在T.reesei纤维素酶中,O-甘露糖基化频繁发生,Kruszewska等(1989)详细研究了其生物合成过程。真菌的O-甘露糖基化是一种独特现象,因为需要长醇磷酸盐(Dolichol Phosphate,DP)的参与,并且在内质网上启动(Herscovics et al.,1993;Tanner et al.,1987)。反应发生的顺序及参与的酶类列表于11.3。DPM合成酶是糖基化途径中的一个关键酶,还是肌醇锚定物生物合成所需要的一种重要酶,在T.reesei中过表达该酶编码基因dpm1,能够刺激酶活性并提高T.reesei蛋白分泌水平(Kruszewska et al.,1999),它催化甘露糖从GDP-Man转移到脂类受体(DP)的反应,此时即合成甘露糖磷酸长醇(manno-sylphosphodolichol,DPM)。
在体外,第一个转移到丝氨酸或蛋氨酸残基的甘露糖,其供体为DPM,此时其构象发生反转(Tanner et al.,1987)。Pmt1基因是编码DPM::蛋白质O-甘露糖基转移酶的一个基因,Strahl-Bolsinger等(1993)已经克隆到该基因。基因敲除能够使体外甘露糖基转移酶活性全部丧失,用DPM作为供体,用一种肽作为受体,检测不到转移酶活性。在进行敲除菌株的活体检测时发现,蛋白质的O-甘露糖基化只下降了大约40%~50%。研究人员推测其中还有另外的转移酶参与,而这种转移酶在体外活性分析时不能被检测到。Lussier等(1995)曾经报道了一个pmt2基因,编码的蛋白质与DPM::蛋白质O-甘露糖基转移酶高度相似。
图11.2 A.oryzae的β-半乳糖苷酶中N-连接碳水化合物的结构(左,Nakao et al.,1987)及A.niger葡萄糖氧化酶中N-连接碳水化合物的结构(中、右,Takegawa et al.,1991)
带有破坏的pmt2基因的酵母,其O-甘露糖基化活性在体内和体外检测时都下降,与带有丧失功能的pmt1基因的突变体相似。pmt1/pmt2 基因都被破坏的菌株,生长严重受阻,但残存一部分O-甘露糖基化活性。研究人员由此推断还应该存在另外一种PMT蛋白质。第二个及随后的甘露糖直接从GDPMan转移(Tanner et al.,1987)。在S.cerevisiae SEC18突变体中,从内质网向高尔基体的转移被阻断,经过对该突变体O-甘露糖基化活性的测定结果,认为第一个和第二个甘露糖残基是在内质网中被添加上的(Kuranda et al.,1991;Tanner et al.,1987)。后一种情况需要重新确认,因为还没有证据能够证明GDPMan能够转移到内质网腔中。O-连接的聚糖链的延长过程发生在高尔基体中(Hersco-vics et al.,1993)。
在T.reesei中,蛋白质的O-甘露糖基化能够在体外试验中检测到(图11.3)(Krusze-wska et al.,1989):T.reesei QM9414的一个40000×g离心沉降的细胞膜组分能够将甘露糖残基从[14C]-GDP-Man转移到内源脂类和蛋白质分子上,两种反应都依赖于外源长醇磷酸酯的加入。这种结果与其他人的结论相符合,即T.reesei QM9414的细胞膜组分负责内源蛋白质受体的O-甘露糖基化。蛋白质糖基化的体外动力学研究表明,甘露糖基-脂类的形成在前,糖基团向蛋白质的转移发生在后。这与甘露糖向蛋白质转移时需要脂类中间体作为媒介的看法一致,目前认为这种媒介是甘露糖基磷酸长醇酯(DPM)。利用冷冻GDP-Man进行脉冲跟踪试验,以及利用津枝霉素(Tsushimycin,一种特异性DPM-合成酶抑制剂)进行的研究进一步证实了以上结论(Elbein,1981),津枝霉素阻断了[U-14C]-甘露糖加入脂类分子和蛋白质分子的过程。以上研究结果都表明,脂类媒介为DPM,通过该媒介物质,蛋白质的O-甘露糖基化反应才能启动。
图11.3 Trichoderma reesei中O-连接寡糖的体外生物合成
注:第一个甘露糖残基由DolPMan提供,后续的甘露糖残基转移自GDPMan
