您当前的位置:首页 > 发表论文>论文发表

初三数学论文3000

2023-12-11 00:52 来源:学术参考网 作者:未知

初三数学论文3000

曾经有数学家说:圆是最完美的形状。在日常生活中也有许多地方要用圆:汽车、火车的轮子都是圆的,我们在搬重物的时候可以把物体放在圆柱或圆管上。有其他形状可以代替圆吗?在不断的探索失败和进一步探索中,我逐渐发现了一个与圆有着许多相似作用的图形——“等宽曲线”。并在这次数学的探索之旅中体会到了探求数学之谜的艰辛,感受到了探索成功的喜悦。
一、问题的提出:
大街上车水马龙,车来车往,每一辆汽车的轮子都是圆的;我们在搬重物的时候,会把物体放在圆柱或圆管上。看到这些,我非常疑惑:为什么它们都是圆的而不是其他形状的呢?
这个问题困扰我很久,直到这个学期我们学习“圆”这一课时,老师在课件中为我们演示了三角形轮子与正方形轮子的可笑表演后,我才明白:把车轮做成圆形,车轴安在圆心上,车轴离开地面的距离,就总是等于车轮半径那么长。这样车轮在地面上就容易滚动了。假如这个轮子是方形、三角形的,从轮缘到轮子圆心的距离各不相等,那么,这种车子走起来,一定会忽高忽低,震动的很厉害。因此车轮都是圆的,搬东西时我们也会选择圆管垫在下面。
可我还是在想:真的只有是圆吗?有没有其他形状可以代替圆呢?
二、思考与探索:
趁着周末,我找了一辆玩具车、一块泡沫板、小刀等,开始了我的探索之旅。
1、第一次探索:增加边数
我注意到在课件中正方形的轮子虽然也颠簸,但比三角形的轮子平稳了很多,于是我想:如果把轮子做成正六边形,会不会更平稳呢?
于是,我做了四个正六边形的轮子,试了试,果然平稳多了。我不由得兴奋起来:只要把边数做得更多,不就更平稳了吗?我开始在脑子里幻想“轮子边数越来越多,车子越来越平稳”的情形,可是想着想着,我觉得不对劲了:边数不断增多,不就慢慢变成圆了吗?这和“圆的面积”中学到的“分的份数越多,拼成的图形就越接近平行四边形”是一个道理啊,这应该就是老师说的“极限”吧。
想到这儿,我有些沮丧:这个方法行不通。
2、第二次探索:圆的模仿秀
一计不成,再生一计。我又想:轮子之所以做成圆的,是因为中心到周围的距离都是一样的。三角形和正方形的轮子会颠簸则是因为中心到边上的距离比到顶点短,如果我们增加中心到边上的距离,使它们一样长,不就行了吗?
想到这儿,我画了一个正三角形,找到它的中心(三条中线的交点),以它为圆心,以中心到顶点的长度为半径,分别画了三段弧。我心中暗暗得意,这样一来,距离不就相等了吗?可画好后一看,我不由得傻眼了:它就是一个圆啊!我不死心,又画了一个正方形,找出中心,画了四段弧。结果,还是一个圆。
看来,此路不通。
3、第三次探索:换个圆心
第二次的失败让我体会到:不能把原来的中心作为圆心,因为这样会让它变成圆。那么圆心定在哪儿比较合适呢?看着面前的几个图形,一个念头油然而生:用顶点作圆心如何?
说干就干,我先画了一个正三角形,再将它的三个顶点分别作为圆心,以边长为半径,分别作了三段弧。于是一个怪模怪样的家伙就“诞生”了。
我迫不及待地做了四个这样的轮子,试验的结果却让我的满腔希望化为泡影:这种轮子比三角形、正方形、正六边形等平稳了很多,但还是上下起伏,没有达到圆形轮子的效果。
4、爸爸的怪主意:
接二连三的失败让我非常沮丧,我心灰意冷地呆坐在那儿,一种山穷水尽的感觉涌上心头:也许真的只有圆才能做轮子。

爸爸注意到了我沮丧的表情,走过来询问我,我强打精神向他倾述了我的疑惑与几次尝试,希望爸爸能给我出个主意。爸爸边听边饶有兴趣地看着我的“杰作”,过了许久才说:“你的想法都很好,失败了也不要紧,而且你的这个作品很有趣。”他指着我最后做出的怪模怪样的家伙说,“你拿块木板放在它上面试试,注意:要直接放在轮子上,别放在轴上。”

“什么?直接放在轮子上?”我简直不相信自己的耳朵,“这真是个怪想法。”尽管心中疑惑,但我相信爸爸不会无缘无故地这么说,于是就照着做了,做好后我推着它前进了一段。怪了!小车是平的!小车居然走得很平稳!就和车轮是圆形的一样平稳!

