您当前的位置:首页 > 发表论文>论文发表

博弈论论文的经典结论_博弈论论文的经典结论怎么写

2023-12-10 08:22 来源:学术参考网 作者:未知

博弈论论文的经典结论

下面我们来看行为经济学家利用实验的方法将得出怎样的结论?实验设计如下:将招募来的博弈者安置在计算机实验室中,每人有10元的出场费,两人一组通过各自面前的计算机联系,相互不认识而且实验结束也不会知道对方是谁。每组中的一位(投资人A)可以完全保留手中的10元也可以将其中的任何部分借给对手(借款人B),不管A付出多少,B都会收到3倍的金额,如A借给对方4元,B总共会得到4×3 10=22元的支付,然后由B决定是否还钱给A和还多少,只要B 愿意借钱给A也同样会收到3倍的金额。按照传统博弈论,在这样的一次性博弈中,当处于纳什均衡时,A 和B各自都只能获得10元。然而事实上,经过成百上千次的实验,发现50%的博弈者A会向对方进行借钱,而75%会收到对方的还款,博弈者B亦然。而且,B从A处借钱越多,随后向A还钱就越多。行为博弈学家认为,之所以产生这种现象的原因在于:现行的社会、制度、经济和生活环境都会影响人与人之间的信任。传统博弈论认为理性自利的人不会信任别人,即使得到别人的信任也不会变的值得信任,但它忽略了一点,人类不仅是自利的,同时也是高度社会化的动物,整个不断社会化的过程使得大脑已经形成了一种自动的社会化的反应机制,我们在意别人的看法,考虑别人的反应,即使是对陌生人,虽然这种情感发生作用时我们甚至没有意识到,但它还是在决策制定中发挥着重要的作用。我们的大脑作为一个内在的指南针引导我们做出“对”的选择。同样的,对于“囚徒困境”博弈,这两个被抓的嫌疑犯可能在一起合作很久,双方有密切的社会联系,各自对对方都非常信任,甚至愿意为对方牺牲自己,那么在这种情况下,“囚徒困境”的结局反而是两个嫌疑犯都不承认自己的罪行更不会揭发别人,他们的非理性行为使他们获得帕累托改善,也就是说两人的境况同时得到改善。因此,传统博弈论的结论是:在这样的博弈中理性人的个人理性行为导致集体的非理性。反过来,行为博弈论的结论则是:在这样的博弈中博弈者的个人非理性反而导致集体的理性。我们再来看前文讨论过的一个例子。在这个例子中,博弈者A与博弈者B分配一个固定量的利益,比如一定数额的金钱或一个固定大小的蛋糕。其中一位博弈者A出价,也就是在双方之间分配这一定利益,要求博弈者B要么接受要么拒绝,如果B接受,那么双方就按照A提出的分配比例瓜分利益,如果B拒绝,那么双方之间不会有交易行为,双方都不会获得任何收益。按照传统博弈论的推导,博弈者都是理性自利的,有收益总是比没收益好,因此只要A对B的分配额大于0,理性的B都会接受,所以,这个博弈具有无穷多个纳什均衡。

博弈论十大定律

博弈论十大定律如下:

1、囚徒困境。人的一生总要面对很多选择,而且在很多时候你都会面临那种让你进退两难的的抉择。到底何去何从,囚徒困境的博弈虽这里不可能会带给你带来一个明确的答复,但是却能够使你通过这种两难的抉择,引发一种种深深的思考。因为,背叛与合作并不只是道德与良知的核心,更是利益的化身。

2、重复博弈。在博弈论中,按照博弈的次数多少,博弈行为可分为有限次数博弈和无限次数博弈两大类。所谓无限次数博弈,就是博弈双方会把一个博弈行为重复无限多次。由于博弈双方都将顾及长远利益,所以双方在博弈中往往会采取尽量与对方合作的态度。

3、斗鸡博弈。曾经的话说某一天,在斗鸡场上有两只好战的公鸡发生遭遇战。这时,公鸡有两个行动选择:一是退下来,一是进攻。如果一方退下来,而对方没有退下来,对方获得胜利,这只公鸡则很丢面子;如果对方也退下来双方则打个平手;如果自己没退下来,而对方退下来,自己则胜利,对方则失败。如果两只公鸡都前进,则两败俱伤。

4、智猪博弈。生活中,经济学里有一句名言:“天下没有免费的午餐。”它非常形象地说明了任何经济活动都是需要成本的,要获得利益,就得付出一定的代价。可是,世界上真的就没有免费午餐了吗?答案自然是否定的。生活中随处可见的“搭便车”现象,就很生动地告诉我们,天下还是有一些你可以享用的免费午餐。

5、酒吧博弈。如果你的身边有“专业”的彩民朋友,通过观察你会发现,他通常会将以往的中奖号码进行收集、归纳、总结,然后得出自己所预测的下一期中奖结果。他们这种行为。其实是一种信息收集与预测的途径,也是概率推算的规则,其原理与酒吧博弈堪称如出一辙。

6、猎鹿博弈。在原始社会,人们靠狩猎为生。为了使问题简化。设想村庄里只有两个猎人,主要的猎物只有两种:鹿和兔子。如果两个猎人齐心合力。忠实地守着自己的岗位,他们就可以共同捕得一头鹿。要是两个猎人各自行动,仅凭一个人的力量,是无法捕到鹿的。但却可以抓住4只兔子。不知道从什么时候开始,“协作”、“团队精神”这样的名词开始频频出现在我们的生活之中。

7、蜈蚣博弈。在现实生活中,人们在尝试做一件事情的时候往往会先对其结果进行分析预判,然后根据可能发生的种种情况而进行合理的选择。但是,即使你的推断逻辑足够严谨,可能得出的结论也会与你的直觉大相径庭。

8、鹰鸽博弈。在与自然博弈的过程之中,鹰与鸽都表现出了各自不同的特点。鹰派注重实力,鸽派更注重道义;鹰派注重利益,鸽派注重信义;鹰派注重眼前,鸽派注重长远;鹰派注重战术,鸽派注重战略;鹰派倾向于求快,鸽派倾向于求稳。但是,鹰派与鸽派到底何者更好一些,恐怕难以一概而论。

