您当前的位置:首页 > 发表论文>论文发表

大学物理经典力学论文_大学物理经典力学论文题目

2023-12-05 21:44 来源:学术参考网 作者:未知

大学物理经典力学论文

  经典与时代的批判
  ----------经典力学的成就与局限性
  摘要:论述经典力学的成就,批判经典力学的绝对时间、绝对空间、引力本质、质量不变等观点,说明其应用范围及其与经典物理学的矛盾。
  关键词:空间 时间 引力的本质 质量 速度 能量 矛盾
  一、经典力学的成就
  经典力学的理论体系是以牛顿运动三定律为基础的。牛顿系统地总结了伽利略、开普勒和惠更斯等人的工作,得到了万有引力定律和牛顿运动三定律,于 1687年出版了《自然哲学数学原理》。这是牛顿的一部代表作,也是力学的一部经典著作。牛顿在这部书中,从力学的基本概念(质量、动量、惯性、力等)和基本定律(运动三定律)出发,运用他所发明的微积分这一锐利的数学工具,建立了经典力学的完整而严密的体系,把天体力学和地面上的物体的力学统一起来,这是物理学史上第一次大的综合。所以,牛顿的《自然哲学数学原理》的出版,标志着经典力学体系的建立。这对科学发展的进程以及后代科学家们的思维方式产生了极其深刻的影响。牛顿力学的建立标志着近代理论自然科学的诞生,并成为其他各门自然科学的典范。
  二、经典力学的局限性
  创造历史的人们总是不可避免地要受到历史的制约,牛顿当然也不例外。由于受到时代的局限,牛顿创立的经典力学的基本概念和基本原理存在着固有的局限性,主要表现在以下几个方面:
  第一,引入了绝对时间、绝对空间等基本概念。按照牛顿的说法,绝对的、真正的和数学的时间自身在流逝着,而且由于其本性而均匀地、与任何其他外界事物无关地流逝着。绝对空间就其本性而言,是与任何外界事物无关而永远是相同的和不动的。绝对运动是一个物体从某一绝对的处所向另一绝对的处所的移动。
  莱布尼兹、贝克莱、马赫等先后都对绝对空间、时间观念提出过有价值的异议,指出过,没有证据能表明牛顿绝对空间的存在。爱因斯坦推广了上述的相对性原理,提出狭义相对论。在狭义相对论中,长度和时间间隔也变成相对量,运动的尺相对于静止的尺变短,运动的钟相对于静止的钟变慢。在广义相对论中,时空的性质不是与物体运动无关的:一方面,物体运动的性质要决定于用怎样的空间时间参照系来描写它另一方面时空的性质也决定于物体及其运动本身。
  量子论的发展,对时间概念提出了更根本的问题。量子论的结论之一就是:对于一个体系在过去可能存在于什么状态的判断结果,要决定于在现今的测量中做怎样的选择。这种现在与过去之间的相互关系,是与因果顺序概念十分不同的,暗含于时间概念中的因果序列要求过去的存在应是不依赖现在的。
  因此,用时间来描述事件发生的顺序,可能并不总是合用的。空间与时间是事物之间的一种次序,但并不一定是最基本的次序,它可能是更基本的次序的一种近似。
  第二,牛顿虽然对引力的本质持审慎态度,但最终还是对它作了抽象的、纯粹数学形式的概括,把它实际看作是一种直接的、即时传递的超距作用力。
  爱因斯坦的广义相对论对万有引力做出一种解释,就是时空本身是有弹性的,可以弯曲、伸展。当一个有质量的物体置于某一空间时,空间就会弯曲变形,质量越大,空间弯曲变形就越严重。那么,空间为什么会在有质量的物体周围弯曲呢?爱因斯坦也没能给出答案。所以,爱因斯坦的弯曲空间理论也没有说明引力的本质是什么。量子力学关于电荷间的电磁力和强子间的强相互作用力的传递原理的解释也没有说明引力的本质是什么。认为引力是通过引力场或引力子来传递的观点也未得到肯定,因为,至今科学家也没有找到传递万有引力作用的引力子。
  第三、 在经典力学中物体的质量是恒定不变的,它与物体的速度或能量无关。
  在相对论中质量这一概念的外延就被大大地扩展了。.爱因斯坦著名的质能方程E=mc2使到原来在经典力学中彼此独立的质量守恒和能量守恒定律结合起来,成了统一的“质能守恒定律”,它充分反映了物质和运动的统一性。质能方程说明,质量和能量是不可分割而联系着的.一方面,任何物质系统既可用质量m来标志它的数量,也可用能量E来标志它的数量;另一方面,一个系统的能量减少时,其质量也相应减少,另一个系统接受而增加了能量时,其质量也相应地增加.
  爱因斯坦从力学的观点出发,考虑两个球体的弹性碰撞,利用动量守恒定理和相对论速度相加定理能够导出著名的质速度公式