我跳起来,惊讶地看着爸爸,希望他能给我一个答案。爸爸看着我惊愕的表情,呵呵笑着说:“你小子不简单,你“创造”的这个东西叫等宽曲线,有兴趣的话可以上网去找找相关的资料。”
三、答案与新的疑惑:
我迫不及待地上网查找资料,在网上,我找到了等宽曲线的解释:“等宽曲线是指非圆的等宽曲线,一条相对于“支持线”之间的距离为一固定常数的封闭曲线,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变。”确实如此,只有当它滚动时最高点不变,才能象刚才这样让小车保持稳定。
更让我意外和惊喜的是:等宽曲线也可以当轮子!下面是我在网络上看到的文章和图片:
操作:按下启动按钮,观察车轮为等宽曲线形状的小车的运行状况。
原理:车轮并非一定要做成圆的,形状近似于“三角形”的等宽曲线车轮,也能使车子平稳行驶。如果在等宽曲线上作两根平行线与之相切,不管瞄在什么位置,夹在这两根平行线之间的距离都相等。所以,当形状为等宽曲线的轮子作水平滚动时,其表现为最高点的高度保持不变。
通过本展品的演示,能形象地揭示等宽曲线的奇妙特性及与圆的内在联系,引起观众突破常规的思维方式。
几经周折,终于找到了圆的代替图形——“等宽曲线”,这让我非常高兴,在这次数学的探索之旅中,我既体会到了探求数学之谜的艰辛,又感受到了探索成功的喜悦。这种感觉正像数学家陈省声爷爷说的:数学真好玩!
欣喜之余,一个新的疑问慢慢浮现出来:这辆小车的车轴显然不能在中心位置,那它在哪儿呢?

数学论文(要初三的)

摘要]:在数学的学习中,数学概念的学习毫无疑问是重中之重。概念不清,一切无从谈起。概念的深层理解和精确把握,对数学问题的解决具有非常重要的作用。然而数学概念数量众多并且非常抽象,如何才能达到一个真正理解且深层记忆的效果呢?下面简述几种方法。
[关键词]: 举例 温故 索因 联系 比喻 类比
1、举例法:举例通常分成两种情况即举正面例子和举反面例子。举正面例子可以变抽象为形象,变一般为具体使概念生动化、直观化,达到较易理解的目的。例如在讲解向量空间的时候就列举了大量的实例。在解析几何里,平面或空间中从一定点引出的一切向量对于向量的加法和实数与向量的乘法来说都作成实数域上的向量空间;复数域可以看成实数域上的向量空间;数域F上一切m*n矩阵所成的集合对于矩阵的加法和数与矩阵的乘法来说作成F上一个向量空间,等等。举反面例子则可以体会概念反映的范围,加深对概念本质的把握。例如在讲解反比例函数概念的时候就可以举这样的一个例子。试判断下列关系式中的y是x的反比例函数吗? , , 。这就需要我们对反比例函数有本质的把握。什么是反比例函数呢?一切形如 的函数,本质是两个量乘积是一定值时,这两个量成反比例关系。 (1)中y和x-1成反比例关系,(2)中y+3和x成反比例关系。定义中要求k为常数当然可以是-1,所以(1),(2)不是,(3)是。
2、温故法:不论是皮亚杰还是奥苏伯尔在概念学习的理论方面都认为概念教学的起步是在已有的认知的结构的基础上进行的。因此在教授新概念之前,如果能先对学生认知结构中原有的概念作一些适当的结构上的变化,再引入新概念,则有利于促进新概念的形成。例如:在高中阶段讲解角的概念的时候最好重新温故一下在初中阶段角的定义,然后从角的范围进行推广到正角、负角和零;从角的表示方法进行推广到弧度制,这样有利于学生思维的自然过渡较易接受。又如在讲解线性映射的时候最好首先温故一下映射的概念,在讲解欧氏空间的时候同样最好温故一下向量空间的概念。