9、枪战博弈。这个世界的生存法则是物竞天择,适者生存,而非强者生存。恐龙高大,但它却在地球上绝迹了,相对于强者来说,弱者有更多的选择和妥协,因为懂得适应,他们就有更多的生存机会。

10、情场博弈。恋人,既是你的合作伙伴,也是你的对手,甚至“敌人”。在恋爱的这场不是游戏的“游戏”中,谁能熟练地驾驭游戏或博弈规则,谁就是爱情的赢家。所以,要想成为赢家,就要学会与伙伴一样的恋人合作,还要学会与敌人一样的恋人周旋。面对对手围追堵截的爱情围剿,要学会闪转腾挪的诸多反围剿的手段。

浅谈“博弈论”

   

     

        以前没发现,但在学习了 博弈论基础的知识后,很容易的发现,博弈如同空气般,围绕在我们身边,无处不在。生活中的大小事怎么个博弈法,下面的内容将娓娓道来。

      无论在日常生活中还是在工作中,“博弈”都是一个高频的词汇,生活中的博弈和经济学中的博弈有怎样的关系,精通“博弈”的人会不会特别擅长“套路”,“博弈论”到底是怎样的一种思维?下面我们来从以下方面谈论一下。

一、博弈论的定义

      博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的目的。 博弈论思想古已有之,中国古代的《孙子兵法》等著作就不仅是一部军事著作,而且算是最早的一部博弈论著作。

二、博弈论的发展

        博弈论最初主要研究象棋、桥牌、赌博中的胜负问题,人们对博弈局势的把握只停留在经验上,没有向理论化发展。近代对博弈论的研究,开始于策 梅洛、波莱尔、冯·诺依曼。

      1928年, 冯·诺依曼 证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年, 冯·诺依曼 和 摩根斯坦 共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。

        1950~1951年, 约翰·福布斯·纳什 利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。此外, 莱因哈德·泽尔腾、约翰·海萨尼 的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。

三、博弈论的例子

        “博弈论”中有一些由点及面、发人深思的经典案例,这些案例不仅使专业研究人士如醉如痴,也使一些普通民众兴致盎然;不仅成为“博弈论”中的一道亮丽风景,也是整个经济学领域中的学术奇葩。

一囚徒困境

        囚徒困境的故事讲的是,两个嫌疑犯作案后被警察抓住,分别关在不同的屋子里接受审讯。警察知道两人有罪,但缺乏足够的证据。警察告诉每个人:如果两人都抵赖,各判刑一年;如果两人都坦白,各判八年;如果两人中一个坦白而另一个抵赖,坦白的放出去,抵赖的判十年。于是,每个囚徒都面临两种选择:坦白或抵赖。然而,不管同伙选择什么,每个囚徒的最优选择是坦白:如果同伙抵赖、自己坦白的话放出去,抵赖的话判一年,坦白比不坦白好;如果同伙坦白、自己坦白的话判八年,比起抵赖的判十年,坦白还是比抵赖的好。结果,两个嫌疑犯都选择坦白,各判刑八年。如果两人都抵赖,各判一年,显然这个结果好。但这个帕累托改进办不到,因为它不能满足人类的个体的理性要求。

        囚徒困境所反映出的深刻问题是,人类的个人理性有时能导致集体的非理性——聪明的人类会因自己的聪明而作茧自缚,或者损害集体的利益。

      前几年,我国彩电市场上,生产厂家基于自我利益选择大幅降价,但由此引发的价格战使所有生产厂家都遭受重创,这也是一种囚徒困境。

二智猪博弈

        猪圈里面有两只猪, 一只大,一只小。猪圈很长,一头有一个踏板,另一头是饲料的出口和食槽。每踩一下踏板,在远离踏板的猪圈的另一边的投食口就会落下少量的食物。如果有一只 猪去踩踏板,另一只猪就有机会抢先吃到另一边落下的食物。当小猪踩动踏板时,大猪 会在小猪跑到食槽之前刚好吃光所有的食物;若是大猪踩动了踏板,则还有机会在小猪吃完落下的食物之前跑到食槽,争吃到另一半残羹。所以呢小猪为了能吃饭东西,最好的策论就是大大猪的“便车”。这种情况在现实中比比皆是。

        比如,在某种新产品刚上市,其性能和功用还不为人所熟识的情况下,如果进行新产品生产的不仅是一家小企业,还有其他生产能力和销售能力更强的企业。那么,小企业完全没有必要作出头鸟,自己去投入大量广告做产品宣传,只要采用跟随战略即可。

        “智猪博弈”告诉我们,谁先去踩这个踏板,就会造福全体,但多劳却并不一定多得。

三那什均衡

      纳什均衡最核心的其实就是互利的思想。有个小故事就可以体现。街上相邻的地方有两家小店,一家卖稀饭豆浆,一家卖油条馒头,一般客人都是买上馒头油条去和稀饭豆浆,所以开始两家的生意都很红火。后来卖豆浆的觉得卖油条的抢了生意,双方产生了矛盾,卖油条的走了,结果连带自己的生意也不行了。

        其实我们生活中有很多与博弈相关的例子。而在这样一个复杂的博弈战场上,我们怎么能使得自己在博弈场上获得最大的利益就是一门很大的学问了。所以,博弈论是一门很有用的学科。通过读书学习让我又懂得了一问学问。

博奕论的基本观点是什么?