  该式说明,物体的质量不再是与其运动状态无关的量,它依赖于物体的运动速度。运动物体速度为v时的质量为 ,式中m0为物体的静质量,当物体的速度趋于光速时,物体的质量趋于无穷大。
  第四,经典力学定律只适用于宏观低速世界,对于可与光速相比的高速情况和微观世界的适用问题,当时没有涉及也不可能涉及。
  第五,经典物理学与经典力学的潜在矛盾
  在经典物理学中,最难使人满意之处恐怕莫过于对光的描述了。如果微粒说是正确的,那么人们不禁要问,当光被吸收的时候,组成光的粒子变成了什么呢?而且为了既表示可称量物质又表示光,必须在讨论中引入不同的实体,这无论如何也不能使人心安理得。
  同样,纳入力学框架中的光的波动论也难以自圆其说。按照波动论,光被解释为充满宇宙空间的以太的振动。由于光是横波,因此以太必须具有承受切应力而不承受压应力的能力,又由于以太对可称量物质并不产生可观察到的阻力,它又必须具有极小的密度。为此,人们绞尽脑汁,臆想出种种以太模型。这种无所不能、无奇不有的以太反倒使人如堕五里雾中。
  经典力学的基本概念和基本原理在热力学中也遇到了一些麻烦。1865年,克劳修斯确立了热力学第二定律,该定律揭示出与热现象有关的物理过程具有不可逆性。在经典力学中,从来也未发现类似的情况,力学过程的可逆性是由普遍的力学原理做保证的。可是热力学第二定律也是普遍成立的,因此,这个矛盾是无法用力学的基本观念予以解释的。
  三、总结
  牛顿用自己毕生的精力,建起了一座科学丰碑,他的研究推动了人类文明的进程,它在宏观物理学的各方面所取得的成就就是极其广泛和辉煌的。然而创造历史的人们总是不可避免地要受到历史的制约,牛顿当然也不例外。由于受到时代的局限,牛顿在否定亚里士多德以来有关错误论述和含糊概念、创立牛顿力学的同时,也在其中隐含了自我否定的潜在因素。诚如恩格斯所说的:“凡在人类历史领域中是现实的,随着时间的推移,都会成为不合理的;因而按其本性来说已经是不合理的,一开始就包含着不合理性”。(《马克思恩格斯选集》第四卷)
  由于牛顿尽力把他的体系表现为由经验必然性所决定的,特别是由于经典力学在实践上的巨大成就,足以阻碍后人去思考那些基本概念和基本原理的先验特征,以至于在相当长的时期内,无论谁也没有想到,整个物理学的基础可能需要从根本上加以改造。事实上,物理学在每一个历史时期都有它自己的基本概念和基本原理,而继后的时期人们又往往夸大它们的作用,不适当地把它们误用到其所能及的范围之外。为了消除这种误用,每—个历史时期都需要一种新的启蒙,正是这种永不止息的启蒙精神,才使科学不致变为僵化的教条。
  参考文献:
  [1]经典场论 张启仁著 北京:科学出版社,2003
  [2]量子力学 井孝功著 哈尔滨:哈尔滨工业大学出版社,2004
  [3]空间:从相对论到M理论的历史 关洪著 北京:清华大学出版社,2004
  [4]时间 保罗•贝内特著;苏福忠译 上海:上海人民美术出版社,2003
  [5]狭义相对论 G.司蒂文逊;C.W.凯尔密司特 上海:上海科学技术出版社,1963
  [6]相对论导引 赵展岳著 北京:清华大学出版社,2002
  [7]热力学 王竹溪著 北京:北京大学出版社,2005
  [8]物理学史 郭奕玲,沈慧君编著 北京:清华大学出版社,1993
  [9]大学物理.下 钟江帆主编 北京:高等教育出版社,2004