3、索因法:每一个概念的产生都具有丰富的背景和真实的原因,当你把这些原因找到的时候,那些鲜活的内容,使你不想记住这些概念都难。例如三角形的四个心:内心、外心、旁心和重心,很多同学总是记混这些概念。内心是三角形三个内角平分线的交点,因为是三角形内切圆的圆心而得名内心;外心是三角形三条边垂直平分线的交点,因为是三角形外接圆的圆心因而的名外心;旁心是三角形一个内角平分线和两个不相邻的外角平分线的交点,因为是三角形旁切圆的圆心而得名旁心;重心是三角形三条中线的交点,因为是三角形的重力平衡点而得名重心。当你了解了上述内容,你有怎么可能记混这些概念呢?又例如:点到直线的距离是这样定义的,过点做直线的垂线,则垂线段的长度,便是点到直线的距离。那么为什么不定义为点和直线上任意点连线的线段的长度呢?因为只有垂线段是最短的,具有确定性和唯一性。再如:我们之所以把n元有序数组也称为向量,一方面固然是由于它包括通常的向量,作为特殊的情形;另一方面也是由于它与通常的向量一样可以定义运算,并且有许多运算性质是共同的。像这样的例子还有很多,不再一一列举。
4、联系法:数学概念之间具有联系性,任意数学概念都是由若干个数学概念联系而成,只有建立数学概念之间的联系,才能彻底理解数学概念。例如在学习数列的时候,我们不妨作如下分析:数列是按一定次序排列的一列数,是有规律的。那规律是什么呢?项与项数之间的规律、项与项之间的规律、数列整体趋势的规律。项与项数之间的规律就是我们说的通项公式,项与项之间的规律就是我们所说的递推公式,数列整体趋势的规律就是我们所说的极限问题。当项与项之间满足差数相等的关系时,数列被称为等差数列;当项与项之间满足倍数相等的关系时,数列就被称为等比数列。这样我们对数列这一章的概念便都了然于胸了。
5、比喻法:很多同学概念不清的原因是觉得概念单调乏味、没有兴趣,从而不去重视它、深究它,所以我们在讲解概念的时候,不妨和生活相联系作些形象地比喻,以达到吸引学生提高学习兴趣的效果。例如:在讲解映射的时候,不妨把映射的法则比喻成男女恋爱的法则。两个人可以同时喜欢上一个人,但一个人不可以同时爱上两个人。这不正是映射的法则:集合A中的每一个元素在集合B中都唯一的像与之对应吗?又如函数可以理解为一个黑匣子或交换器,投入的是数产出的也是数;投入一个数只能产出一个数;但是当投入不同数的时候可以产出同一个数。再如:满足和的像等于像的和、数乘的像等于像的数乘的映射称之为线性映射。这不正像一个人怎么舞动他的影子就怎么舞动吗?所以有的时候把线性映射理解为“人影共舞”的映射。
6、类比法:在学习向量空间的时候,很多同学疑问重重。向量不就是那些既有大小又有方向的量吗?怎么连矩阵、连续函数、甚至线性变换也可以理解为向量呢?这一切是不是太不可思议了!但是当你作如下思考的时候,一切便顺理成章了。让小学生算一道5-7的题,他会说你这道题出错了,但是让一个初中生去算的话,他就会告诉你等于-2;当你让一个初中生对负数进行开平方运算,他会说不能对负数进行开平方。然而高中生却能够进行运算。这就说明了一个问题,随着年龄的增长和认识层次的提高,人们对于同一概念的理解和认识也在逐步的深入和扩大。正如数的概念由小学生的整数、分数和小数扩大为初中生的实数最后扩大为高中生的复数。同样对于向量的理解也就不能只限于既有大小又有方向的量,应该把这一观念转变过来。
像这样的方法还有很多,不再一一列举。总之一句话:数学概念是重要的,分析概念是有趣的,在乐趣和玩赏中去理解概念是容易做到的.

初中数学论文3000字

黄金分割
对于“黄金分割”大家应该都不陌生吧!