.博弈论是指某个个人或是组织,面对一定的环境条件,在一定的规则约束下,依靠所掌握的信息,从各自选择的行为或是策略进行选择并加以实施,并从各自取得相应结果或收益的过程,在经济学上博奕论是个非常重要的理论概念。

什么是博弈论?古语有云,世事如棋。生活中每个人如同棋手,其每一个行为如同在一张看不见的棋盘上布一个子,精明慎重的棋手们相互揣摩、相互牵制,人人争赢,下出诸多精彩纷呈、变化多端的棋局。博弈论是研究棋手们 “出棋” 着数中理性化、逻辑化的部分,并将其系统化为一门科学。换句话说,就是研究个体如何在错综复杂的相互影响中得出最合理的策略。事实上,博弈论正是衍生于古老的游戏或曰博弈如象棋、扑克等。数学家们将具体的问题抽象化,通过建立自完备的逻辑框架、体系研究其规律及变化。这可不是件容易的事情,以最简单的二人对弈为例,稍想一下便知此中大有玄妙:若假设双方都精确地记得自己和对手的每一步棋且都是最“理性” 的棋手,甲出子的时候,为了赢棋,得仔细考虑乙的想法,而乙出子时也得考虑甲的想法,所以甲还得想到乙在想他的想法,乙当然也知道甲想到了他在想甲的想法…

面对如许重重迷雾,博弈论怎样着手分析解决问题,怎样对作为现实归纳的抽象数学问题求出最优解、从而为在理论上指导实践提供可能性呢?现代博弈理论由匈牙利大数学家冯·诺伊曼于20世纪20年代开始创立,1944年他与经济学家奥斯卡·摩根斯特恩合作出版的巨著《博弈论与经济行为》,标志着现代系统博弈理论的初步形成。对于非合作、纯竞争型博弈,诺伊曼所解决的只有二人零和博弈--好比两个人下棋、或是打乒乓球,一个人赢一着则另一个人必输一着,净获利为零。在这里抽象化后的博弈问题是,已知参与者集合(两方) ,策略集合(所有棋着) ,和盈利集合(赢子输子) ,能否且如何找到一个理论上的“解” 或“平衡” ,也就是对参与双方来说都最“合理” 、最优的具体策略?怎样才是“合理” ?应用传统决定论中的“最小最大” 准则,即博弈的每一方都假设对方的所有功略的根本目的是使自己最大程度地失利,并据此最优化自己的对策,诺伊曼从数学上证明,通过一定的线性运算,对於每一个二人零和博弈,都能够找到一个“最小最大解” 。通过一定的线性运算,竞争双方以概率分布的形式随机使用某套最优策略中的各个步骤,就可以最终达到彼此盈利最大且相当。当然,其隐含的意义在於,这套最优策略并不依赖于对手在博弈中的操作。用通俗的话说,这个著名的最小最大定理所体现的基本“理性” 思想是“抱最好的希望,做最坏的打算” 。

2.在经济学中,“智*博弈”(Pigs’payoffs)是一个著名博弈论例子。
这个例子讲的是:*圈里有两头*,一头大*,一头小*。*圈的一边有个踏板,每踩一下踏板,在远离踏板的*圈的另一边的投食口就会落下少量的食物。如果有一只*去踩踏板,另一只*就有机会抢先吃到另一边落下的食物。当小*踩动踏板时,大*会在小*跑到食槽之前刚好吃光所有的食物;若是大*踩动了踏板,则还有机会在小*吃完落下的食物之前跑到食槽,争吃到另一半残羹。
那么,两只*各会采取什么策略?答案是:小*将选择“搭便车”策略,也就是舒舒服服地等在食槽边;而大*则为一点残羹不知疲倦地奔忙于踏板和食槽之间。
原因何在?因为,小*踩踏板将一无所获,不踩踏板反而能吃上食物。对小*而言,无论大*是否踩动踏板,不踩踏板总是好的选择。反观大*,已明知小*是不会去踩动踏板的,自己亲自去踩踏板总比不踩强吧,所以只好亲力亲为了。
“小*躺着大*跑”的现象是由于故事中的游戏规则所导致的。规则的核心指标是:每次落下的事物数量和踏板与投食口之间的距离。
如果改变一下核心指标,*圈里还会出现同样的“小*躺着大*跑”的景象吗?试试看。
改变方案一:减量方案。投食仅原来的一半分量。结果是小*大*都不去踩踏板了。小*去踩,大*将会把食物吃完;大*去踩,小*将也会把食物吃完。谁去踩踏板,就意味着为对方贡献食物,所以谁也不会有踩踏板的动力了。
如果目的是想让*们去多踩踏板,这个游戏规则的设计显然是失败的。
改变方案二:增量方案。投食为原来的一倍分量。结果是小*、大*都会去踩踏板。谁想吃,谁就会去踩踏板。反正对方不会一次把食物吃完。小*和大*相当于生活在物质相对丰富的“共产主义”社会,所以竞争意识却不会很强。
对于游戏规则的设计者来说,这个规则的成本相当高(每次提供双份的食物);而且因为竞争不强烈,想让*们去多踩踏板的效果并不好。
改变方案三:减量加移位方案。投食仅原来的一半分量,但同时将投食口移到踏板附近。结果呢,小*和大*都在拼命地抢着踩踏板。等待者不得食,而多劳者多得。每次的收获刚好消费完。
对于游戏设计者,这是一个最好的方案。成本不高,但收获最大。
原版的“智*博弈”故事给了竞争中的弱者(小*)以等待为最佳策略的启发。但是对于社会而言,因为小*未能参与竞争,小*搭便车时的社会资源配置的并不是最佳状态。为使资源最有效配置,规则的设计者是不愿看见有人搭便车的,政府如此,公司的老板也是如此。而能否完全杜绝“搭便车”现象,就要看游戏规则的核心指标设置是否合适了。
比如,公司的激励制度设计,奖励力度太大,又是持股,又是期权,公司职员个个都成了百万富翁,成本高不说,员工的积极性并不一定很高。这相当于“智*博弈”
增量方案所描述的情形。但是如果奖励力度不大,而且见者有份(不劳动的“小*”也有),一度十分努力的大*也不会有动力了----就象“智*博弈”减量方案一所描述的情形。最好的激励机制设计就象改变方案三----减量加移位的办法,奖励并非人人有份,而是直接针对个人(如业务按比例提成),既节约了成本(对公司而言),又消除了“搭便车”现象,能实现有效的激励。
许多人并未读过“智*博弈”的故事,但是却在自觉地使用小*的策略。股市上等待庄家抬轿的散户;等待产业市场中出现具有赢利能力新产品、继而大举仿制牟取暴利的游资;公司里不创造效益但分享成果的人,等等。因此,对于制订各种经济管理的游戏规则的人,必须深谙“智*博弈”指标改变的个中道理。
3.背景知识:纳什博弈论的原理与应用