物理学生论文力学

力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。下文是我为大家整理的关于物理学力学论文的范文,欢迎大家阅读参考!

浅析物理力学的产生及其发展

摘 要:物理力学主要是研究宏观力学的微观理论学科。研究物理力学的主要目的是通过理解微观粒子性质的相互作用,找出介质的力学性质计算方法,进而使解决力学问题建立在微观分析的基础上。本文主要探讨了物理力学的产生和发展,为有关物理力学问题的解决提供理论基础。

关键词:物理力学;产生;发展

一、物理力学发展需要解决的问题分析

在物理力学的发展过程中,我们需要解决两方面的问题,一个是关于物性的问题,另一个是有关运动规律的问题。物理力学主要通过物性及其运动规律这两个方面的微观化而成为解决问题、建立微观分析的基础。关于物性的参数主要表现为运动方程组中的系数,例如弹性系数、热导率、粘性系数、声速、比热等。为了求解运动的方程组,需要知道它们相关的数值。

在传统力学中,物性参数的数值是需要试验测定的。而在我们研究的物理力学中,是通过微观的分析以及对宏观数据分析相结合的方法计算参数的数值。我们研究物理力学,不仅是为了能够找出物质性质的微观规律,而且还需要找能够预见新物质性质的方法。

针对物理力学发展中的相关问题,先了解一下有关激波结构问题的例子。物态在激波前后会有很大的变化,在波阵面一定的厚度之内,物质是处在远离平衡的状态的。这时,对于宏观物态的参数已经不适用了。因此,我们需要从分子运用的这一个角度进行描述。像从波尔兹曼方程的角度出发,进而直接进行求解。

在上世纪60年代,一对无内部自由度的影响激波结构的问题得到了进一步发展。其发展主要得力于计算机技术的发展,从而能够使波尔兹曼方程进而得到模型数学方程,求精确解。另外,还能够实现激波管与稀薄气体风洞在较高区域的分辨率的相关方面的测量。虽然对于这些问题的处理都是初步的,但是从物理力学微观运动规律上看,确是一个非常大的进步。

还有一个相似的例子就是对爆震波反应区结构方面的研究。对于这方面的研究是比激波结构更加复杂的,解决问题的困难在于理论的复杂性,也有实验经验的不足等原因。分子气体的动力激光器中非平衡流方面的问题,主要是因为分子内部自由度性质在不断膨胀的气流中产生的自身不平衡现象。在这种迅速膨胀的气流中,分子振动的自由度两方面是不平衡的,不能够采用统一的温度对其进行描述。因此,这也是一个远离平衡的问题。

二、新技术不断推动物理力学的发展

物理力学的产生及其发展即是力学学科发展的重要趋势,也是促进现代工程技术发展的重要手段。自上世纪40年代至今,由于尖端的技术以及基础科学的不断发展与进步,力学面临着大量的超高温和超高压等特殊条件下的问题。我国著名的力学家钱学森在上世纪50年代初提出应该建立物理力学这门学科,其真知灼见把握了力学发展的大趋势,并且预见了今后突飞猛进的结果。

