研究的目的要说明问题是如何发现的,即该研究的研究背景是什么,是根据什么、受什么启发而搞这项研究。也要说明该选题在理论上的创新性,来突出自己选题与各个主流观点的差异。而研究的意义,要对所研究问题的实际用处有所了解从生活实际出发进行解读。
再生障碍性贫血,简称再障,是因为化学、物理、生物因素及不明原因使骨髓造血组织减少导致骨髓造血功能衰竭,引起外周血全血细胞减少的一组造血干细胞疾病。特征是造血干细胞功能障碍和(或)造血微环境功能障碍,造血红髓被脂肪组织所替代(红髓脂肪变),导致全血细胞减少的一类贫血。临床表现为进行性贫血、出血和感染(伴发热),罕有淋巴结核肝脾肿大。缺铁性贫血(IDA):由于机体铁的需要量增加和(或)铁吸收减少,导致体内储存铁耗尽而缺乏,又不能得到足够的补充,致使用于合成血红蛋白的铁不足所引起的贫血(小细胞低色素性)。IDA至今仍是人类最常见的慢性疾病之一,是临床上最常见的一种贫血。在铁的摄入不足、铁的需要增加及失血等情况下,机体出现长期铁的负平衡而导致缺铁。铁缺乏包括:储铁缺乏(ID)、缺铁性红细胞生成(IDE)和缺铁性贫血(IDA)三个连续发展的阶段。巨幼细胞贫血(MgA):是由于维生素B12或(和)叶酸缺乏,使细胞DNA合成障碍,导致细胞核发育障碍所致的骨髓三系细胞核浆发育不平衡及无效造血性贫血,也称脱氧核苷酸合成障碍性贫血。特征:骨髓中粒、红巨核三系细胞出现巨幼变,外周血为大细胞性贫血。其发病原因主要是叶酸缺乏、维生素B12缺乏。在我国以缺乏叶酸导致的营养性MgA多见,因缺乏内因子导致的恶性贫血少见(北欧多见)。维生素B12缺乏所致的MgA的突出特点是出现各种神经系统的症状。
会的,机体血细胞主要来自骨髓造血干细胞,造血干细胞数量过少,红细胞生成减少
一、 教学目标 1.说出水在细胞中的存在形式和作用。2.说出无机盐在细胞中的存在形式和主要作用。二、教学重点和难点1.教学重点水和无机盐在细胞中的作用。2.教学难点(1)结合水的概念。(2)无机盐的作用。三、教学策略1.情境创设学生对于水的认识比较丰富,许多概念来自生活中的经验,但是站在活细胞的角度去看,学生的认识还有需要补充、纠正和待完善的地方。因此教师在教学时可以从学生熟悉的事实切入,吸引学生的注意力。教师可以查找有关资料,如一个人在极限状况下,可以坚持20 d以上不进食,但是缺水不能超过1 d;地球表面约3/4的部分是水;细胞内含量最多的化合物是水;许多国家的科学家都在为寻找火星上的水而努力工作,既有成效又有争议。这些事实说明水对于生命的重要性。究竟水在细胞和生物体中具有什么样的功能呢?由此引入新课的学习。同时利用课本上的问题探讨,将学生带到对水的内容的学习中。2.教学过程水和无机盐的知识在课标中的要求都是了解层次,因此教师在课堂上更多的是让学生认识水和无机盐与生命的关系,通过列举生活中的现象、事实和学生的体验来加深学生对水在生命中的作用的认识。比如,让学生知道生命活动包括一系列的化学反应,而几乎所有的化学反应都离不开水;让学生思考我们味觉的产生必须是在舌尖有唾液浸润的情况下才能感知,若擦去舌尖的唾液,或用舌头接触一块不能溶解于水的玻璃,我们会感受不到什么味觉。这说明水作为溶剂的作用以及溶剂对于生命活动中的化学反应的重要性。细胞的代谢活动与水的多少及其自由水的含量密切相关,让学生想一想种子的库存需要条件之一就是通风干燥,想一想干种子细胞中的含水量与其生命活动的关系,学生就不难理解水在代谢中的作用了。学习无机盐的知识,同样要让学生认识到无机盐的含量在细胞中是最少的,但是对于生命活动却是必不可少的事实。教学中教师可以举出许多实例,如血红蛋白和叶绿素的结构中都含有特定的无机盐离子,可以根据课本中提供的这两种分子的结构简图,来认识无机盐在构成生物大分子中的重要作用。还可以列举人体或植物体缺乏某种无机盐所产生的症状,加深学生对无机盐与细胞和生物体关系的认识。