2002年03月21日17:44 北京晚报
1950年和1951年纳什的两篇关于非合作博弈论的重要论文,彻底改变了人们对竞争和市场的看法。他证明了非合作博弈及其均衡解,并证明了均衡解的存在性,即著名的纳什均衡。从而揭示了博弈均衡与经济均衡的内在联系。纳什的研究奠定了现代非合作博弈论的基石,后来的博弈论研究基本上都沿着这条主线展开的。然而,纳什天才的发现却遭到冯·诺依曼的断然否定,在此之前他还受到爱因斯坦的冷遇。但是骨子里挑战权威、藐视权威的本性,使纳什坚持了自己的观点,终成一代大师。要不是30多年的严重精神病折磨,恐怕他早已
站在诺贝尔奖的领奖台上了,而且也绝不会与其他人分享这一殊荣。

纳什是一个非常天才的数学家,他的主要贡献是1950至1951年在普林斯顿读博士学位时做出的。然而,他的天才发现———非合作博弈的均衡,即“纳什均衡”并不是一帆风顺的。

1948年纳什到普林斯顿大学读数学系的博士。那一年他还不到20岁。当时普林斯顿可谓人杰地灵,大师如云。爱因斯坦、冯·诺依曼、列夫谢茨(数学系主任)、阿尔伯特·塔克、阿伦佐·切奇、哈罗德·库恩、诺尔曼·斯蒂恩罗德、埃尔夫·福克斯……等全都在这里。博弈论主要是由冯·诺依曼(1903—1957)创所立的。他是一位出生于匈牙利的天才的数学家。他不仅创立了经济博弈论,而且发明了计算机。早在20世纪初,塞梅鲁(Zermelo)、鲍罗(Borel)和冯·诺伊曼已经开始研究博弈的准确的数学表达,直到1939年,冯·诺依曼遇到经济学家奥斯卡·摩根斯特恩(Oskar Morgenstern),并与其合作才使博弈论进入经济学的广阔领域。

1944年他与奥斯卡·摩根斯特恩合著的巨作《博弈论与经济行为》出版,标志着现代系统博弈理论的的初步形成。尽管对具有博弈性质的问题的研究可以追溯到19世纪甚至更早。例如,1838年古诺(Cournot)简单双寡头垄断博弈;1883年伯特兰和1925年艾奇沃奇思研究了两个寡头的产量与价格垄断;2000多年前中国著名军事家孙武的后代孙膑利用博弈论方法帮助田忌赛马取胜等等都属于早期博弈论的萌芽,其特点是零星的,片断的研究,带有很大的偶然性,很不系统。冯·诺依曼和摩根斯特恩的《博弈论与经济行为》一书中提出的标准型、扩展型和合作型博弈模型解的概念和分析方法,奠定了这门学科的理论基础。合作型博弈在20世纪50年代达到了巅峰期。然而,诺依曼的博弈论的局限性也日益暴露出来,由于它过于抽象,使应用范围受到很大限制,在很长时间里,人们对博弈论的研究知之甚少,只是少数数学家的专利,所以,影响力很有限。正是在这个时候,非合作博弈———“纳什均衡”应运而生了,它标志着博弈论的新时代的开始!纳什不是一个按部就班的学生,他经常旷课。据他的同学们回忆,他们根本想不起来曾经什么时候和纳什一起完完整整地上过一门必修课,但纳什争辩说,至少上过斯蒂恩罗德的代数拓扑学。斯蒂恩罗德恰恰是这门学科的创立者,可是,没上几次课,纳什就认定这门课不符合他的口味。于是,又走人了。然而,纳什毕竟是一位英才天纵的非凡人物,他广泛涉猎数学王国的每一个分支,如拓扑学、代数几何学、逻辑学、博弈论等等,深深地为之着迷。纳什经常显示出他与众不同的自信和自负,充满咄咄逼人的学术野心。1950年整个夏天纳什都忙于应付紧张的考试,他的博弈论研究工作被迫中断,他感到这是莫大的浪费。殊不知这种暂时的“放弃”,使原来模糊、杂乱和无绪的若干念头,在潜意识的持续思考下,逐步形成一条清晰的脉络,突然来了灵感!这一年的10月,他骤感才思潮涌,梦笔生花。其中一个最耀眼的亮点就是日后被称之为“纳什均衡”的非合作博弈均衡的概念。纳什的主要学术贡献体现在1950年和1951年的两篇论文之中(包括一篇博士论文)。1950年他才把自己的研究成果写成题为“非合作博弈”的长篇博士论文,1950年11月刊登在美国全国科学院每月公报上,立即引起轰动。说起来这全靠师兄戴维·盖尔之功,就在遭到冯·诺依曼贬低几天之后,他遇到盖尔,告诉他自己已经将冯·诺依曼的“最小最大原理”(minimax solution)推到非合作博弈领域,找到了普遍化的方法和均衡点。盖尔听得很认真,他终于意识到纳什的思路比冯·诺伊曼的合作博弈的理论更能反映现实的情况,而对其严密优美的数学证明极为赞叹。盖尔建议他马上整理出来发表,以免被别人捷足先登。纳什这个初出茅庐的小子,根本不知道竞争的险恶,从未想过要这么做。结果还是盖尔充当了他的“经纪人”,代为起草致科学院的短信,系主任列夫谢茨则亲自将文稿递交给科学院。纳什写的文章不多,就那么几篇,但已经足够了,因为都是精品中的精品。这一点也是值得我们深思的。国内提一个教授,要求在“核心的刊物”上发表多少篇文章。按照这个标准可能纳什还不一定够资格。