人类社会科学技术的不断发展,给物理力学的研究提供了更多的条件。纵观近五十年间的物理力学的发展,值得一提的是液体理论的重大进步。1972年,麦克唐纳等人计算出等压线结果和多种液体实测数据等,促进了对液体理论的研究。1997年,威尔逊提出了采用重正化群理论解决临界现象,取得了重大的进展。近20年来,对于耗散结构理论是非平衡系统的研究也取得了突破性的进展。上世纪50年代之后,原子分子物理学才重新被重视,尤其是计算机的不断应用大大地促进了这门学科的发展。其他的像分子束技术、光散射技术、中子衍射技术等都成为了研究固体以及液体微观结构的有效手段。另外,高压技术能够产生千万大气压以上的高压条件,高倍电子显微镜能够用来观测原子尺的现象等。新技术以及新发明都为进一步研究物理力学提供了有利的条件。

本文对物理力学的产生及其发展进行了相关的探讨。通过本文的研究,我们了解到,在对物理力学进行研究时,我们应该明确物理力学研究的目的,还应该充分采用新技术、新发明,将其不断应用到研究中。只要我们不断探索和实践,一定能够进一步促进物理力学的发展。

参考文献:

[1]范继美.理论力学与普通物理力学的关系[J].云南师范大学学报(自然科学版),2009,(02).

[2]钱学森.从原子分子物理出发,经由物理力学的思路和方法搞发明创造[J].原子与分子物理学报,2007,(02).

[3]干洪.力学学科的发展现状与21世纪展望[J].安徽建筑工业学院学报(自然科学版),2001,(02)。

[4]陈卫平.现代力学发展趋势及研究课题[J].台州师专学报,2007,(06).

浅析力学在机械中的应用

[摘 要]力学是力与运动的科学,它既是一门基础科学, 又是一门应用众多且广泛的科学。本文立足于力学,简要论述了力学的内涵及其发展历程,并对力学在机械中的应用进行了较为深入的探讨与分析。

[关键词]力学 弹性力学 断裂力学 工程力学 机械

力学是力与运动的科学,它的研究对象主要是物质的宏观机械运动,它既是一门基础科学,又是一门应用众多且广泛的科学。力学与天文学和微积分学几乎同时诞生,在经典物理的发展中起关键作用,推动了地球科学的发展进步,如大气物理、海洋科学等,同时力学也在机械中起着越来越重要的作用,且应用广泛。

一、力学

力学是一门独立的基础学科,主要研究能量和力以及它们与固体、液体及气体的平衡、变形或运动的关系,可粗分为静力学、运动学和动力学三部分。

力学的发展历史悠久,古希腊时代力学附属于自然哲学,后来成为物理学的一个大分支,1687年,牛顿三大定律的提出标志着力学作为一门独立的学科开始形成。此后,随着资本主义生产的发展,到18世纪末,以动力学和运动学为主要特征的经典力学日益完善。19世纪,大机器生产促进了力学在工程技术和应用方面的发展,推动了结构力学、弹性固体力学和流体力学等主要分支的建立。19世纪末,力学已是一门相当发展并自成体系的独立学科。

二、力学在机械中的应用

力学在机械中的应用广泛,其典型应用主要有以下几种:

1.弹性力学在机械设计中的应用

弹性力学也称弹性理论,是固体力学的重要分支,主要研究弹性体在外力作用或温度变化等外界因素下所产生的应力、应变和位移,从而解决结构或机械设计中所提出的强度和刚度问题。机械运动当中,许多机械运转速度较高、承载很大,机械的弹性变形对系统的影响不容忽视,必须将机械系统按弹性系统进行分析和设计。由此可见,弹性力学在机械设计中应用广泛。一般情况下,弹性力学在凸轮机构设计、齿轮机构设计、轴设计中应用较为广泛。

