑你的问卷结构的逻辑性。比如,抽烟越多,健康越差,运动越多,健康越好,因变量是抽烟和运动,一个是负相关,一个是正相关,你不能把两个因变量放到一起。
所以你要看看你的因子里面的逻辑结构会不会有错误,如果有,可以考虑删掉1-2个因子再分析,如果有问题,可以再提出来