博弈论又被称为对策论(Game Theory),它是现代数学的一个新分支,也是运筹学的一个重要组成内容。在《博弈圣经》中写到:博弈论是二人在平等的对局中各自利用对方的策略变换自己的对抗策略,达到取胜的意义。按照2005年因对博弈论的贡献而获得诺贝尔经济学奖的Robert Aumann教授的说法,博弈论就是研究互动决策的理论。所谓互动决策,即各行动方(即局中人[player])的决策是相互影响的,每个人在决策的时候必须将他人的决策纳入自己的决策考虑之中,当然也需要把别人对于自己的考虑也要纳入考虑之中……在如此迭代考虑情形进行决策,选择最有利于自己的战略(strategy)。 博弈论的应用领域十分广泛,在经济学、政治科学(国内的以及国际的)、军事战略问题、进化生物学以及当代的计算机科学等领域都已成为重要的研究和分析工具。此外,它还与会计学、统计学、数学基础、社会心理学以及诸如认识论与伦理学等哲学分支有重要联系。 按照Aumann所撰写的《新帕尔格雷夫经济学大辞典》“博弈论”辞条的看法,标准的博弈论分析出发点是理性的,而不是心理的或社会的角度。不过,近20年来结合心理学和行为科学、实验经济学的研究成就而对博弈论进行一定改造的行为博弈论(behavoiral game theory )也日益兴起。
纳什均衡,Nash equilibrium ,又称为非合作博弈均衡,是博弈论的一个重要术语,以约翰·纳什命名。
纳什均衡是一种策略组合,使得同一时间内每个参与人的策略是对其他参与人策略的最优反应。
假设有n个局中人参与博弈,如果某情况下无一参与者可以独自行动而增加收益(即为了自身利益的最大化,没有任何单独的一方愿意改变其策略的[1] ),则此策略组合被称为纳什均衡。所有局中人策略构成一个策略组合(Strategy Profile)。纳什均衡,从实质上说,是一种非合作博弈状态。
纳什均衡达成时,并不意味着博弈双方都处于不动的状态,在顺序博弈中这个均衡是在博弈者连续的动作与反应中达成的。纳什均衡也不意味着博弈双方达到了一个整体的最优状态,需要注意的是,只有最优策略才可以达成纳什均衡,严格劣势策略不可能成为最佳对策,而弱优势和弱劣势策略是有可能达成纳什均衡的。在一个博弈中可能有一个以上的纳什均衡,而囚徒困境中有且只有一个纳什均衡。