齿轮机构在设计时运用了弹性力学的知识,渐开线作为齿廓曲线存在诸多优点,但用弹性力学知识加以分析便可得出它存在的一些固有缺陷,即当两齿轮啮合传动时,根据弹性力学中的赫兹公式分析可得,在其它条件相同的情况下,要想降低两齿轮在接触处的最大接触力,就必须增大两轮齿廓在接触点处的综合曲率半径,对于渐开线齿轮传动来说,由于要增大两轮齿廓在接触点处的综合曲率半径,就需要增大齿轮机构的尺寸,而两轮齿廓在接触点处的综合曲率半径增大的范围是有限的,所以难以进一步达到齿轮机构尺寸小、而承载能力大幅度提高的目的。同时,弹性力学在轴设计中也有众多应用。为避免共振现象,对高转速的轴,如汽轮机主轴、发动机曲轴等设计时振动计算尤其重要,此时必须运用弹性力学知识。

2.断裂力学在机械工程中的应用

断裂力学,是固体力学的一门新分支,主要研究含裂纹构件的强度与寿命,是结构损伤容限设计的理论基础。断裂力学主要可分为线弹性断裂力学与弹塑性断裂力学两大类,前者适用于裂纹尖端附近小范围屈服的情况;而后者适用于裂纹尖端附近大范围屈服的情况。断裂力学发展迅速,在机械工程中应用广泛,并占据重要地位。断裂力学在机械工程中的有效应用,不仅可以提高机械的性能与功效,更能防止工程设备发生灾难性的断裂事故,以确保机械、设备的安全可靠与良好运行。

首先,我国在采用断裂力学方法制订结构缺陷评定标准及安全设计规范方面已取得了较好的成绩,如压力容器、小型但用量大的液化石油气钢瓶及汽轮一发电机组等。

其次,概率断裂力学在可靠性设计中应用较多。概率断裂力学在可靠性设计中的广泛应用推动了可靠性设计的快速发展。运用参量的分布及安全余度来反映常规设计中不能准确反映的客观实际和常规设计安全评定中用安全系数不能准确反映的真实安全性。由于安全余度考虑了应力和强度的二阶矩,较好地反映了结构可靠度的实质,既考虑了变异特性又考虑了平均值,因而与失效分布有较直接的关系,使安全设计更可靠。国外已较完整地应用于飞机结构,如概率损伤容限分析、飞机结构可靠性和事故分析、飞机结构的耐久性分析等方面。我国在这方面开展的典型性研究则是海洋石油平台导管架焊接管节点的疲劳强度分析。

再者,可用断裂力学方法进行机械产品的失效分析。失效分析是指事故或故障发生后所进行的检侧和分析,目的在于找到失效的部位、失效原因和机理,从而掌握产品应当改进的方向及修复的方法,防止同类问题再次发生,以推进技术不断前进。因此,失效分析技术受到了社会各界的重视。断裂力学在机械产品失效分析中具有着重要作用。机械产品的主要失效模式有: 断裂、蠕变、疲劳、腐蚀、磨损及热损伤等,它们都可以借助断裂力学方法及断裂分析技术予以解决,断裂力学方法是失效分析的有力工具。

最后,运用断裂力学可以指导改进工艺及合理选材,如模具、焊接工艺等方面,可以减少工人的劳动量。

3.工程力学在机械修理中的应用

工程力学涉及众多的力学学科分支与广泛的工程技术领域,是一门理论性较强、与工程技术联系极为密切的技术基础学科,工程力学的定理、定律和结论广泛应用于各行各业的工程技术中,是解决工程实际问题的重要基础。处理机械工程出现的大量破坏问题,绝大多数是根据力学方面的知识作出判断和分析的。例如,汽车修理中汽车零部件的破坏分析与修理也是如此,其中,判断汽车半轴套管断裂的原因与确定修复方案等,全部流程无一不体现着工程力学知识在汽修中的应用。

三、结语

当今社会,科学技术迅猛发展,作为一门基础学科,力学也一定会得到进一步的发展与进步,且在机械中获得更广更深的应用。

参考文献

[1]林同骥,浦群.现代力学的发展[J].力学进展,1990,(1).

[2]李彦军.工程力学在汽修中的应用与对策[J].科技向导,2012,(32).

[3]侯岩滨.弹性力学在机械设计中的应用[J].辽宁师专学报,2005,(1).

[4]吴清可,刘元杰,张毓槐.断裂力学在机械工程中的应用[J].机械强度,1988,(6).