1996年诺贝尔经济学奖得主莫尔里斯当牛津大学艾奇沃思经济学讲座教授时也没有发表过什么文章,特殊的人才,必须有特殊的选拔办法。

纳什在上大学时就开始从事纯数学的博弈论研究,1948年进入普林斯顿大学后更是如鱼得水。20岁出头已成为闻名世界的数学家。特别是在经济博弈论领域,他做出了划时代的贡献,是继冯·诺依曼之后最伟大的博弈论大师之一。他提出的著名的纳什均衡的概念在非合作博弈理论中起着核心的作用。后续的研究者对博弈论的贡献,都是建立在这一概念之上的。由于纳什均衡的提出和不断完善为博弈论广泛应用于经济学、管理学、社会学、政治学、军事科学等领域奠定了坚实的理论基础。

囚犯的两难处境

大理论中的小故事

要了解纳什的贡献,首先要知道什么是非合作博弈问题。现在几乎所有的博弈论教科书上都会讲“囚犯的两难处境”的例子,每本书上的例子都大同小异。

博弈论毕竟是数学,更确切地说是运筹学的一个分支,谈经论道自然少不了数学语言,外行人看来只是一大堆数学公式。好在博弈论关心的是日常经济生活问题,所以不能不食人间烟火。其实这一理论是从棋弈、扑克和战争等带有竞赛、对抗和决策性质的问题中借用的术语,听上去有点玄奥,实际上却具有重要现实意义。博弈论大师看经济社会问题犹如棋局,常常寓深刻道理于游戏之中。所以,多从我们的日常生活中的凡人小事入手,以我们身边的故事做例子,娓娓道来,并不乏味。话说有一天,一位富翁在家中被杀,财物被盗。警方在此案的侦破过程中,抓到两个犯罪嫌疑人,斯卡尔菲丝和那库尔斯,并从他们的住处搜出被害人家中丢失的财物。但是,他们矢口否认曾杀过人,辩称是先发现富翁被杀,然后只是顺手牵羊偷了点儿东西。于是警方将两人隔离,分别关在不同的房间进行审讯。由地方检察官分别和每个人单独谈话。检察官说,“由于你们的偷盗罪已有确凿的证据,所以可以判你们一年刑期。但是,我可以和你做个交易。如果你单独坦白杀人的罪行,我只判你三个月的监禁,但你的同伙要被判十年刑。如果你拒不坦白,而被同伙检举,那么你就将被判十年刑,他只判三个月的监禁。但是,如果你们两人都坦白交代,那么,你们都要被判5年刑。”斯卡尔菲丝和那库尔斯该怎么办呢?他们面临着两难的选择——坦白或抵赖。显然最好的策略是双方都抵赖,结果是大家都只被判一年。但是由于两人处于隔离的情况下无法串供。所以,按照亚当·斯密的理论,每一个人都是从利己的目的出发,他们选择坦白交代是最佳策略。因为坦白交代可以期望得到很短的监禁———3个月,但前提是同伙抵赖,显然要比自己抵赖要坐10年牢好。这种策略是损人利己的策略。不仅如此,坦白还有更多的好处。如果对方坦白了而自己抵赖了,那自己就得坐10年牢。太不划算了!因此,在这种情况下还是应该选择坦白交代,即使两人同时坦白,至多也只判5年,总比被判10年好吧。所以,两人合理的选择是坦白,原本对双方都有利的策略(抵赖)和结局(被判1年刑)就不会出现。这样两人都选择坦白的策略以及因此被判5年的结局被称为“纳什均衡”,也叫非合作均衡。因为,每一方在选择策略时都没有“共谋”(串供),他们只是选择对自己最有利的策略,而不考虑社会福利或任何其他对手的利益。也就是说,这种策略组合由所有局中人(也称当事人、参与者)的最佳策略组合构成。没有人会主动改变自己的策略以便使自己获得更大利益。“囚徒的两难选择”有着广泛而深刻的意义。个人理性与集体理性的冲突,各人追求利己行为而导致的最终结局是一个“纳什均衡”,也是对所有人都不利的结局。他们两人都是在坦白与抵赖策略上首先想到自己,这样他们必然要服长的刑期。只有当他们都首先替对方着想时,或者相互合谋(串供)时,才可以得到最短时间的监禁的结果。“纳什均衡”首先对亚当·斯密的“看不见的手”的原理提出挑战。按照斯密的理论,在市场经济中,每一个人都从利己的目的出发,而最终全社会达到利他的效果。不妨让我们重温一下这位经济学圣人在《国富论》中的名言:“通过追求(个人的)自身利益,他常常会比其实际上想做的那样更有效地促进社会利益。”从“纳什均衡”我们引出了“看不见的手”的原理的一个悖论:从利己目的出发,结果损人不利己,既不利己也不利他。两个囚徒的命运就是如此。从这个意义上说,“纳什均衡”提出的悖论实际上动摇了西方经济学的基石。因此,从“纳什均衡”中我们还可以悟出一条真理:合作是有利的“利己策略”。但它必须符合以下黄金律:按照你愿意别人对你的方式来对别人,但只有他们也按同样方式行事才行。也就是中国人说的“己所不欲勿施于人”。但前提是人所不欲勿施于我。其次,“纳什均衡”是一种非合作博弈均衡,在现实中非合作的情况要比合作情况普遍。所以“纳什均衡”是对冯·诺依曼和摩根斯特恩的合作博弈理论的重大发展,甚至可以说是一场革命。

从“纳什均衡”的普遍意义中我们可以深刻领悟司空见惯的经济、社会、政治、国防、管理和日常生活中的博弈现象。我们将例举出许多类似于“囚徒的两难处境”这样的例子。如价格战、军奋竞赛、污染等等。一般的博弈问题由三个要素所构成:即局中人(players)又称当事人、参与者、策略等等的集合,策略(strategies)集合以及每一对局中人所做的选择和赢得(payoffs)集合。其中所谓赢得是指如果一个特定的策略关系被选择,每一局中人所得到的效用。所有的博弈问题都会遇到这三个要素。

价格战博弈:

