对于IPO公司利润影响要素分析论文
利润是一个企业生存与发展的基础,同时它也是投资者进行投资决策的最重要影响因素之一。然而,由于会计分期假设和权责发生制的使用决定了某一期间的利润并不一定意味具有可持续性、利润带来的资源并不一定具有确定的可支配性,利润的高低也并非一定反映企业盈利能力的强弱[1]。因此,如果管理者或者投资者仅仅将企业利润作为决策的标准,势必会加大他们承担的风险,所以不管是管理者还是投资者都越来越关注企业的利润质量。所谓利润质量是指利润的形成过程以及利润结果的情况,体现公司利润的变现能力,持续性和稳定性[2,3]。高质量的利润能为企业的发展提供良好的盈利基础,同时也为投资者进行投资时降低风险、增加收益提供保障;低质量的企业利润则可能阻碍企业的持续发展,增加投资者的投资风险。因此,研究公司利润的质量不仅对公司自身发展具有重要的指导意义,还对投资者投资具有重要的参考意义。
1文献综述
至今为止,国内外学者从多个角度对企业的利润质量进行了分析研究。DhaouiAbderrazak,OuidadYousfi(2010)研究了目前的研发战略的决定因素和分析对财务绩效与盈余管理的权力下放的R&D的影响,研究结果表明跨国公司的研发权力下放,以改善公司的盈利能力,而管理人员的优势,可以得到一些私人和非转让的盈余管理而增加的好处[4]。因为产生这样的结果就会鼓励人们分散自己的研发,以增加盈余管理。MihirA。Desai(2005)认为企业为了赢得资本市场,夸大其盈利水平,往往采取避税这种方式,表面上提高了企业的利润质量,却导致企业的财务报告越来越不值得信赖[5]。PatriciaM。Dechow等(1995)对美国企业的实证分析发现企业的经营现金流量占的比重较高企业的利润质量较高,组成企业利润的应计利润和经营现金流量相比,应计利润的持续性弱于经营现金流量[6]。陈小林,林昕(2011)认为管理者会出于不同目的对盈余进行管理,近而将盈余管理按属性分为决策有用性盈余管理和机会主义盈余管理,审计师将根据不同的盈余管理属性出具不同的审计意见[1]。郭世辉,崔文姣(2009)则以应收账款规模、应收账款周转率和主营业务收入增长率与应收账款增长率的差额为变量构建了应收账款视角的利润质量评价模型,并得出应收账款规模与利润质量呈负相关,而应收账款周转率、主营业务收入增长率与应收账款增长率的差额对利润质量有正的影响[7]。田甜(2008)在分析了影响企业利润质量的因素后,提出应从加强企业应收账款管理,提高企业资产获利性等途径提升企业利润质量[8]。王秀丽(2005)从利润结构角度研究了利润质量问题认为高质量的利润结构应体现出与企业发展战略相符合性、与资产结构的匹配性、与对应的现金流量结构的趋同性、主营业务的核心性以及利润自身结构的协调性等特征[2]。
此外,周晓苏(2004)则通过关联规则分析了微利公司的利润质量,发现微利公司通过非经营业务增加流动资产、或减少流动负债等方式来提高企业的流动比率,可以达到提高公司利润质量的目的[9]。综上来看,目前国外的学者对利润质量的研究则主要集中在盈余管理,应计利润和经营现金流量对企业利润质量的影响,国内学术界则是从审计意见,企业利润结构、应收账款、资产流动性角度来研究上市公司利润质量的影响因素,而鲜有从受利润质量影响的股票价格方面,对利润质量进行分析。同时,IPO公司作为最受股民追捧的企业而学者们却忽略了对其利润质量影响因素的研究。本文选择IPO公司利润质量作为研究对象,运用因子分析法分析影响IPO公司利润质量的因素,并运用Logistic模型来探讨其影响的方向和显着性。
2研究假设和理论依据