2017物理学术论文

  牛顿第一定律是经典力学中的三大定律之一,也叫作惯性定律。下文是我为大家整理的关于2017物理学术论文的 范文 ,欢迎大家阅读参考!
  2017物理学术论文篇1
  牛顿第一定律的探索

  摘 要: 牛顿第一定律是经典力学中的三大定律之一,也叫作惯性定律,确立了运动和力之间的关系,是动力学的奠基石,为后面学习共点力平衡的知识打下了坚实的基础,为后续牛顿定律的学习做好了准备。

  关键词: 牛顿第一定律 伽利略 匀速直线运动 惯性

  牛顿第一定律选自人教版必修一第四章第一节,放在运动学和力学内容之后,教材安排合理,知识点紧凑,但是很多教师在讲这节内容时对牛顿第一定律的起源讲解得比较少,因此学生对相关科学家的贡献了解得非常少。

  要想深刻理解牛顿第一定律的内容,就必须了解亚里士多德、伽利略、笛卡尔和牛顿这几位科学家做出的贡献,接下来沿着历史足迹重现这个物理思想的形成过程。

  1.引路者―亚里士多德

  在了解亚里士多德的贡献之前,我们先了解一下亚里士多德这个人。亚里士多德是古希腊哲学家、科学家和 教育 学家,他是柏拉图的学生、亚历山大大帝的老师。他一生勤奋致学,写下了大量著作,研究的领域非常广泛,包括物理学、诗歌(包括戏剧)、音乐、生物学、动物学、逻辑学等,堪称古希腊的 百科 全书。

  在物理学中亚里士多德的成就很多,但是最常被提到的却是他所犯的错误。在研究自由落体运动时,根据生活 经验 ,他认为重的物体比轻的物体下落的速度快,最终被伽利略推翻。

  他在研究力和运动之间的关系时,提出假设“凡是运动的物体,一定有推动者在推着它运动”。当看到一个物体在运动,必然有一个物体在推动它,当没有推力时,它就会停止移动。如风过树摆,风停树静,这些日常生活现象很好地符合他的观点,于是他在日常观察基础上经过思考之后得出结论――力是维持物体运动的原因。

  虽然他的观点最终被伽利略推翻,但是他所做的贡献是不可磨灭的,他的贡献在于他把运动和力结合起来。

  2.探路者―伽利略

  当时亚里士多德的学说与____教义结合,这样的结合让他的学说成为权威,两千多年来一直没有人质疑他的观点,直到伽利略用著名的斜面理想实验推翻了他的观点。伽利略认为将人们引入歧途的是摩擦力,在日常生活运动中,摩擦是难以避免的。

  他注意到当小球沿水平面运动时,由于摩擦力的作用,球最终会停下来。他发现表面越光滑,球会运动得越远,于是,他推断:若没有摩擦力,球将永远运动下去。

  伽利略为了证明他的思想,设计了著名的斜面理想实验,实验过程如下:

  第一步:让小球从斜面静止开始向下运动,小球将会冲上另一个斜面,如果没有摩擦,小球将冲上原来的高度;

  第二步:减小第二个斜面的倾角,小球仍然会达到同一个高度,但是小球在斜面上运动的距离要远一些。继续减小斜面的倾角,小球达到同一个高度时运动的距离就会更远;

  第三步:如果将第二个斜面放平,球会到达多远的位置?

  在第一步和第二步的基础上,很容易得出结论:球将永远运动下去,不需要力推动。他指出力并不是维持物体运动的原因。伽利略构想的理想实验(又称假想实验)是以可靠的事实为基础的,把实验与逻辑推理和谐地结合在一起,这种科学探究 方法 有力地推动了科学发展和进步。

  3.探路者―笛卡尔

  笛卡尔是与伽利略同时代的法国著名科学家,相对于亚里士多德和伽利略,很多学生对笛卡尔的贡献了解得更少,很多老师讲解时一笔带过,学生认为笛卡尔的思想和伽利略的思想相似,并没有什么发展,这是不对的。