现在我们经常会遇到各种各样的家电价格大战,彩电大战、冰箱大战、空调大战、微波炉大战……这些大战的受益者首先是消费者。每当看到一种家电产品的价格大战,百姓都会“没事儿偷着乐”。在这里,我们可以解释厂家价格大战的结局也是一个“纳什均衡”,而且价格战的结果是谁都没钱赚。因为博弈双方的利润正好是零。竞争的结果是稳定的,即是一个“纳什均衡”。这个结果可能对消费者是有利的,但对厂商而言是灾难性的。所以,价格战对厂商而言意味着自杀。从这个案例中我们可以引伸出两个问题,一是竞争削价的结果或“纳什均衡”可能导致一个有效率的零利润结局。二是如果不采取价格战,作为一种敌对博弈论(vivalry game)其结果会如何呢?每一个企业,都会考虑采取正常价格策略,还是采取高价格策略形成垄断价格,并尽力获取垄断利润。如果垄断可以形成,则博弈双方的共同利润最大。这种情况就是垄断经营所做的,通常会抬高价格。另一个极端的情况是厂商用正常的价格,双方都可以获得利润。从这一点,我们又引出一条基本准则:“把你自己的战略建立在假定对手会按其最佳利益行动的基础上”。事实上,完全竞争的均衡就是“纳什均衡”或“非合作博弈均衡”。在这种状态下,每一个厂商或消费者都是按照所有的别人已定的价格来进行决策。在这种均衡中,每一企业要使利润最大化,消费者要使效用最大化,结果导致了零利润,也就是说价格等于边际成本。在完全竞争的情况下,非合作行为导致了社会所期望的经济效率状态。如果厂商采取合作行动并决定转向垄断价格,那么社会的经济效率就会遭到破坏。这就是为什么WTO和各国政府要加强反垄断的意义所在。

污染博弈:

假如市场经济中存在着污染,但政府并没有管制的环境,企业为了追求利润的最大化,宁愿以牺牲环境为代价,也绝不会主动增加环保设备投资。按照看不见的手的原理,所有企业都会从利己的目的出发,采取不顾环境的策略,从而进入“纳什均衡”状态。如果一个企业从利他的目的出发,投资治理污染,而其他企业仍然不顾环境污染,那么这个企业的生产成本就会增加,价格就要提高,它的产品就没有竞争力,甚至企业还要破产。这是一个“看不见的手的有效的完全竞争机制”失败的例证。直到20世纪90年代中期,中国乡镇企业的盲目发展造成严重污染的情况就是如此。只有在政府加强污染管制时,企业才会采取低污染的策略组合。企业在这种情况下,获得与高污染同样的利润,但环境将更好。

贸易自由与壁垒:

这个问题对于刚刚加入WTO的中国而言尤为重要。任何一个国家在国际贸易中都面临着保持贸易自由与实行贸易保护主义的两难选择。贸易自由与壁垒问题,也是一个“纳什均衡”,这个均衡是贸易双方采取不合作博弈的策略,结果使双方因贸易战受到损害。X国试图对Y国进行进口贸易限制,比如提高关税,则Y国必然会进行反击,也提高关税,结果谁也没有捞到好处。反之,如X和Y能达成合作性均衡,即从互惠互利的原则出发,双方都减少关税限制,结果大家都从贸易自由中获得了最大利益,而且全球贸易的总收益也增加了。

高分求博弈论论文一篇,贴近生活现实的,3000字左右

  【内容提要】博弈论研究的是把自己的策略建立在假定对手会按其最佳利益行动基础上的策略理论。博弈论在现实社会经济生活中有着广泛的适用范围。本文从博弈论的含义入手分析了博弈论的基本原理,并在此基础上针对一些现实社会经济生活中的问题,运用博弈论加以分析和思考。文章认为应该借鉴博弈论为我国经济建设服务。

  【关键词】博弈论 社会经济生活 市场

  有人说经济学就是一门研究如何做出选择的学问。在现实的社会经济生活中企业或个人为了自身利益的最大化面对市场会做出自己的最优决策。不同的市场情形会影响经济主体人的决策行为。在完全竞争市场条件下,企业会根据给定商品的市场价格计算出生产和供应到市场上的商品的数量,以实现最大的利润。而寡头市场的情形要比完全竞争市场复杂的多。企业大量面对的是信息不完全的市场。企业不知道面对强大的竞争对手该如何做出抉择。市场的时效性又要求企业必须在信息不完全的情况下做出决策。在这样的决策中存在着三个合理的假设为前提。第一是理性的“经济人”。每一个行为主体都依据自身利益的最大化作为行动的出发点。第二是每一个行为主体做出的决策都不是在真空的世界中。现实的世界使得一个人的生存必须以他人的生存为前提。这种相互依赖的关系使得一个行为主体的决策会对其他为主体产生重要的影响,同样其他行为主体的决策也会直接影响着这个行为主体的决策结果。第三是寡头市场的情形。也即一个行业里面只有少数几家企业,甚至只有两三家企业,每一方的市场份额都很大。由于竞争对手很少,每一个主体的行为产生的后果受对手的行为的影响都很大。那么这样的决策就带有了博弈的色彩。

  一、博弈论释义

  博弈论(game theory)所分析的就是两个或两个以上的比赛者或参与者选择能够共同影响每一个参加者的行动或策略的方式。博弈论的核心思想是:假设你的对手在研究你的策略并追求自己最大利益行动的时候,你如何选择最有效的策略。举例说明:
  (一)、囚徒困境
  “囚徒困境”说的是两个囚徒一起做坏事,结果被警察发现抓了起来,进行隔离审讯。如果他们都承认犯罪,每人将入狱三年;如果他们都不坦白,由于证据不充分,每人将只入狱一年;如果一个抵赖而另一个坦白并且愿意作证,那么抵赖者将入狱五年,而坦白者将得到宽大释放。这样两个囚徒面临着如何选择的问题。从表面上看,他们应该互相合作,保持沉默,以便能得到自由。但他们不得不仔细考虑对方可能采取什么样的选择。甲犯不是个傻子,他马上意识到,他根本无法相信他的同伙不会向警方提供对他不利的证据,然后获释而去,让他独自坐牢。这种想法的诱惑力实在太大了。但他也意识到,他的同伙也不是傻子,也会这样来设想他。所以甲犯的结论是,唯一理性的选择就是背叛同伙,把一切都告诉警方,因为如果他的同伙笨得只会保持沉默,那么他就会是那个获释出狱的幸运者了。而如果他的同伙也根据这个逻辑向警方交代了,那么,甲犯也只需服刑三年而不用五年。同样乙犯也会有这样的想法。结果只能是两个囚犯都坐牢服刑三年。 用矩阵图形来分析两个囚徒选择的根据。
  乙
  坦白 抵赖