由于公元前6世纪古希腊的毕达哥拉斯学派研究过正五边形和正十边形的作图,因此现代数学家们推断当时毕达哥拉斯学派已经触及甚至掌握了黄金分割。 公元前4世纪,古希腊数学家欧多克索斯第一个系统研究了这一问题,并建立起比例理论。
公元前300年前后欧几里得撰写《几何原本》时吸收了欧多克索斯的研究成果,进一步系统论述了黄金分割,成为最早的有关黄金分割的论著。 中世纪后,黄金分割被披上神秘的外衣,意大利数家帕乔利称中末比为神圣比例,并专门为此著书立说。德国天文学家开普勒称黄金分割为神圣分割。 到19世纪黄金分割这一名称才逐渐通行。黄金分割数有许多有趣的性质,人类对它的实际应用也很广泛。最著名的例子是优选学中的黄金分割法或0.618法,是由美国数学家基弗于1953年首先提出的,70年代在中国推广。
也许,0.618在科学艺术上的表现我们已了解了很多,但是,你有没有听说过,0.618还与炮火连天、硝烟弥漫、血肉横飞的惨烈、残酷的战场也有着不解之缘,在军事上也显示出它巨大而神秘的力量?一代枭雄的的拿破仑大帝可能怎么也不会想到,他的命运会与0.618紧紧地联系在一起。1812年6月,正是莫斯科一年中气候最为凉爽宜人的夏季,在未能消灭俄军有生力量的博罗金诺战役后,拿破仑于此时率领着他的大军进入了莫斯科。这时的他可是踌躇满志、不可一世。他并未意识到,天才和运气此时也正从他身上一点点地消失,他一生事业的顶峰和转折点正在同时到来。后来,法军便在大雪纷扬、寒风呼啸中灰溜溜地撤离了莫斯科。三个月的胜利进军加上两个月的盛极而衰,从时间轴上看,法兰西皇帝透过熊熊烈焰俯瞰莫斯科城时,脚下正好就踩着黄金分割线。
古希腊帕提侬神庙是举世闻名的完美建筑,它的高和宽的比是0.618。建筑师们发现,按这样的比例来设计殿堂,殿堂更加雄伟、美丽;去设计别墅,别墅将更加舒适、漂亮.连一扇门窗若设计为黄金矩形都会显得更加协调和令人赏心悦目.
有趣的是,这个数字在自然界和人们生活中到处可见:人们的肚脐是人体总长的黄金分割点,人的膝盖是肚脐到脚跟的黄金分割点。大多数门窗的宽长之比也是0.618…;有些植茎上,两张相邻叶柄的夹角是137度28',这恰好是把圆周分成1:0.618……的两条半径的夹角。据研究发现,这种角度对植物通风和采光效果最佳。黄金分割与人的关系相当密切。地球表面的纬度范围是0——90°,对其进行黄金分割,则34.38°——55.62°正是地球的黄金地带。无论从平均气温、年日照时数、年降水量、相对湿度等方面都是具备适于人类生活的最佳地区。说来也巧,这一地区几乎囊括了世界上所有的发达国家。
多去观察生活,你就会发现生活中奇妙的数学!
数字
中国有一个成语——“顾名思义”。很多事物都能顾名思义,但是也有例外。比如,阿拉伯数字。很多人一听到阿拉伯数字,就会认为是阿拉伯人发明的。但事实证明,不是。 阿拉伯数字1、2、3、4、5、6、7、8、9。0是国际上通用的数码。这种数字的创制并非阿拉伯人,但也不能抹掉阿拉伯人的功劳。其实,阿拉伯数字最初出自印度人之手,是他们的祖先在生产实践中逐步创造出来的。
公元前3000年,印度河流域居民的数字就已经比较进步,并采用了十进位制的计算法。到吠陀时代(公元前1400-公元前543年),雅利安人已意识到数码在生产活动和日常生活中的作用,创造了一些简单的、不完全的数字。公元前3世纪,印度出现了整套的数字,但各地的写法不一,其中典型的是婆罗门式,它的独到之处就是从1~9每个数都有专用符号,现代数字就是从它们中脱胎而来的。当时,“0”还没有出现。到了笈多时代(300-500年)才有了“0”,叫“舜若”(shunya),表示方式是一个黑点“●”,后来衍变成“0”。这样,一套完整的数字便产生了。这就是古代印度人民对世界文化的巨大贡献。