总之教师在准备教学时,生动丰富的素材,包括文字、图片、视频资料等都是本节教学所需要的,在大量的事实面前,学生获得的关于水和无机盐的印象最为深刻,也就比较容易达到课标所要求的知识层次。3.难点的处理本节课的难点是要让学生明确结合水的概念和作用以及无机盐在细胞和生物体中的重要作用。因为学生对结合水与无机盐的作用,没有多少生活经验可以借鉴,尤其是无机盐的各种生理作用是学生比较陌生的,因此通过一些生活现象让学生有所感受后,再接受概念就比较容易。学生对水的认识多半来自“自由水”,而对于“结合水”不太了解。要让学生认识结合水可以简单介绍水分子的物理化学特性。水作为极性分子的特性致使其容易与那些大分子结合在一起。让学生想一想新鲜鸡蛋清的液态胶状的存在形式,告诉学生这就是富有生命的状态,这部分结合在蛋白质等大分子周围的水已经失去了流动性和作为溶剂的作用,仅是细胞和生物体的组成成分。同时让学生联想臭鸡蛋是不会有这样胶体状的鸡蛋清的,因此鸡蛋臭了意味着鸡蛋已经没有生命功能了。通过这样的例子让学生体会结合水在细胞组成成分中的作用。学生在学习无机盐的作用时,可以列举人体生活和健康中的各种实例来加深感性认识,比如利用课本中运动员饮料的资料让学生讨论,由此再引申到人体发生的一些与无机盐有关的疾病,通过对疾病的介绍和讨论学习无机盐在细胞和生物体构成、调节渗透压和酸碱平衡等方面的功能。四、答案和提示(一)问题探讨1.提示:水在细胞中的重要作用:水是细胞结构的重要组成成分,是细胞内的良好溶剂,许多种物质溶解在水中,细胞内的许多化学反应也都需要有水的参与,多细胞生物体的绝大多数细胞必须浸润在以水为基础的液体环境中。水在生物体内的流动,可以把营养物质运送到各个细胞,同时,也把各个细胞在代谢中产生的废物,运送到排泄器官或者直接排出体外。总之,各种生物体的一切生命活动,都离不开水。2.提示:无机盐在细胞中的重要作用:细胞中许多有机物的重要组成成分,调节细胞的生命活动等。(二)旁栏思考题2.提示:20世纪70年代以前,人们普遍认为缺碘只能引起甲状腺肿大,还没有认识到缺碘对儿童智力的影响。进入80年代以后,人们认识到缺碘对人类危害最大的不是甲状腺肿,而是造成不同程度的脑发育落后,只有补足了碘才能确保婴幼儿脑的正常发育。根据1994年的统计结果,中国缺碘地区的人口达7.27亿,约占全国人口总数的56%,轻度缺碘或碘营养不足已波及所有省、市。1995年的儿童碘营养调查结果表明:许多经济发达的大城市,儿童尿碘也在100 μg/L以下,甲状腺肿大率在5%以上。证明城市也存在不同程度的碘缺乏。目前公认标准为:人群尿碘水平在100 μg/L以上,才能基本上消除碘缺乏危害。从这个全新的认识出发,我国几乎所有地区,包括以前认为的非病区,实际上都是缺碘地区,因此需要补碘的范围已扩大到全国(高碘地区除外)。3.提示:不同细胞内的化合物都是由无机物和有机物组成的,其种类有一定差别。例如,淀粉只存在于植物细胞中,糖原只存在于动物细胞中。不同细胞中各种化合物的含量也有一定差别。例如,肌细胞中含蛋白质较多,脂肪细胞中含脂肪较多。但是,各种细胞中的化合物组成及含量又有许多共性。例如,所含的有机物都是糖类、脂质、蛋白质和核酸,无机物中都有无机盐和水;各种化合物在不同细胞中的含量一般维持在一定范围内。这体现了生命世界在物质组成上的统一性。(三)思考与讨论1.提示:人类贫血症中有缺少红细胞和缺少血红蛋白两种类型,它们都可导致贫血。而血红蛋白的分子结构不能缺少的一种元素就是铁,所以缺铁会导致血红蛋白的合成障碍,引起贫血。缺铁性贫血是一种常见的贫血症。正常人体内含铁量约为3~5 g,它是制造血红蛋白的主要原料之一。当铁缺乏时,血红蛋白就不能合成,从而发生缺铁性贫血。2.提示:光合作用不能缺少叶绿素,而叶绿素的分子结构中不能缺少的元素之一就是镁。镁是叶绿素的组成元素之一,因此,镁对于光合作用有重要意义。