  3 5
  坦白
  3 0
  甲
  0 1
  抵赖
  5 1

  囚徒困境图示
  (图中左下方的数字代表甲犯入狱的年限,右上方的数字代表乙犯入狱的年限)
  对于甲来说不管乙采取什么策略,他选择坦白总是比较有利的。同样对于乙来说选择坦白也是比较有利的。在图中我们设想一下甲面临的选择。甲犯如果坦白,不论乙采取怎样的选择,甲的选择总是最好的。甲如果抵赖,不论乙采取怎样的选择,甲的选择总是最坏的。当然会有人问为什么两个囚徒不选择图示中右下方区域呢?这个问题方到后面来说明。很显然甲的选择是一种占优策略。在两个(或全部)博弈者都采取占优策略时,我们称其结果为一种占优均衡。在图示中左上方的区域代表的结果就是占优均衡。因为进行博弈的两个囚徒都采用了占优策略,从而造成了这种均衡状态。从中我们还可以分析出每一个囚犯要想获得最大的利益不仅取决于自己的策略,同时还取决于对手的策略。
  (二)双寡头垄断者是否会采用垄断价格
  假设市场上的供给只有两个企业来提供,每一个企业具有相同的成本和需求结构,每个企业都将考虑是采用正常价格,还是抬高价格形成垄断,并尽力获取垄断利润。用矩阵图形来分析两个企业进行决策的根据。

  乙
  高价格 正常价格

  A 200 B 150
  高价格
  100 -20
  甲
  C -30 D 10
  正常价格
  150 10

  对抗博弈的图示
  (图中左下方的数字代表甲企业获利的数额,右上方的数字代表乙企业获利的数额 单位:万元)

  在图示中我们可以看到这两个企业在A区域中有最大的联合区域,在他们采用高价策略时,共赚到300万元的利润。如果企业之间合谋并且设置垄断价格,A区域中的情况就会出现。在另一个极端是采用正常价格竞争策略的D区域,每个企业盈利10万元。在这一对抗博弈的例子中有两种策略:即一个企业采用正常价格,另一个则采取高价格策略。例如在C区域中乙采用高价格策略,而甲则削价。甲占领了大部分市场,并且赚取了最高利益,此时乙实际上亏损了。在B区域中甲以高价策略为赌注,而乙的正常价格则意味着甲的亏损。在这一例子中由于甲选择了正常价格的占优性策略,无论乙怎样做,甲都会获利较多。另一方面,乙没有占优性策略。这是因为如果甲采用正常价格策略,乙也要采用正常价格。如果甲实行高价,乙也要实行高价。乙现在处在“两难处境”之中。那么乙是否会采用高价策略,并希望甲也紧随其后?或者为了安全而采用正常价格而出售?可以肯定的说,乙还是应该以正常价格出售。这是因为乙会站在甲的立场上来考虑。无论乙采取何种策略,甲都会采用正常价格策略。这是甲的占优策略。因此乙会假定甲将采取其占优策略方式以找出自己的最佳策略。这种把自己的策略建立在假定对手会按其最佳利益行动的基础上来解决问题的方法被称为纳什均衡(Nash equilibrium)。纳什均衡也被称为非合作性均衡,是指一个在其他博弈者的策略给定时,没有一方能够改善自己的获利的状况。也就是说在博弈者甲的策略已定时,另一个对手不可能做得更好,反之亦然。每一种策略都是针对其对手策略的最佳反应。在分析纳什均衡的过程中我们可以看到每一方选择策略时都没有合谋,他们只是选择对自身最有利的策略,而不会考虑社会福利或任何其他群体的利益。在图示中我们还可以看到,无论是甲还是乙都无法从这种均衡(D区域)中得到更多的利润。如果甲转移到高价格策略,他的利润就会由10万元变为-20万元,而当乙从正常价格出售的纳什均衡状态抬高其价格时,他的利润就会由10万元变为-30万元。同样有人也会问为什么双方不选择A区域中有最大的联合区域?对于这个问题也放到后面加以说明。
  综合上述两个例子我们引出了占优策略和纳什均衡的概念。不难看出在给定其他博弈者策略的前提下,当没有一方能够改善其策略时,才会出现纳什均衡。而占优策略则是指无论其他博弈者采取什么策略,该博弈者的策略总是最好的。对于纳什均衡,我们说企业是根据其竞争者的策略而相应采取的最佳策略;对于占优策略,我们说企业采取的什它能够做到的最好的策略。因而可以说占优策略也是一种纳什均衡。
  现在来说明非合作博弈的原因。在上述两个例子中为什么甲乙双方不能合作以取得双方最大的利益呢?例如在双寡头垄断模型中乙企业会决定试着降低产出,希望他的竞争者也会这样做,由此而提高市场价格。乙企业知道如果竞争者不降低产出它的利润会降为-30万元。但是,他还是试了一下。在实践中这个策略注定是要失败的。我们分析一下双寡头垄断模型的矩阵表就会知道原因是甲的占优策略是遵循竞争产出规则的。无论乙采取竞争还是低产出以求垄断,甲仍然会按照MC=P的 原则确定产出。完全竞争市场中利润的刺激会导致企业走向有效的竞争均衡或者称之为非合作均衡。如果企业合谋或以协同的方式活动时,也即博弈双方协调一致去寻找最大化共同利润的策略时,就称之为合作性均衡。当然可以肯定的是尽管共同利益在协同性均衡状态下达到最大化,但是社会总效用比竞争均衡状态下低。在现实中几个大企业联手或勾结起来形成行业的垄断以谋求最大利润而结成的联盟称之为卡特尔。卡特尔的组织很不稳定,每个企业都有强大的动机去欺骗协议而转向非合作均衡。除此以外卡特尔在许多情况下是非法行为。企业联手抬高价格会损害消费者的利益。政府鼓励企业之间的竞争有利于激励企业改善经营管理,改进技术,降低成本,提高劳动生产率,从而提高企业在市场中的竞争力。大量存在而相互独立的企业非合作行为有利于资源的有效配置。低产出和高价格的合谋或勾结将导致社会资源的严重浪费以及消费者的经济损失。因此在现实中政府一般都会实行反垄断法来惩治那些合谋控制价格以企图瓜分市场获得高额垄断利润经济主体。由于政府的力量也使得合谋或勾结变得非常困难。当然这并不排除在现实中合作性博弈的出现。一般地,合作性博弈都发生在事关国计民生的重要行业或部门中间。这里不多加以分析。
  二、博弈论在现实社会生活中的运用