印度数字首先传到斯里兰卡、缅甸、柬埔寨等国。7-8世纪,随着地跨亚、非、欧三洲的阿拉伯帝国的崛起,阿拉伯人如饥似渴地吸取古希腊、罗马、印度等国的先进文化,大量翻译其科学著作。771年,印度天文学家、旅行家毛卡访问阿拉伯帝国阿拨斯王朝(750-1258年)的首都巴格达,将随身携带的一部印度天文学著作《西德罕塔》献给了当时的哈里发曼苏尔(757-775),曼苏尔令翻译成阿拉伯文,取名为《信德欣德》。此书中有大量的数字,因此称“印度数字”,原意即为“从印度来的”。
阿拉伯数学家花拉子密(约780-850)和海伯什等首先接受了印度数字,并在天文表中运用。他们放弃了自己的28个字母,在实践中加以修改完善,并毫无保留地把它介绍给西方。9世纪初,花拉子密发表《印度计数算法》,阐述了印度数字及应用方法。
印度数字取代了冗长笨拙的罗马数字,在欧洲传播,遭到一些基督教徒的反对,但实践证明优于罗马数字。1202年意大利雷俄那多所发行的《计算之书》,标志着欧洲使用印度数字的开始。该书共15章,开章说:“印度九个数字是:‘9、8、7、6、5、4、3、2、1’,用这九个数字及阿拉伯人称作sifr(零)的记号‘0’,任何数都可以表示出来。”
14世纪时中国的印刷术传到欧洲,更加速了印度数字在欧洲的推广应用,逐渐为欧洲人所采用。
西方人接受了经阿拉伯人传来的印度数字,但忘却了其创始祖,称之为阿拉伯数字。

数学很有用
学数学就是为了能在实际生活中应用,数学是人们用来解决实际问题的,其实数学问题就产生在生活中。比如说,上街买东西自然要用到加减法,修房造屋总要画图纸。类似这样的问题数不胜数,这些知识就从生活中产生,最后被人们归纳成数学知识,解决了更多的实际问题。
我曾看见过这样的一个报道:一个教授问一群外国学生:“12点到1点之间,分针和时针会重合几次?”那些学生都从手腕上拿下手表,开始拨表针;而这位教授在给中国学生讲到同样一个问题时,学生们就会套用数学公式来计算。评论说,由此可见,中国学生的数学知识都是从书本上搬到脑子中,不能灵活运用,很少想到在实际生活中学习、掌握数学知识。
从这以后,我开始有意识的把数学和日常生活联系起来。有一次,妈妈烙饼,锅里能放两张饼。我就想,这不是一个数学问题吗?烙一张饼用两分钟,烙正、反面各用一分钟,锅里最多同时放两张饼,那么烙三张饼最多用几分钟呢?我想了想,得出结论:要用3分钟:先把第一、第二张饼同时放进锅内,1分钟后,取出第二张饼,放入第三张饼,把第一张饼翻面;再烙1分钟,这样第一张饼就好了,取出来。然后放第二张饼的反面,同时把第三张饼翻过来,这样3分钟就全部搞定。
我把这个想法告诉了妈妈,她说,实际上不会这么巧,总得有一些误差,不过算法是正确的。看来,我们必须学以致用,才能更好的让数学服务于我们的生活。
数学就应该在生活中学习。有人说,现在书本上的知识都和实际联系不大。这说明他们的知识迁移能力还没有得到充分的锻炼。正因为学了不能够很好的理解、运用于日常生活中,才使得很多人对数学不重视。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。

各门科学的数学化
数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具.
同其他科学一样,数学有着它的过去、现在和未来.我们认识它的过去,就是为了了解它的现在和未来.近代数学的发展异常迅速,近30多年来,数学新的理论已经超过了18、19世纪的理论的总和.预计未来的数学成就每“翻一番”要不了10年.所以在认识了数学的过去以后,大致领略一下数学的现在和未来,是很有好处的.
现代数学发展的一个明显趋势,就是各门科学都在经历着数学化的过程.
例如物理学,人们早就知道它与数学密不可分.在高等学校里,数学系的学生要学普通物理,物理系的学生要学高等数学,这也是尽人皆知的事实了.
又如化学,要用数学来定量研究化学反应.把参加反应的物质的浓度、温度等作为变量,用方程表示它们的变化规律,通过方程的“稳定解”来研究化学反应.这里不仅要应用基础数学,而且要应用“前沿上的”、“发展中的”数学.