缺镁时叶绿素的形成受到阻碍,从而影响光合作用。此外,镁还是许多酶的活化剂,镁还能促进脂肪的合成。因此,镁是重要的生命元素。(四)练习基础题1.C。 2.A。 3.D。拓展题提示:质量分数为0.9%的氯化钠溶液的浓度,正是人体细胞所处液体环境的浓度,所以叫生理盐水。当人体需要补充盐溶液或输入药物时,应输入生理盐水或用生理盐水作为药物的溶剂,以保证人体细胞的生活环境维持在相对稳定的状态。五、参考资料1.水的物理化学性质与生命的关系水是生命的源泉。活细胞中绝大多数化学反应是在水环境中进行的。水在许多生物化学反应中是一个活泼的参与者,而且是大分子(如蛋白质)性质的重要决定因素。水之所以成为生命活动中最重要的溶剂,是由它的物理化学性质所决定的,而它的物理化学性质取决于它的分子结构,即水是一个带有氢键的极性分子。水的极性分子结构特性决定了它有许多独特的物理性质:较高的介电常数、比热、蒸发热、沸点、熔点及抗张强度等(表10)。表10 一些常见物质的物理性质熔点/℃ 沸点/℃ 蒸发热/J·g-1 比热/J·g-1 熔解热/J·g-1 水乙醇丙酮乙酸乙酯氯仿 0-114-95-84-63 10078567761 2 257.2852.7522.5426.4246.6 4.1842.4292.2071.9190.945 334.4104.196.1—— 水的介电常数是溶液中最高的,这就意味着按单位容积计算,没有任何溶剂能比水溶解更多种类和数量的溶质,所以水成为最理想的生物溶剂。比热是指提高单位数量的某物质单位温度所需要的热量。水的比热在液体中排第二位(汞的比热最大),这种高比热特性意味着水的温度相对不容易发生改变,可作为热的缓冲剂,这样以水为介质的生命体系就可以维持在相对稳定的状态,使生物体少受外界温度变化的影响。蒸发热是指在恒定温度下,使某物质由液态转变为气态所需要的热量。水的蒸发热大,能为部分脊椎动物所利用, 以汗水的蒸发作为一种冷却机制;同样,对于植物来说也是非常重要的,植物叶片通过水分蒸发消耗过多吸收的光能,从而避免温度升高对细胞造成伤害。氢键使水的沸点高达100 ℃,所以在正常温度下,水是液体,有利于生命活动的进行。水的熔解热最高,这样在临近结冰温度时,温度下降的趋势大大降低,从而防止了零度以下的快速降温,这对于地球气温的调节以及水生生物的生存都有十分重要的意义。物体抵抗拉力而不被拉断的能力称为抗张强度。由于水分子间的内聚力(水分子间的氢键使水分子具有的相互吸引力),水具有很高的抗张强度,因此,水柱可以抵抗外界的拉力而不会被拉断,这种特性在植物体内水和无机盐的向上运输中发挥着重要作用;即使冰的密度低于水而能漂浮水上的现象,对水生生物的生活也很重要。水的表面张力可以维持植物导管中水流的连续性。细胞的含水量与其生理活动是否活跃常常是密切相关的。当细胞含水量充足时其生理活动常较活跃,而当含水量降低时细胞的生命活动也会减弱。植物细胞所具有的膨压也是通过水分的平衡建立起来的。另外,水的热传导性在非金属物质中是最好的,水的黏度是较低的,水还具有渗透作用等,这些对于生命活动来说都是至关重要的。综上所述,水是细胞中各种生物化学反应的基本介质,是生命的源泉。2.无机盐在调节酸碱平衡中的作用下面以动物体为例来介绍无机盐在调节酸碱平衡中的作用。动物的体液具有正常的pH值,如人的血浆pH值约为7.35~7.45,在酸碱平衡的维持中,无机盐直接参与了缓冲对的构成。血液中最主要的缓冲对是由碳酸氢钠(钾)和碳酸所构成的,即NaHCO3/H2CO3或KHCO3/H2CO3。除此之外,还存在有其他的缓冲对。在血浆中有Na2HPO4/NaH2PO4、血浆蛋白质钠盐/蛋白质等,在红细胞中有K2HPO4/KH2PO4、红细胞蛋白体系钾盐/红细胞蛋白(血红蛋白钾盐/血红蛋白、氧合血红蛋白钾盐/氧合血红蛋白)等缓冲对,这些缓冲对对于调节体液的酸碱平衡都是很有效的。3.