  有的学者认为博弈论已经遍及经济学、社会科学、工商业活动以及日常的生活之中。这样理解也许有人会认为照这样说博弈论无所不包了,其实也不然。但是 博弈论在社会生活中有着广泛的用途却是不争的事实。从博弈论的角度可以解释价格战、污染环境、军备竞赛、考试或体育竞技导致过多的参与者和加剧收入不平等……。限于篇幅,作者仅举两例来说明博弈论在现实社会生活中的运用。
  (一)污染环境的博弈
  如果考虑到外部性的经济, 企业在不受到管制的环境里为了追求利润最大化,宁可污染环境,也不愿安装昂贵的治污处理设备。在这种情况下,如果一个企业采取利他主义的态度治理污染,以图改进环境,那么它就会增加成本,提高产品价格,消费者将逐渐转移到其他竞争者的手中。如果成本过高甚至还会出现破产或倒闭。在市场活动中的企业首先要想办法生存下来,然后还要在竞争中尽可能的淘汰对手,避免出局。这种思维策略会使得任何企业都不可能通过减少污染而增加利润。用矩阵图形来加以说明。

  乙公司
  低污染 高污染

  A 200 B 120
  低污染
  100 -30
  甲公司
  C -30 D 100
  高污染
  120 100

  污染博弈的图示
  (图中左下方的数字代表甲企业治污获利数额,右上方的数字代表乙企业治污获利数额 单位:万元)
  从图示中可以看到由于占优策略发挥的作用,甲乙双方都会采用D区域的方案。对于甲公司来说不管乙公司采取什么策略,他选择不治理污染(高污染)总是比较有利的。同样对于乙来说选择不治理污染(高污染)也是比较有利的。这个图示恰好与“囚徒困境”的图示相反。在图示中右下方的区域代表的结果才是占优均衡。因为进行博弈的两个公司都采用了占优策略,从而造成了这种均衡状态。在这种情况下我们就会看出非合作或纳什均衡是无效率的。在现实中当市场活动达到比较危险的无效率地步,政府就应该介入。通过设置有效的规章制度或排放收费,政府可以诱导企业向A区域移动。例如我国在治理淮河污染的过程中考虑到经济的外在性,提出的一整套规章制度和排放收费原则正是博弈论在现实中的要求和运用。近期国务院环保部门为保护我国近海渔业资源而提出的“碧海蓝天计划”也同样可以运用上述理论加以说明。
  (二)胜者为王的博弈
  在现实中人们往往可以看到北大、清华这样的高等院校毕业生在择业时会得到最好的职业而大多数其他名不见经传的院校毕业生只能求其次,或者很可能连对口的专业都找不到;一个超级明星每次出场费可高达几万元,而大多数演员只能拿到平均的工资。像这样收入分配不平等的现象在现实中屡见不鲜。试用矩阵图形来加以说明。

  冠军
  一般收益工作 高收益工作

  A 50 B 300
  一般收益工作
  50 50
  亚军
  C 50 D 300
  高收益工作
  200 0

  胜者为王的博弈图示
  (图中左下方的数字代表亚军获得报酬的数额,右上方的数字代表冠军军获得报酬的数额 单位:万元)
  在胜者为王的图示中有才能的、有天赋的或者是机遇好的赢家有强大的动力去参加胜者为王的比赛。高高在上的赢家在比赛中获胜左面的亚军有可能被引诱进入高收益工作的行列。就如同太多的需求者去渔船追逐同一条鱼,市场过于拥挤,最终得到的总收益很小。如果亚军停留在一般收入标准的行业中,总收入会上升。图示中右下角的D区域是胜者为王博弈的均衡状态。对于冠军来说,他总能够得到高收益工作所以不会选择一般收益工作。而对于亚军来说,冠军的示范作用是巨大的。他会认为有同样的机会获胜,也会千方百计的加入到高收益工作的行列中。但是冠军只有一个,于是一个非效率的均衡产生了收入的最大不平等。究其原因在于市场那只“看不见的手”发挥激励作用的同时也使得利润较高的职业吸引了过多的参与者,导致无效的消费和投资。在现实中,我国高考现象和民工现象与此理论颇为相似。就乙高考现象为例:在改革开放至90年代期间,众多的考生为了自己将来利益获得的最大化纷纷报考重点大学,而成功者甚微。造成家庭和社会资源的重大浪费。近几年来国家采取政策为避免资源的重大浪费而采取了高校扩招的策略。纵然面对高校未来几年由于扩招而带来的压力,但是权衡利弊,国家从宏观上考虑做出的举措还是有可取之处的。

  三、结语

  博弈论在理论上进一步拓宽了经济学研究的领域和范围,在实践中也有着广泛的运用。在我国社会主义市场经济发展的今天,我们应该借鉴博弈论中的基本原理提高资源的配置效率,发挥市场机制的作用,同时加强国家的宏观调控,双头并举,为我国经济建设发挥作用。

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页