再如生物学方面,要研究心脏跳动、血液循环、脉搏等周期性的运动.这种运动可以用方程组表示出来,通过寻求方程组的“周期解”,研究这种解的出现和保持,来掌握上述生物界的现象.这说明近年来生物学已经从定性研究发展到定量研究,也是要应用“发展中的”数学.这使得生物学获得了重大的成就.
谈到人口学,只用加减乘除是不够的.我们谈到人口增长,常说每年出生率多少,死亡率多少,那么是否从出生率减去死亡率,就是每年的人口增长率呢?不是的.事实上,人是不断地出生的,出生的多少又跟原来的基数有关系;死亡也是这样.这种情况在现代数学中叫做“动态”的,它不能只用简单的加减乘除来处理,而要用复杂的“微分方程”来描述.研究这样的问题,离不开方程、数据、函数曲线、计算机等,最后才能说清楚每家只生一个孩子如何,只生两个孩子又如何等等.
还有水利方面,要考虑海上风暴、水源污染、港口设计等,也是用方程描述这些问题再把数据放进计算机,求出它们的解来,然后与实际观察的结果对比验证,进而为实际服务.这里要用到很高深的数学.
谈到考试,同学们往往认为这是用来检查学生的学习质量的.其实考试手段(口试、笔试等等)以及试卷本身也是有质量高低之分的.现代的教育统计学、教育测量学,就是通过效度、难度、区分度、信度等数量指标来检测考试的质量.只有质量合格的考试才能有效地检测学生的学习质量.
至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理.
我国著名的数学家关肇直先生说:“数学的发明创造有种种,我认为至少有三种:一种是解决了经典的难题,这是一种很了不起的工作;一种是提出新概念、新方法、新理论,其实在历史上起更大作用的、历史上著名的正是这种人;还有一种就是把原来的理论用在崭新的领域,这是从应用的角度有一个很大的发明创造.”我们在这里所说的,正是第三种发明创造.“这里繁花似锦,美不胜收,把数学和其他各门科学发展成综合科学的前程无限灿烂.”
正如华罗庚先生在1959年5月所说的,近100年来,数学发展突飞猛进,我们可以毫不夸张地用“宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题.可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域.
关于“0”
0,可以说是人类最早接触的数了。我们祖先开始只认识没有和有,其中的没有便是0了,那么0是不是没有呢?记得小学里老师曾经说过“任何数减去它本身即等于0,0就表示没有数量。”这样说显然是不正确的。我们都知道,温度计上的0摄氏度表示水的冰点(即一个标准大气压下的冰水混合物的温度),其中的0便是水的固态和液态的区分点。而且在汉字里,0作为零表示的意思就更多了,如:1)零碎;小数目的。2)不够一定单位的数量……至此,我们知道了“没有数量是0,但0不仅仅表示没有数量,还表示固态和液态水的区分点等等。”
“任何数除以0即为没有意义。”这是小学至中学老师仍在说的一句关于0的“定论”,当时的除法(小学时)就是将一份分成若干份,求每份有多少。一个整体无法分成0份,即“没有意义”。后来我才了解到a/0中的0可以表示以零为极限的变量(一个变量在变化过程中其绝对值永远小于任意小的已定正数),应等于无穷大(一个变量在变化过程中其绝对值永远大于任意大的已定正数)。从中得到关于0的又一个定理“以零为极限的变量,叫做无穷小”。
“105、203房间、2003年”中,虽都有0的出现,粗“看”差不多;彼此意思却不同。105、2003年中的0指数的空位,不可删去。203房间中的0是分隔“楼(2)”与“房门号(3)”的(即表示二楼八号房),可删去。0还表示……
爱因斯坦曾说:“要探究一个人或者一切生物存在的意义和目的,宏观上看来,我始终认为是荒唐的。”我想研究一切“存在”的数字,不如先了解0这个“不存在”的数,不至于成为爱因斯坦说的“荒唐”的人。作为一个中学生,我的能力毕竟是有限的,对0的认识还不够透彻,今后望(包括行动)能在“知识的海洋”中发现“我的新大陆”。

已解决问题收藏 转载到QQ空间 有关数学文化方面的论文,3000字左右