无机盐在调节渗透压中的作用渗透压是衡量溶液中溶质浓度的一种方法,其计算公式为π=CRT,其中C为溶液中溶质的浓度,R是气体常数,T为热力学温度。由公式可以看出,溶液中渗透压的高低与溶液中溶质粒子的大小、电荷的多少及其化学性质无关,而取决于溶液中溶质粒子的浓度。在机体内引起渗透压的有效物质包括有机物和无机物。由于体内无机盐的浓度、解离程度都比有机物高得多,所以体液中无机盐提供的渗透压最大,而有机物提供的渗透压很小。细胞内液及细胞外液的容积决定于它们的渗透压,只有当机体细胞内外的渗透压恒定时,组织细胞的形态和机能才能维持正常,各种正常的物质代谢才能有条不紊地进行,这是维持内环境稳定的一个极为重要的方面。4.人体对无机盐的需求(部分)表11 人体对无机盐的需求表(部分) 无机盐 功 能 每日需要量 缺乏引起的疾病 过量引起的疾病 Fe 是血红蛋白、细胞色素及含铁酶类的成分。 10~20 mg 缺铁性贫血 色素性肝变硬;铁质沉着病 Ca 促进牙齿和骨骼生长,凝血作用,调节神经肌肉的敏感性等。 0.4~1.5 g 骨骼畸形;痉挛 白内障;胆结石;粥样硬化 P 构成骨骼、牙齿、肌肉及血液的重要元素,促进酶的活动,形成ATP。 1.2~2.7 g ─ ─ Na 体液的主要组成成分,调节体液渗透压。 1.6~5 g Addison病等 — K 使生长正常,保持肌肉功能正常,维持离子浓度平衡、调节体液渗透压。 2~4 g 心律异常等 Addison病 I 是形成甲状腺素的成分。 0.01~0.15 mg 甲状腺肿等 — Mg 参与构成叶绿素,与酶的活性有关,保持肌肉功能正常。 0.2~0.4 g 惊厥 麻木症 Cu 促进正常生长。 1~3 mg 贫血症;卷毛综合征等 Wilson氏肝脏豆核病 Mn 正常生长所需。 2.5~5 mg 骨骼畸形 运动失调 Zn 是若干跟消化有关的酶的结构中心。 10~15 mg 侏儒症;生殖腺功能受影响 金属烟雾发烧症 Cr 对胰岛素的生成是重要的。 0.05~0.2 mg 非正常的葡萄糖代谢 — F 维持骨骼的结构,防止蛀牙。 2 mg — 牙齿出现斑点 自我检测的答案和提示一、概念检测判断题1.√。 2.×。 3.×。 4.√。 5.×。 6.×。选择题1.A。 2.B。 3.D。 4.A。画概念图完成下面有关蛋白质分子的概念图二、知识迁移自由水,结合水,自由水。三、技能应用提示:20种氨基酸在形成肽链时可以有不同的序列,这是肽链形式多样的主要原因。用数学的排列组合方式可以解释,假若一段只有20个氨基酸的肽链,那么由于不同的排列组合可以形成的肽链形式就有2020种之多。更何况肽链中的氨基酸数目远不止20个,通常是成百上千,可以想像形成的肽链形式将会是一个天文数字。四、思维拓展提示:在陨石中发现了氨基酸,且非地球所有,这说明宇宙中很可能还存在与地球生物类似的生命形式。因为氨基酸是组成蛋白质的基本单位,而蛋白质又是生命活动的主要承担者。
造血干细胞出现异常的时候有可能会导致贫血的发生,比如病人发生再生障碍性贫血的时候往往会出现造血干细胞的损害,有可能会造成红细胞的生成减少,从而有可能会导致贫血的发生,纯红细胞再生障碍性贫血也是由于骨髓红系的造血干细胞选择性受到损害所引起的。
330 浏览 2 回答
164 浏览 2 回答
223 浏览 2 回答
101 浏览 5 回答
256 浏览 2 回答
195 浏览 2 回答
88 浏览 2 回答
358 浏览 3 回答
95 浏览 3 回答
99 浏览 2 回答
94 浏览 2 回答
121 浏览 2 回答
272 浏览 6 回答
273 浏览 4 回答
87 浏览 1 回答
217 浏览 5 回答
224 浏览 4 回答
135 浏览 7 回答
86 浏览 2 回答
90 浏览 2 回答
301 浏览 7 回答
261 浏览 3 回答
158 浏览 8 回答
103 浏览 2 回答
327 浏览 5 回答