  笛卡尔指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来又不偏离原来的方向。

  笛卡儿最早认识到惯性定律是解决力学问题的关键所在,最早把惯性定律作为原理加以确立,这对后来牛顿的综合工作有极其深远的影响。笛卡尔 想象力 丰富,他的许多观点都具有启发性,笛卡尔的贡献就在于他是第一个认识到力是改变物体运动状态的原因的。

  4.铺路者―牛顿

  “如果说我比别人看得更远些,那是因为我站在了巨人的肩上”,这句话大家耳熟能详,这是著名的科学家牛顿说过的话。牛顿在伽利略和笛卡尔工作的基础上,在隔了一代人之后,在《自然哲学的数学原理》一书中定义了力和惯性的概念,把物体运动的原因加以概括和提炼,提出了牛顿第一定律,这也是牛顿三大定律中最基本的定律。

  他认为一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种运动状态。把物体具有保持原来匀速直线运动状态或静止状态的性质叫作惯性,所以牛顿第一定律也叫惯性定律。牛顿之所以能够成功,是因为他站在巨人的肩膀上,勤奋学习,不断发现新知识。

  这些科学家的贡献是巨大的,牛顿第一定律不断地发展,逐渐地完善,是几代人共同不懈努力的结果,一个规律的发现并不是一帆风顺的,一开始的认识可能是错误的,需要人类不断探索才能发现真理。

  这些科学家在科学研究过程中是极其艰难的,需要付出大量精力和心血,才能发现现象背后的真理。通过对物理学历史发展过程的考察,有助于学生了解科学家认识和发现物理定理、定律的基本方法,从而“以史为鉴”,培养学生以科学家认识世界的方式认识世界。

  参考文献:

  [1]郭桂周,于海波.“牛顿第一定律”物理学史辨――兼论宗教对近代科学起源的推动作用[J].物理教师,2012,33(11).

  [2]李良杰.牛顿第一定律的教材编制摭论[J].课程教学研究,2013(2).
  2017物理学术论文篇2
  牛顿第一定律的探索

  摘 要: 牛顿第一定律是经典力学中的三大定律之一,也叫作惯性定律,确立了运动和力之间的关系,是动力学的奠基石,为后面学习共点力平衡的知识打下了坚实的基础,为后续牛顿定律的学习做好了准备。

  关键词: 牛顿第一定律 伽利略 匀速直线运动 惯性

  牛顿第一定律选自人教版必修一第四章第一节,放在运动学和力学内容之后,教材安排合理,知识点紧凑,但是很多教师在讲这节内容时对牛顿第一定律的起源讲解得比较少,因此学生对相关科学家的贡献了解得非常少。

  要想深刻理解牛顿第一定律的内容,就必须了解亚里士多德、伽利略、笛卡尔和牛顿这几位科学家做出的贡献,接下来沿着历史足迹重现这个物理思想的形成过程。

  1.引路者―亚里士多德

  在了解亚里士多德的贡献之前,我们先了解一下亚里士多德这个人。亚里士多德是古希腊哲学家、科学家和教育学家,他是柏拉图的学生、亚历山大大帝的老师。他一生勤奋致学,写下了大量著作,研究的领域非常广泛,包括物理学、诗歌(包括戏剧)、音乐、生物学、动物学、逻辑学等,堪称古希腊的百科全书。

  在物理学中亚里士多德的成就很多,但是最常被提到的却是他所犯的错误。在研究自由落体运动时,根据生活经验,他认为重的物体比轻的物体下落的速度快,最终被伽利略推翻。

  他在研究力和运动之间的关系时,提出假设“凡是运动的物体,一定有推动者在推着它运动”。当看到一个物体在运动,必然有一个物体在推动它,当没有推力时,它就会停止移动。如风过树摆,风停树静,这些日常生活现象很好地符合他的观点,于是他在日常观察基础上经过思考之后得出结论――力是维持物体运动的原因。

