太阳能电池原理及发展 摘 要:人类面临着有限常规能源和环境破坏严重的双重压力, 己经成为越来越值得关注的社会与环境问题。近年来, 光伏市场快速发展并取得可喜的成就。本文介绍了太阳能电池的原理和发展, 以及各类新型太阳能电池, 比较了各类太阳能电池的转换效率和发展前景。 关键字:太阳能电池;原理;发展;前景 1.引言 由于人类对可再生能源的不断需求, 促使人们致力于开发新型能源。太阳在40min 内照射到地球表面的能量可供全球目前能源消费的速度使用1 年, 合理的利用好太阳能将是人类解决能源问题的长期发展战略, 是其中最受瞩目的研究热点之一。本文介绍了太阳能电池的原理和发展, 以及各类新型太阳能电池, 比较了各类太阳能电池的转换效率和发展前景。 2.太阳能电池原理【1】 太阳能电池,是一种能有效地吸收太阳辐射能,并使之转变成电能的半导体器件,由于他们利用各种势垒的光生伏特效应,所以也称为光伏电池,其核心是可释放电子的半导体。最常用的半导体材料是硅。地壳硅储量丰富,可以说是取之不尽、用之不竭。 当太阳光照射到半导体表面,半导体内部N区和P 区中原子的价电子受到太阳光子的激发,通过光辐射获取 到超过禁带宽度Eg 的能量,脱离 共价健的束缚从价带激发到导带, 由此在半导体材料内部产生出很多 处于非平衡状态的电子空穴对。这 些被光激发的电子和空穴,或自由 碰撞,或在半导体中复合恢复到平 衡状态。其中复合过程对外不呈现 导电作用,属于太阳能电池能量自 动损耗部分。光激发载流子中的少 数载流子能运动到P—N 结区,通 过P—N 结对少数载流子的牵引作 用而漂移到对方区域,对外形成与 P—N 结势垒电场方向相反的光生电场。一旦接通外电路,即可有电能输出。当把众多这样小的太阳能光伏电池单元通过串并联的方式组合在一起,构成光伏电池组件,便会在太阳能的作用下输出功率足够大的电能。 制造太阳能电池的半导体材料有合适禁带宽度非常重要。不同禁带宽度的半导体,只能吸取一部分波长的太阳光辐射能以产生电子空穴对,禁带宽度越小,所吸收的太阳光谱的可利用部分就越大, 而同时在太阳光谱峰值附近被浪费的能量 也就越大。可见,只有选择具有合适禁带宽度的半导体材料,才能更有效地利用太阳光谱。由于直接迁移型半导体的光吸收效率比间接迁移型高,故最好是直接迁移型半导体。 太阳能光伏发电系统是利用太阳电池半导体材料的光伏效应,将太阳光辐射能直接转换为电能的一种新型发电系统,有独立运行和并网运行两种方式。独立运行的光伏发电系统需要有蓄电池作为储能装置,主要用于无电网的边远地区和人口分散地区,整个系统造价很高;在有公共电网的地区,光伏发电系统与电网连接并网运行,省去蓄电池,不仅可以大幅度降低造价,而且具有更高的发电效率和更好的环保性能。 光伏板组件是一种暴露在阳光下便会集热,将光能转换为直流电的发电装置,由几乎全部以半导体物料(例如硅)制成的薄身固体光伏电池组成。由于没有活动的部分,故可以长时间操作而不会导致任何损耗。简单的光伏电池可为手表及计算机提供能源,较复杂的光伏系统可为房屋提供照明,并为电网供电。 光伏板组件可以制成不同形状,而组件又可连接,以产生更多电力。近年,天台及建筑物表面均会使用光伏板组件,甚至被用作窗户、 天窗或遮蔽装置的一部分,这些光伏设施通常被称为附设于建筑物的光伏系统。 什么是太阳能光伏技术 太阳是能量的天然来源。地球上每一个活着的生物之所以具有发挥作用的能力,甚至于是它的生存,都是由于直接或间接来自于太阳的能量。 我们的地球处在离太阳差不多有一亿英里的地方。