In contrast to the fluorescent response of ZTRS to metal ionsin aqueous solutions, in 100% CH3CN Zn2+ and Cd2+ result inblue-shifted emissions with the maximum wavelength changefrom 481 to 430 and 432 nm, respectively (Supporting Information,Figures S4, S5); however, the addition of Zn2+ and Cd2+to ZTRS in 100% DMSO cause red-shifted emissions with themaximum wavelength change from 472 to 512 and 532 nm,respectively (Supporting Information, Figures S6, S7). TheFigure 1. Influence of pH on the fluorescence of ZTRS in acetonitrile/water (50:50, v/v). Excitation wavelength: 360 nm. [ZTRS] ) 10 μM. (a) pH4.7-12.8. Inset: The fluorescence intensity at 483 nm as a function of pH; (b) pH 4.7-1.8. Inset: The ratiometric fluorescence changes as a function of pH.Figure 2. (a) Fluorescence spectra of 10 μM ZTRS in the presence of various metal ions in aqueous solution (CH3CN/0.5 M HEPES (pH 7.4) ) 50:50).Excitation at 360 nm. (b) Fluorescence spectra of ZTRS in the presence of different concentrations of Zn2+. The inset shows the Job plot evaluated fromthe fluorescence with a total concentration of 10 μM.addition of other HTM ions results in blue-shift in emissionsin both CH3CN and DMSO (Supporting Information, FiguresS8, S9). However, a small blue-shift of the absorption maximumof ZTRS in CH3CN, DMSO, and aqueous solution uponaddition of Zn2+ and Cd2+ (Supporting Information, FiguresS10-S15) indicates that the red-shifted emission does not resultfrom the deprotonation of amide NH group, because thedeprotonation of the NH group conjugated to 1,8-naphthalimidewould cause a red-shift in absorption spectra. 18h,25a Thesespectral data suggest that ZTRS binds Zn2+ and Cd2+ indifferent tautomeric forms, depending on the solvent and metalions (Scheme 3); ZTRS complexes both Zn2+ and Cd2+ in theamide tautomer in CH3CN, and the imidic acid tautomer inDMSO predominantly. However, other HTM ions bind to theamide tautomer in both CH3CN and DMSO.Further evidence for the amide and imidic acid tautomericbinding modes (Scheme 3) is provided by 1H NMR titrationexperiments of ZTRS with Zn2+ and Cd2+ in CD3CN (SupportingInformation, Figures S16, S17) and DMSO-d6 (SupportingInformation, Figures S18, S19), 2D NOESY of ZTRS/Zn2+ (1:1 complex) in CD3CN (Figures 3, Supporting Information,Figures S20, S21) and DMSO-d6 (Figures 3, S22-23),and IR spectra of ZTRS/Zn2+ (1:1 complex) in CH3CN(Supporting Information, Figure S24) and DMSO (SupportingInformation, Figure S25). As a reference, the binding propertiesof ZTF with Zn2+ were also examined by means of 1H NMRand IR spectra.与ZTRS与含水溶液中金属离子的荧光响应相反,在100%CH3CN中,Cd2+和Zn2+产生最大波长从481分别变化到430和432nm的蓝移发射(支持信息的图S4和S5);然而,向100%DMSO中的ZTRS添加Cd2+和Zn2+会引起最大波长从472分别变化到512和532nm的红移发射(支持信息的图S6和S7)。