  虽然他的观点最终被伽利略推翻,但是他所做的贡献是不可磨灭的,他的贡献在于他把运动和力结合起来。

  2.探路者―伽利略

  当时亚里士多德的学说与____教义结合,这样的结合让他的学说成为权威,两千多年来一直没有人质疑他的观点,直到伽利略用著名的斜面理想实验推翻了他的观点。伽利略认为将人们引入歧途的是摩擦力,在日常生活运动中,摩擦是难以避免的。

  他注意到当小球沿水平面运动时,由于摩擦力的作用,球最终会停下来。他发现表面越光滑,球会运动得越远,于是,他推断:若没有摩擦力,球将永远运动下去。

  伽利略为了证明他的思想,设计了著名的斜面理想实验,实验过程如下:

  第一步:让小球从斜面静止开始向下运动,小球将会冲上另一个斜面,如果没有摩擦,小球将冲上原来的高度;

  第二步:减小第二个斜面的倾角,小球仍然会达到同一个高度,但是小球在斜面上运动的距离要远一些。继续减小斜面的倾角,小球达到同一个高度时运动的距离就会更远;

  第三步:如果将第二个斜面放平,球会到达多远的位置?

  在第一步和第二步的基础上,很容易得出结论:球将永远运动下去,不需要力推动。他指出力并不是维持物体运动的原因。伽利略构想的理想实验(又称假想实验)是以可靠的事实为基础的,把实验与逻辑推理和谐地结合在一起,这种科学探究方法有力地推动了科学发展和进步。

  3.探路者―笛卡尔

  笛卡尔是与伽利略同时代的法国著名科学家,相对于亚里士多德和伽利略,很多学生对笛卡尔的贡献了解得更少,很多老师讲解时一笔带过,学生认为笛卡尔的思想和伽利略的思想相似,并没有什么发展,这是不对的。

  笛卡尔指出:如果运动中的物体没有受到力的作用,它将继续以同一速度沿同一直线运动,既不停下来又不偏离原来的方向。

  笛卡儿最早认识到惯性定律是解决力学问题的关键所在,最早把惯性定律作为原理加以确立,这对后来牛顿的综合工作有极其深远的影响。笛卡尔想象力丰富,他的许多观点都具有启发性,笛卡尔的贡献就在于他是第一个认识到力是改变物体运动状态的原因的。

  4.铺路者―牛顿

  “如果说我比别人看得更远些,那是因为我站在了巨人的肩上”,这句话大家耳熟能详,这是著名的科学家牛顿说过的话。牛顿在伽利略和笛卡尔工作的基础上,在隔了一代人之后,在《自然哲学的数学原理》一书中定义了力和惯性的概念,把物体运动的原因加以概括和提炼,提出了牛顿第一定律,这也是牛顿三大定律中最基本的定律。

  他认为一切物体总保持匀速直线运动状态或静止状态,除非作用在它上面的力迫使它改变这种运动状态。把物体具有保持原来匀速直线运动状态或静止状态的性质叫作惯性,所以牛顿第一定律也叫惯性定律。牛顿之所以能够成功,是因为他站在巨人的肩膀上,勤奋学习,不断发现新知识。

  这些科学家的贡献是巨大的,牛顿第一定律不断地发展,逐渐地完善,是几代人共同不懈努力的结果,一个规律的发现并不是一帆风顺的,一开始的认识可能是错误的,需要人类不断探索才能发现真理。

  这些科学家在科学研究过程中是极其艰难的,需要付出大量精力和心血,才能发现现象背后的真理。通过对物理学历史发展过程的考察,有助于学生了解科学家认识和发现物理定理、定律的基本方法,从而“以史为鉴”,培养学生以科学家认识世界的方式认识世界。

  参考文献:

  [1]郭桂周,于海波.“牛顿第一定律”物理学史辨――兼论宗教对近代科学起源的推动作用[J].物理教师,2012,33(11).

  [2]李良杰.牛顿第一定律的教材编制摭论[J].课程教学研究,2013(2).

相关文章
学术参考网 · 手机版
https://m.lw881.com/
首页