股票价格能够反映公司的历史信息,是投资者分析决策的重要依据。然而已有研究成果表明股票价格不能直接反映公司利润质量。一方面,股票价格受股票市场有效性影响,不同有效性的股票市场的股票价格对反映公司利润往往具有不同的信度,无效的股票市场的股票价格不仅不能真实的反映公司历史信息,也无法真实反映公司利润的质量,因此,本文假设中国的股票市场是具有弱势有效性的,IPO公司提供的财务信息真实可靠。另一方面,股票价格瞬息万变,股价不能反映企业利润的稳定性,也无法为投资者提供直接的利润质量信息。因此,本文选择股票价格变异系数而非股票价格来衡量企业利润质量,是因为股票价格变异系数越小风险越小,投资者投资是对企业利润的长期增长和稳定性分析结果的理性人选择。此外,根据公司法、证券法的规定,从未上市的公司若要成为上市公司,必须由审计师对其前一年的财务报告,出具标准无保留意见,这也意味着从新上市公司前一年财务报告中获取的财务指标值得信赖。
3影响IPO公司利润质量变量选择和样本数据选取
3.1影响IPO公司利润质量变量选择
基于以上假设和现有的研究成果,从体现公司利润的形成过程以及利润的结果两个方面对影响IPO公司利润质量的变量进行选择。(1)体现公司利润的形成过程:应收账款周转率(X1)、存货周转率(X2)、流动比率(X3)、速动比率(X4)、每股现金净流量(X7)、每股经营现金净流量(X8)、扣除非经常性损益后的每股收益(X9)。(2)体现公司利润的结果:扣除非经常性损益后的净利润(X5)、营业利润率(X6)、净资产收益率(X10)、税后利润增长率(X11)11个指标作为影响IPO公司利润质量的影响因素进行实证分析。此外,选择各个上市公司收盘价格的变异系数作为衡量利润质量优劣的标准。
3.2样本数据选取
本文原始数据主要来源于大智慧软件和宏源证券软件,新股信息则来自于东方财富网(http://data。eastmoney。com)。基于研究需要,本文对预选样本按以下标准进行剔除:
(1)本文只选择2010年第一季度上市的IPO公司作为分析样本。因为公司将在第一个季度的15天以内报出该企业第一季度的财务报表。但若公司3月31日上市,则该公司第一季度股票收盘价格变异系数为0,对其进行分析意义不明显,这样的IPO公司将被剔除。
(2)本文选者的财务指标都在一定的范围之内,对异常指标将予以剔除。例如,人人乐其资产周转率达到了8800多,远远的超过其他公司的资产周转率。
(3)金融企业与其他企业相比,具有特殊的风险,资本的财务杠杆率高等特点,因此金融企业也不在本文的研究范围之内。通过以上筛选最终有85家IPO公司符合本文的研究要求,所有数据均来自于2009年各个公司的年报数据。
4实证分析
4.1因子分析
因子分析法是通过研究众多研究变量内部之间的相互依存关系,旨在运用假设的少数几个变量来表示原来变量的主要信息的研究方法。根据因子分析法的操作原理和基本步骤,并对原始变量进行标准化的`基础上,建立的因子分析数学模型如下:x1=a11F1+a12F2+∧+a1mFm+ε1x2=a21F1+a22F2+∧+a2mFm+ε2∧xn=an1F1+an1F1+an2F2+∧+anmFm+ε{m(1)其中,xi为原始变量,aij为因子负荷,Fi公共因子,εi为随机扰动项。对样本数据进行KMO和球形Bartlett检验,检验结果见表1。从表1可知,Bartletts检验结果拒绝了各变量独立的假设,KMO统计量为0。623,大于临界值0。5,所以比较适合进行因子分析。进行因子分析后,得出主成分信息(见表2)。从表2可知由相关矩阵求得特征值,方差贡献率和相关贡献率中,前5个主成分的特征值均大于1,他们的累积贡献率达到75。95%,说明这5个因子能够比较全面的解释利润质量的总体水平。提取5个因子后,计算出各变量的共同度(见表3),结果显示每一个变量的共性方差均大于0。5,且大部份接近或者超过0。7,说明这5个因子能够较好的客观地反映了原变量的大部分信息。