它所截取的辐射能已经少到令人难以置信 的程度,即大约千万分之三,即使这么小的一点能量, 实际上比整个世界目前现有的发电能力还大十万倍!目前全世界尤其是工业发达国家开始感到能量短缺,因此,人们开始求助于 太阳能,以解决能源危机。 太阳能光伏 太阳能每天都能无限供应,而且数量庞大。如果在大的电厂利用,就减少了温室效应,有些能源专家和环境保护的专家则认为,在满足人类今后能量需要方面,太阳能的热影响比不在。有专家认为太阳能发电最终将在电力供应中占20%。 太阳能是一种辐射能,太阳能发电意味着---借助其它任何机械部件,光线中的能量被半导体器件的电子获得,于是就产生了电能。这种半导体组成的。它的主要材料是硅,也有一些其他合金。用于制造太阳能电池的高纯硅,要经过特殊的提纯处理制作。太阳能电池只要受到阳光或灯光的照射,就能够把光能转变为电 10~20% 的电来。一般 能转变为电能,一般在它的上面都蒙上一层可防止光反射的膜, 使太阳能板的表面呈紫色。它的工作原理的基础是半导体PN 照时,物体内的电荷分布状态发生变化而产生电动势和电流的一种效应。当太阳光或其他光照射半导体的PN结时,就会在PN结的两边出现电压(叫做光生电压)。这种现象就是著名的光生伏打效应。使PN结短路,就会产生电流。 阳能电池可以设置在房顶等平时不使用的空间,无噪音、寿命长,而且一旦设置完毕就几乎不要需要调整。现在只要将屋顶上排满太阳能电池,就可以实现家中用电的自给。现今太阳 出轻便的可穿在身上的太阳能电池。目前,太阳能的利用存在着巨大的发展空间, 有关的技术有可能在短时间内实现突破。它已被许多发达国家作为其能源战略的一个重要组成部分。 晶体为例描述光发电过程。P型晶体硅经过掺杂磷可得N型硅,形成 P-N结。 当光线照射太阳电池 太阳能光伏发电系统示例 表面时,一部分光子被硅材料吸收;光子的能量传递给了硅原子,使电子发生了越迁,成为自由电子在P-N结两侧集聚形成了电位差,当外部接通电路时,在该电压的作用下, 能的过程。 自从1954太阳光伏发电取得了长足的进步。但比计算机和光纤通讯的发展要慢得多。其原因可能是人们对信息的追求特别强烈,而常规能源还能满足人类对能源的需求。 1973年的石油危机和90 年代的环境污染问题大大促进了太阳光伏发电的发展。其发展过程简列如下: 1839年 ,即“光伏效应”。 1876年 1883年 制成第一个“硒光电池”,用作敏感器件。 1930年 肖特基提出Cu2O势垒的“光伏效应”理论。同年,朗格首 并网型光伏发电系统设备防雷示意图 次提 出用“光伏效应”制造“太阳电池”,使太阳能变成电能。 1931年 布鲁诺 将铜化合物和硒银电极浸入电解液,在阳光下启动了一个电动机。 1932年 奥杜博特和斯托拉制成第一块“ 硫化镉”太阳电池。 1941年 1954 年 恰6%。同年,韦克尔首次发现了砷化镓有光伏效应,并在玻璃上沉积硫化镉薄膜,制成了第一块薄膜太阳电池。 1955年 同年,第一个光电航标灯问世。美国RCA研究砷化镓太阳电池。 1957年 硅太阳电池效率达8%。 单晶硅太阳能电池 1958年 太阳电池首次在空间应用,装备美国先锋1号卫星电源。 1959年 第一个效率达5%。 1960年 硅太阳电池首次实现并网运行。 1962年 砷化镓太阳电池光电转换效率达13%。 1969年 薄膜硫化镉太阳电池效率达8%。 1972年 16%。 1972年 美国宇航公司背场电池问世。 1973年 砷化镓太阳电池效率达15%。 1974年 COMSAT研究所提出无反射绒面电池,硅太阳电池效率达18%。 