200[ 标签:文化 论文,数学,论文 ] 语言性论文,可以是数学的历史,发展,以及数学与其他领域方面的关系和影响 匿名 回答:3 人气:11 解决时间:2008-11-17 19:53
满意答案数学的文化价值 一、数学是哲学思考的重要基础 数学在科学、文化中的地位,也使得它成为哲学思考的重要基础。历史上哲学领域内许多重要论争,常常牵涉到有关对数学的一些根本问题的认识。我们思考这些问题,有助于正确认识数学,正确理解哲学中有关的争论。 (一)数学——-根源于实践 数学的外在表现,或多或少人的智力活动相联系。因此在数学和实践的关系上,历来有人主张数学是“人的精神的自由创造”,否定数学来源于实践其实,数学的一切发展都不同程度地归结为实际的需要。从我国殷代的甲骨文中,就可以看到那时我们的祖先已经会使用十进制计数方法他们为适应农业的需要,将“十干”和“十二支”配成六十甲子,用以记年、月、日,几千年的历史说明这种日历的计算方法是有效的。同样,由于商业和债务的计算,古代的巴比伦人己经有了乘法表、倒数表,并积累了许多属于初等代数范畴的资料。在埃及,由于尼罗河泛滥后重新测量土地的需要,积累了大量计算面积的几何知识。后来随着社会生产的发展,特别是为适应农业耕种与航海需要而产生的天文测量,逐渐形成了初等数学,包括当今我们在中学里学习到的大部分数学知识。再后来由于蒸汽机等机械的发明而引起的工业革命,需要对运动特别是变速运动作更精细的研究,以及大量力学问题出现,促使微积分在长期的酝酿后应运而生。20世纪以来近代科学技术的飞速发展,使数学进入一个空前繁荣时期。在这个时期数学出现了许多新的分支:计算数学,信息论,控制论,分形几何等等。总之,实践的需要是数学发展的最根本的推动力。 数学的抽象性往往被人所误解。有些人认为数学的公理、公设、定理仅仅是数学家头脑思维的产物。数学家靠一张纸、一支笔工作,和实际没有什么联系。 其实,即使就最早以公理化体系面世的欧的几里德几何而言,实际事物的几何直观和实践中人们发展的现象,尽管不合乎数学家公理化体系的各式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他伯头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会成为无源之水,无本之木。 其实,即使就最早以公理化体系面世的欧几里德几何而言,实际事物的几何直观和实践中人们发现的现象,尽管不合乎数学家公理化体系的程式,却仍然包含着数学理论的核心。当数学家把建立几何的公理体系当作自己的目标时,他的头脑中也一定联系到几何作图和直观现象。一个人,即使是很有天赋的数学家,能在数学的研究中获得具有科学价值的成果,除了他接受过严格的数学思维训练以外,他在数学理论研究的过程中,必定会在问题的提出、方法的选择、结论的提示等诸多方面自觉或不自觉地受到实践的指引。可以这么说,脱离了实践,数学就会变成无源之水,无本之木。 但是,数学理性思维的特点,使它不会满足于仅研究现实的数量关系和空间形式,它还努力探索一切可能的数量关系和空间形式。在古希腊时期,数学家就超越了在现实有限尺度精度内度量线段的方法,觉察到了无公度量线段的存在,即无理数的存在。这其实是数学中最困难的概念之一—连续性、无限性的问题。直到两千年以后,同样的问题导致极限理论的深入研究,大大地推动了数学的发展。试想今天如果还没有实数的概念,我们将面临怎样的处境。这时人们无法度量正方形对角线的长度,也不会解一元二次方程:至于极限理论与微积分学更不可能建立即使人们可以像牛顿那样应用微积分,但是在判断结论的真实性时会感到无所适从。在这种状况下,科学技术还能走多远呢?又如在欧几里德几何产生时,人们就对其中一个公设的独立性产生怀疑。到19世纪上半叶,数学家改变这个公设,得到了另一种可能的几何一一非欧几里德几何。这种几何的创立者表现了极大的勇气,因为这种几何得出的结论从“常理”来说是非常“荒唐”的。例如“三角形的面积不会超过某一个正数”。现实世界似乎没有这种几何的容身之地。但是过了近一百年,在物理学家爱因斯坦发现的相对论中,非欧几里德几何却是最合适的几何。再如,20世纪30年代哥德尔得到了数学结论不可判别性的结果,其中的某些概念非常抽象,近几十年却在算法语言的分析中找到了应用。