由这5个主因子与上述11个变量得到的因子载荷矩阵,因为初始的因子载荷矩阵系数不是太明显,为了使因子载荷矩阵系数向0—1分化,本文对其采取方差最大旋转,旋转后的结果见表4。根据表4,我们得到的主因子的表达式为:F1=0。944x2+0。944x3—0。613x4+0。821x7F2=0。798x1+0。736x6F3=0。798x9+0。770x10F4=0。792x8+0。794x11F5=0。889x5其中,F1包括流动比率,速动比率,资产负债率,每股现金流量,F2包括应收账款周转率,营业利润率,F1和F2体现企业利润的变现能力等。F3包括扣除非经常性损益后的每股收益,净资产收益率,F4包括每股经营现金净流量,税后利润增长率,F5包括扣除非经常性损益后的净利润。F3,F4,F5表现企业利润的持续性和稳定性。
4.2Logistic回归分析
在对以上变量进行了因子分析后,我们还需要对其影响方向和显着性进行进一步的分析。因此本文在因子分析后,运用Logistic模型进行分析。根据Logistic分析要求,因变量必须是二分类变量。因此,我们首先将IPO公司的股票收盘价的变异系数从小到大排序,并规定排在前面的43家公司为利润质量较高的公司,Y值为1,剩下的42家公司Y值为0。在前面的分析中,提取了5个主因子,将5个主因子作为新变量进行logistic回归分析。Logistic的回归模型为:pi=ea+∑k=nk=1βkki1+ea+∑k=nk=1βxki(2)对其进行变形得到:logit(p)=ln(pi1—pi)=a+∑k=nk=1βkxki(3)即:Logit(p)=α+β1F1+β2F2+β3F+β4F4+β5F5其中P表示Y=1(即利润质量高)的概率,F1表示提取的5个主因子。运用spss16。0进行logistic回归,得出综合回归结果,综合回归结果中卡方值为15。922,其达到了0。05的显着性水平,对其进行的Hosmer—Lemeshow检验,Hosmer—Lemeshow统计值的概率P为0。825大于显着性水平0。05,说明模型的拟合优度较好。Logistic回归具体结果见表5。得到logistic回归模型为Logit(p)=0。450—0。725F1+0。264F2+0。242F3+0。606F4+0。313F5
5结果分析与结论
5.1结果分析
从表5结果来看:第一主因子F1的Wald值为4。938,大于其它主因子的Wald值,且显着性水平达到了0。05。第一主因子F1包括流动比率,速动比率,资产负债率,每股现金流量。由回归系数符号,我们得知作为样本的IPO公司的上述几个指标对利润质量有影响,且为负向影响,则意味着这些指标值越大,企业的利润值越不高,股价的波动性越大。流动比率,速动比率,资产负债率,每股现金比率的最佳值都存在一定的范围,若超过这个范围,企业的发展就会受到影响。如流动比率(流动资产与流动负债的比值)的最佳值为2:1,但在研究的85个样本中只有4个样本的流动比率接近于这个最佳值。这也在另一方面说明了中国的投资值对一个企业的评价,很大程度上来自于该企业的偿债能力。第四个主因子F4的wald值为4。89,其显着性水平达到了0。05,这个主因子包括了每股经营现金净流量,税后利润增长率。从上表中,我们得知?4为0。606,回归系数符号为正,则表明每股经营现金净流量,税后利润质量增长率对利润质量是正向影响。即每股经营现金净流量越大,税后利润质量增长率越高,表明企业的利润质量越好,投资者向这些公司投资的风险越小。主因子F2,F3,F5主因子的Wald值都没有通过检验,说明这些因子包括存货周转率,扣除非经常性损益后的净利润,营业利润率,每股收益,每股经营现金净流量,净资产收益率对利润质量的影响不显着,但并不能说明这些因素可以忽略。
5.2结论