添加其他HTM离子会引起在CH3CN和DMSO中发射的蓝移(支持信息的图S8、S9)。不过,在添加Cd2+和Zn2+时,在CH3CN、DMSO以及含水溶液中的ZTRS的吸收谱小的蓝移(支持信息的图S10-S15)表明,红移发射不是因为酰胺NH基团去质子化的结果,因为与1,8萘二甲酰亚胺共轭的NH基团的去质子化会引起吸收谱的红移18h,25a。这些光谱数据告诉我们,ZTRS根据溶剂和金属离子(方案3)以不同的互变异构形式与Cd2+和Zn2+结合;ZTRS主要与CH3CN中酰胺互变异构体中的Cd2+和Zn2+络合,以及与DMSO中亚氨酸互变异构体中的Cd2+和Zn2+络合。可是,其他离子与CH3CN和DMSO中的酰胺互变异构体结合。 关于酰胺和亚胺酸互变异构结合模式(方案3)的进一步证据由ZTRS的氢核磁共振(1H NMR)滴定实验,用CD3CN(支持信息的图S16、S17)和DMSO-d6(支持信息的图S18、S19)中的Cd2+和Zn2+,CD3CN(图3,支持信息的图S20/S21)和DMSO-d6(图3,S22、S23)中的ZTRS/Zn2+(1:1络合物)的2维相关核磁共振谱(2D NOESY),以及CH3CN(支持信息的图S24)和DMSO(支持信息的图25)中ZTRS/Zn2+(1:1络合物)的红外光谱提供。作为参考,ZTF与Zn2+的结合性质也用1H NMR和红外光谱进行了研究。
断层和粒子追踪研究,在液固冒口 Shantanu Roy, 而Shantanu罗伊 Jinwen Chen, 金文陈, Sailesh B. Kumar, sailesh乙库马尔 MH Al-Dahhan,* and 晚上基地dahhan , * MP Dudukovi 国会议员dudukovi Chemical Reaction Engineering Laboratory (CREL), Department of Chemical Engineering, Washington University, St. Louis, Missouri 63130 化学反应工程实验室( crel ) ,系化学工程,华盛顿大学,圣路易斯,密苏里州63130 Received for review April 21, 1997 收到复核1997年4月21日 Revised manuscript received August 1, 1997 修订稿收到1997年8月1日 Accepted August 9, 1997 接受1997年8月9日 Abstract: 摘要: A liquid-solid circulating fluidized bed is a potential reactor of interest in a variety of industrial processes, such as petroleum refining, and in the synthesis of fine chemicals, petrochemicals, and foodstuffs.液-固循环流化床是一个潜在的反应堆感兴趣的,在多种工业生产过程,如石油精炼,并在精细化学品合成,石化,食品。 Rapid deactivation of the solid catalyst in these processes necessitates regeneration and recirculation of the solids into the riser section in which the principal reaction is accomplished.快速失活的固体催化剂,在这些进程中,需要再生和再循环的固体进入冒口条,其中主要的反应是完成了。 In this study we show that computer-automated radioactive particle tracking (CARPT) can be used to obtain solids velocity patterns in the riser and that backflow of solids exists at the tested liquid velocities.在这项研究中,我们证明了计算机自动化放射性粒子追踪( carpt ) ,可以用来获取的固体速度模式,在提升管和回流的固体物质存在于测试液速度等。 -ray computed tomography (CT) reveals slightly higher solids concentrations in the center of the column.线计算机断层扫描( CT )揭示略高固体浓度为中心的栏目。 This is in contrast to gas-solid riser reactors in which the concentration of solids is higher at the walls.这是对比的气固提升管反应器中的浓度固体较高,墙壁。
摘要:一水Thiolysis各种1,2 -环氧化合物在30 ° C和pH值7.0的强烈加速氯化锌(10 mol%的除外)时,氨基酸和carboxythiophenol使用。在水介质和催化剂的回收和再利用运行在各不影响效率的过程。介绍的A - hydroxysulfide单位是目前化合物的生物及药理interest1,是一个,benzotiazepines多功能基团的合成烯丙醇,benzoxathiepines,的R - thioketones,研究取代R是不饱和enones,和A - hydroxysulfoxides化合物用于合成自然发生的。最简单的访问,hydroxysulfides是有机thiolysis的1,2 -环氧通常是进行了溶剂(四氢呋喃,二氯甲烷,甲醇,乙腈,或心理健康热线和)由助剂使用硫醇在碱性conditions8或存在的/或催化剂有个别的不知道如何翻译,用单词表示了