实际上,许多数学在一些领域或一些问题中的应用,一旦实践推动了数学,数学本身就会不可避免地获得了一种动力,使之有可能超出直接应用的界限。而数学的这种发展,最终也会回到实践中去。 总之,我们应该大力提倡研究和当前实际应用有直接联系的数学课题,特别是现实经济建设中的数学问题。但是我们也应该在纯粹科学和应用科学之间建立有机的联系,建立抽象的共性和丰富多彩的个性之间的平衡,以此来推动整个科学协调地发展。 (二)数学—充满了辩证法由于数学严密性的特点,很少有人怀疑数学结论的正确性。相反,数学的结论往往成为真理的一种典范。例如人们常常用“像一加一等于二那么确定”来表示结论不容置疑。在我们的中小学的教学中,数学更是只准模仿、演练、背诵。数学真的是万古不变的绝对真理吗? 事实上,数学结论的真理性是相对的即使像1+1=2这样简单的公式,也有它不成立的地方。例如在布尔代数中,1+1=0!而布尔代数在电子线路中有广泛的应用。欧几里德几何在我们的日常生活中总是正确的,但在研究天体某些问题或速度很快的粒子运动时非欧几何却是适宜的。数学其实是非常多样化的,它的研究范围也随着新问题的出现而不断扩大。如同一切科学一样,数学家们如果死守着前辈的思想、方法、结论不放,数学科学就不会进步。把数学的严密性和公理化体系看作一种“教条”是错误的,更不能像封建时代的文人对待孔夫子说的话:“真理”已经包含在圣人说过的话里,后人只能对其作诠释。数学发展的历史可以证明,正是数学家特别是年轻数学家的创新精神,敢于向守旧的思想挑战,数学的面貌才得以不断地更新,数学才成长为今天这样一门蓬勃发展、富有朝气的学科。 数学的公理化体系从来也不是不容怀疑、不容变化的“绝对真理”欧几里德的几何体系是最早出现的数学公理化体系,但从一开始就有人怀疑其中的第五公设不是独立的,即该公设可以从公理体系的其他部分推出。两千多年来人们一直在寻找答案,终于在19世纪由此发现了非欧几何。虽然人们长时期受到欧几里德几何的束缚,但是最终人们还是接受了不同的几何公理体系。如果历史上某些数学家多一点敢于向旧体系挑战的革新精神,非欧几何也许还可能早几百年出现 数学公理化体系反映了内部逻辑严密性的要求。在一个学科领域内,当有关的知识积累到一定程度后,理论就会要求把一堆看来散乱的结果以某种体系的形式表现出来。这就需要对己有的事实再认识、再审视、再思索,创造新概念、新方法,尽可能地使理论能包括最一般、最新发现的规律。这实在是一个艰苦的理论创新过程。数学公理化也一样,它表示数学理论已经发展到了一个成熟的阶段,但并不是认识一劳永逸的终结。现有的认识可能被今后更深刻的认识所代替,现有的公理也可能被今后更一般化、包含更多事实的公理体系所代替。数学就在不断地更新过程中得到发展。 有种看法以为,应用数学就是把熟诵的数学结论套到实际问题上去,以为中小学的教学就是教给学生这些万古不变的教条。其实数学的应用极充满挑战性,一方面不但需要深切地认识实际问题本身,另一方面要求掌握相关数学知识的真谛,更重要的是要求能创造性地把两者结合起来。 就数学的内容来说,数学充满了辩证法。在初等数学发展时期,占统治地位的是形而上学。在该时期的数学家或其他科学家看来,世界由僵硬的、不变的东西组成。与此相适应,那时数学研究的对象是常量,即不变的量。笛卡尔的变数是数学中的转折点,他把初等数学中完全不同的两个领域一一几何和代数结合起来,建立了解析几何这个框架具备了表现运动和变化的特性,辩证法因此进入了数学。在此后不久产生的微积分抛弃了把初等数学的结论作为永恒真理的观点,常常做出相反的判断,提出一些在初等数学的代表人物看来完全不可理解的命题。数学走到了这样一个领域,在那里即使很简单的关系,都采取了完全辩证的形式,迫使数学家们不自觉又不自愿地转变为辩证数学家。在数学研究的对象中,充满了矛盾的对立面:曲线和直线,无限和有限,微分和积分,偶然和必然,无穷大和无穷小,多项式和无穷级数,正因为如此,马克思主义经典作家在有关辩证法的论述中经常提到数学。我们学一点数学,一定会对体会辩证法有所帮助。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页