1975年 效率达6%~%。 1976 年 多晶硅太阳电池效率达10%。 1978年 美国建成100kWp太阳地面光伏电站。 1980年 20%,砷化镓电池达22.5%,多晶硅电池达14.5%,硫化镉电池达9.15%。 1983年 美国建成1MWp 光伏电站;冶金硅(外延) 电池效率达11.8%。 1986年 美国建成6.5MWp光伏电站。 1990年 “2000个光伏屋顶计划”,每个家庭的屋顶装3~5kWp光伏电池。 1995年 高效聚光砷化镓太阳电池效率达32%。 1997年 美国提出“划”,在 2010年以前为100万户,每户安装3~5kWp供电,电表反转;无太阳时电网向家庭供电,电表正转。家庭只需交“净电费”。 1997年 新阳光计划”提出到2010年生产43亿Wp光伏电池。 1997年到2010年生产37亿Wp光伏电池。 1998年 单晶硅光伏电池效率达25%。荷兰政府光电转换效率 η% 评估太阳电池好坏的重要因素。 目前:实验室 η ≈ 24%,产业化:η ≈ 15%。 单体电池电压 V:0.4V——0.6V由材料物理特性决定。 填充因子FF% 评估太阳电池负载能力的重要因素。 FF=(Im×Vm)/(Isc×Voc) 其中:Isc—短路电流,Voc—开路电压,Im—最佳工作电流,Vm—最佳工作电压; 标准光强 AM1.5光强,1000W/m2 ,t = 25℃; 温度对电池性质的影响 例如:在标准状况下,AM1.5光强,t=25℃某电池板输出功率测得为100Wp,如果电池温度升高至45℃时,则电池板输出功率就不到100Wp 5.结语 太阳能光发电是太阳能利用的最佳途径。目前正在进行着从第一代基于硅晶片技术的太阳能电池向基于半导体薄膜技术的第二代半导体太阳能电池的过渡。 第一代太阳能电池转换效率为11%~15%,但成本太高。第二代太阳能电池成本大大降低,但转换效率只有6%~8%。 为进一步提高效率,同样基于薄膜技术的第三代太阳能电池已经开始研制, 其转换效率将是第一代和第二代太阳能电池的数倍, 它的问世将使人类在太阳能利用的历史上翻开新的一页。 参考文献: [1] 赵书利,叶烽,朱刚. 太阳能电池技术应用与发展[J]. 船电技术, 2010,(04) . [2] 太阳能电池的开发趋势[J]. 中外能源, 2010,(05) . [3] 许伟民,何湘鄂,赵红兵,冯秋红. 太阳能电池的原理及种类[J]. 发电设备, 2011,(02) [4] 李丽,张贵友,陈人杰,陈实,吴锋. 太阳能电池及关键材料的研究进展[J]. 化工新型材料, 2008,(11) . [5] 王秀波. 太阳能电池概述[J]. 和田师范专科学校学报, 2010,(06) . [6] 倪萌,M K Leung,K Sumathy. 太阳能电池研究的新进展[J]. 可再生能源, 2004,(02) . [7] 于敏丽,孟红秀. GaAs叠层太阳能电池技术的研究现状及发展趋势[J]. 邢台职业技术学院学报, 2007,(03) . [8] 寿莎,黄仕华. 对太阳能电池研究进展的探究[J]. 交通节能与环保, 2009,(01) . [9] 章诗,王小平,王丽军,朱玉传,林石裕,顾应展,田健健,周成琳. 薄膜太阳能电池的研究进展[J]. 材料导报, 2010,(09) . [10] 赵宏娟. 太阳能电池工作原理与种类[J]. 黑龙江科技信息, 2007,(17) [11] 高晖. 提高太阳能电池效率的新技术[J]. 世界电子元器件, 1997,(06)