在体外,[U-14C]甘露糖自DPM转移到内源性膜蛋白。大约90%的转移到蛋白质的[U-14C]甘露糖,能够通过微碱性处理(β-消除)释放。TLC分析表明,释放的寡糖中含有O-型甘露单糖、甘露三糖和甘露四糖。Kruszewska等(1989)在利用乳糖生长的木霉中,发现DPM合成酶的活性提高了2.5倍。以上结果表明,在碳源代谢物解阻遏条件下(乳糖作为碳源),菌丝中的内源性糖基团转移速率高,而在阻遏条件下(葡萄糖作为碳源),菌丝中的内源性糖基团转移速率低。在测定体系中加入过量的冷冻GDP-Man,观察不到以上这种差异,说明碳源代谢物阻遏的菌丝中含有低浓度的DPM或者GDP-Man(Kruszewska,1991)。
在T.reesei突变体中DPM合成酶的糖基化水平与母本菌株相似,但是蛋白的分泌水平能提高7倍。O-糖基化在蛋白分泌过程中有至关重要的作用(Kubicek et al.,1987 b;Messner et al.,1988),在T.reesei中O-糖基化需要长醇磷酸作为甘露糖残基的载体。甘露糖转移酶将长醇磷酸甘露糖(DPM)产生的第一个甘露糖残基转运到丝氨酸或苏氨酸的OH基团上。缺失GDP-甘露糖或长醇磷酸能降低DPM的产量,限制N-糖基化和O-糖基化和肌醇锚定物合成。目前已经发现在T.reesei中有少量长醇(约6mg/kg)(Jung et al.,1973),但远远低于人类活体组织中长醇量(452mg/kg)(Chojnacki et al.,1988)。
长醇是在甲羟戊酸途径中合成,具有一个饱和异戊二烯单位的长链聚戊烯醇。Cis-异戊烯转移酶(脱氢长醇二磷酸合成酶)(Cis-PT)是长醇合成中的一个关键酶,是肌醇合成途径的多萜醇分支的第一个酶。它能催化异戊烯二磷酸(IPP)结合到法尼西基二磷酸(FPP)上,使多萜醇链不断延伸(Adair et al.,1987;Daleo et al.,1977;Szkopijska et al.,1996)。酵母中Cis-PT的编码基因是rer2和srt1(Sato et al.,2001;Shenk et al.,2001)。
Perlińska-Lenart等(2006b)将酵母中编码Cis-PT的基因rer2与来自曲霉的启动子gpdA相连,转化到 T.reesei QM9414中,经筛选培养基筛选,再经 Southern 验证,获得100余个突变体。在以乳糖为碳源的培养条件下,经检测发现其中两个稳定的突变体(ULJK09/04和ULJK21/04)中rer2的转录水平很高。与母本菌株相比,HPLC分析结果显示,突变体ULJK21/04和ULJK09/04的多萜醇含量分别提高了50%,260%。令人吃惊的是在突变体中rer2p缺失了14~17个异戊二烯单元。这一发现说明T.reesei中存在相关调控机制,在长醇链达到一定长度后延伸终止,Cis-PT蛋白不具备此重要功能(Sato et al.,2001)。同时发现突变体中dpm1 基因的表达水平在菌丝生长的早期阶段达到最高,提高了约220%,而在生长240h后明显下降。突变体ULJK09/04和ULJK21/04细胞膜中DPMS活性则分别提高了50%,55%。这说明:在T.reesei中过表达编码核苷酸转移酶基因mpg1会影响dpm1转录与DPMS活性。
一方面,由于糖基化发生在蛋白分泌之前,提高糖基化效率有助于加速蛋白折叠,从而加快蛋白的分泌。酵母dpm1基因在T.reesei中过表达加快了糖基化,从而加剧了蛋白分泌(Kruszewska et al.,1999)。另一方面,尽管在T.reesei中过表达mpg1,导致核苷酸转移酶活性提高,分泌蛋白被过度糖基化,但是并未减少分泌蛋白的产量(Zakrzewska et al.,2003),而且还提高了dpm1基因的表达水平,DPMS活性提高了30%。
在菌株培养过程中检测蛋白数量,发现突变体和母本菌株均在培养至216h时蛋白数量达到最大,随后开始下降。但在蛋白糖基化水平上突变体和母本菌株之间差别十分明显,突变体分泌的蛋白O-聚糖上的碳水化合物丰度是母本菌株的两倍。糖类在供试菌株培养过程中不断下降。N-聚糖上的碳水化合物浓度最高峰出现时间晚于O-聚糖上的碳水化合物,培养144h后突变体中N-聚糖上的碳水化合物浓度达到高峰,与突变体相比,母本菌株中的N-聚糖上的碳水化合物浓度较低,随后所有菌株中的N-聚糖上的碳水化合物含量均开始下降。这与前人的研究一致(Ecker et al.,2003)。说明O-糖基化阻挡了N-糖基化,O-糖基化比N-糖基化发生早。