本文用股票价格的变异系数代表利润质量进行影响因素分析,并不能全部解释利润质量的影响因素,因为影响股价的因素不仅包括利润质量方面的信息,还要受很多其他方面的影响。如方曙红,李正逸(2007)以资本资产定价模型为基础,分析利率变动对我国股票股价的影响,最后得出在一般情况下,利率的上升,将会导致股票价格的下降[10]。所以回归结果虽然不够理想,但是总的来说仍然可以接受。本文通过因子分析法,logistic回归分析,发现每股经营现金净流量,税后利润质量增长率对IPO公司的利润质量有显着的正向影响,其中流动比率,速动比率,资产负债率,每股现金比率对IPO公司的利润质量有显着的负向影响。因此,管理层在对公司进行管理的时候,应该关注公司的流动资产,速动资产,以及负债等,不断提高公司的利润质量。
将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)。
因子分析(探索性因子分析)用于探索分析项应该分成几个因子,比如20个量表题项应该分成几个方面较为合适。
因子分析通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。
因子分析应用举例:
1、案例
当前有一份数据,共有12个量表题,希望将此12个量表题使用因子分析浓缩成几个维度,用于探索企业员工满意度的维度情况。研究人员在研究前预期分析项可分为4个维度(也可不事先假定),当然有可能个别项与因子对应关系并不合适,因此有可能对其进行删除处理。
2、操作步骤
将分析题项拖入选框中,点击进行“开始因子分析”(用户可主动设置因子个数)
得到的分析结果如下:
第一步:首先判断是否适合进行因子分析
KMO和Bartlett检验结果
SPSSAU对结果进行智能分析
第二步:判断提取的因子个数
第三步:是因子与题项对应关系判断
因子与题项对应关系判断:假设预期为4个因子(变量),分析题项为12个;因子与题项交叉共得到48个数字,此数字称作”因子载荷系数”(因子载荷系数值表示分析项与因子之间的相关程度);针对每个因子(变量),对应12个”因子载荷系数”,针对每个分析项,则有4个”因子载荷系数值”(比如0.765,-0.066,0.093,0.075),选出3个数字绝对值大于0.4的那个值(0.765),如果其对应因子1,则说明此题项应该划分在因子1下面。
第四步:对因子进行命名
本次研究员工满意量表共提取出4个因子,此4个因子对应的题项分别为4个、3个和2个,对4个因子分别进行命名,分别为福利待遇因子、管理及制度因子、员工自主性因子和工作性质因子。
你可以用结构方程模型的软件做验证性因子分析,如果不会的话,用spss只能按分层次方法提取因子,但效果可能不太好,每个量表必然是分开进行因子分析的,可以将每个量表里设计的变量单独来算,每个层次只提出一个因子。
可以使用在线spssau完成因子分析,可结合帮助手册的案例懂的更快。
通常有三个步骤:第一步是判断是否适合进行因子分析;第二步是因子与题项对应关系判断;第三步是因子命名。
主要看KMO值大小,一般KMO值大于0.6说明适合进行因子分析。
看因子的提取情况,以及因子载荷系数,分析题项与因子的对应关系。
在第二步删除掉不合理题项后,并且确认因子与题项对应关系良好后,则可结合因子与题项对应关系,对因子进行命名。
具体步骤可阅读在线spssau帮助手册:因子分析-SPSSAU
可以。
因子分析是指研究从变量群中提取共性因子的统计技术。最早由英国心理学家C.E.斯皮尔曼提出。他发现学生的各科成绩之间存在着一定的相关性,一科成绩好的学生,往往其他各科成绩也比较好,从而推想是否存在某些潜在的共性因子,或称某些一般智力条件影响着学生的学习成绩。因子分析可在许多变量中找出隐藏的具有代表性的因子。将相同本质的变量归入一个因子,可减少变量的数目,还可检验变量间关系的假设。