希望不要让我3.5个小时的努力付之东流!篇名:液-固提升管的计算机层析摄影和微粒示踪研究作者:Shantanu Roy, Jinwen Chen, Sailesh B. Kumar, M. H. Al-Dahhan,* 和M. P. Dudukovic [* 表示通讯作者的意思]。单位:密苏里州圣路易斯市华盛顿洲立大学化学工程系化学反应工程实验室(63130)摘要:液-固循环流化床在各种工业过程中均是一种有潜在价值的反应装置,如炼油和精细化学品、石化产品及食品的合成。这些过程中,迅速失活的固体催化剂需要在基本反应完成后再生,并在提升管的固体中再循环。本研究表明,计算机辅助放射微粒示踪技术(CARPT)可用于构建提升管中固体流速模型和供试流体流速下的固体回流。?-射线计算机层析摄影(CT) 表明,在分馏柱中部固体浓度稍高。这和气-固提升管反应器的情景相反,后者的固体浓度在柱壁上更高。前言液-固循环流化床在精细化学品、石化产品合成及炼油等各种工业过程中作为一种备选反应装置迅速得到推广(Liang等, 1995)。该过程在液相反应物(典型高压、低温下的烃)(Thomas, 1970)和可快速灭活的固相催化剂(Corma和Martinez, 1993)存在的反应器中完成。基本反应在高液/固流速比的垂直提升管柱中完成(在提升管中固体变成可被液体运载的液化状态)。失活催化剂在通过连续内环流中的循环固体和基本反应偶联的独立处理过程中再生。此类连续流动的液固系统的设计和组装需要每相中的流动模型以及相含率分配方面的知识。本工作的目的是通过实验研究实验室级循环液固系统流动模型的提升管中固相的流速和含率分布问题。实验实验室级液-固循环流化床的装备图纸如图1所示。提升管是一根直径6英寸、高7英尺的有机玻璃柱。提升管中的自来水带动直径2.5毫米的玻璃微珠流动,并通过柱塞和喷射器回流进入系统。用喷射器(已把固体流速预标定为水流速函数)控制液流法来维持提升管中的固体物料流。全部固/液流速比可通过柱底部分配盘来调控。用内环流中的泵和储水罐中的循环水来维持气馏柱和喷射口部分恒定的高速水流。实验在密苏里州圣路易斯市华盛顿洲立大学化学工程系化学反应工程实验室研发的CARPT和CT装置中进行(Devanathan, 1991; Kumar,1994)。也许有必要指出,本研究使用的系统是致密的,粘滞性小,惟有非浸入式流体检测法如CARPT和CT才有能力精确测量固体流速和浓度。当前的装备使得提升管可以在CARPT-CT操作平台上安装用于本研究。早在固相水动力学的研究之前, 液相停留时间分布测定仪就在液相中得到应用。脉冲式快速注入氯化钾溶液后测定液相在既定位置的传导情况。本研究的结果其他地方也有报道(Roy 等, 1996),我们发现液相实际上呈集中流势,具有小的分散效应。液体示踪颗粒E-曲线的二维方差总是小于0.1。美国化学学会的CARPT研究(Devanathan, 1991; Yang等, 1992)把放射性Sc-46微粒(发射波长350 íCi,半衰期83天)引入一个粒径和密度与待混流的玻璃微珠相匹配的中空铝球中来制备示踪颗粒。采用精妙的CARPT标定步骤(Yang等, 1992), 颗粒被放入供试反应段的约200-300个已知位置,就得到了每个检测器的距离-密度关系标定图谱。标定完成后,设置并保持所需的液体超临界流速,且容许固体微粒自由进入流场来模拟典型的玻璃微粒的运动。长时间后(8小时),示踪颗粒的位置(用检测器获得的光子数目来表示)记作时间的函数。随后,固体颗粒的平均流体组分和波动流体组分、粘滞系数和动力学能量可以通过舍弃和处理粗略的原始数据后计算得出(Devanathan, 1991; Larachi 等, 1997)。这是CARPT技术首次在一个体系中的成功演示,该体系中示踪颗粒周期性地离开和重新进入被检测器检测到的分馏柱反应段。密苏里州圣路易斯市华盛顿洲立大学化学工程系化学反应工程实验室的CT扫描仪采用扇-线几何学来测定?-射线通过提升管中给定物体后的放射衰减。然后用粗略的衰减测量仪器重构中横截面上各相的时间平均含率分布。该放射源被置于100 mCi的Cs-137同位素中, 11个碘化钠检测器(最大值)组成的角阵列用于衰减测试。基于极大似然原理的期望极大算法(Lange和Carson, 1984)用来做投影仪中获取的图象重建。CREL扫描仪的软件和硬件方面的细节问题已经由 Kumar 等 (1995)、Kumar和Dudukovic′(1997)讨论过。本研究中供试液-固提升管在沿柱的四个轴向位置被扫描。结果与讨论实验在液体超临界流速(12-23 cm/s)的范围内进行。本研究报道了在20 cm/s液体超临界流速的条件下运行的系统中得到的典型结果。所有实验采用直径2.5毫米的玻璃微珠,喷射器的水流速度为25 gal/min。提升管底部的水流速度保持在33 gal/min,以便使柱中的平均液体超临界流速达到20 cm/s。图2 是在20 cm/s的液体超临界流速下4个轴向位置测得的对数平均化和时间平均化的径向固体含率 (固体浓度) 分布图。我们观察到固体含率的级数并不随着径向位置的升高而呈显著变化(最大变异是4%),但随轴向位置的变化而稍微下降(最大变异4%)。和柱壁比较而言,任何既定轴向位置的固体含率稍高于柱中部。这是一个有趣的结果,因为在气-固提升管中广泛报道的是相反趋势(Rhodes和Geldart, 1989; Rhodes, 1990)。这里报道的固体含率分布的径向梯度也更小。图3表示CARPT实验中估计的固体流速场。图3a是流速矢量图, 该图清楚地表明,从时间平均化的角度来考虑,固相有一个内循环回路:固体在柱心上升并在柱壁上下降。图3b表示柱中部四个位置的固体流速的时间平均化轴向成分也有相同的定量结果。有必要指出,柱壁上固体的下游流速和上游流体相比较有较小的数量级, 下游总的固体质量仍然是令人满意的(本实验为9.6%)。柱的33cm高度处固体含率图一般来说是有序的。这个高度恰好位于柱中分配器和喷射器的上方(图1),是混合区域的一部分, 显然比78 cm高度处有较低的固体含率。这也为CARPT的实验结果所证实:图3a 清楚地表明固体流速矢量的方向在该高度上是随机取向的, 而柱中较高的位置则出现清晰的循环回路。因此,柱中33cm高度处的流体仍待斟酌,并且和柱的其他部分相比呈现明显的偏离行为。用一种新颖的方法, 提升管中固体残留时间分布(RTD)可间接从CARPT数据计算得出。由于示踪颗粒被认为是可重复循环进入提升管的典型分散系组分,其每次通过提升管在其中停滞的时间的分布是其RTD值。这些不间断采集数据获得的“残留时间”被作成图4中的柱状图。提一个武断的假说,这就给出了固相的RTD值。最后,在图5中, 固体沿轴向的平均轴向流速被表示为液体超临界流速的函数。不同条件下实验表明,柱中线以及柱壁(下游)的流速整体上都是增加的。当然,这也可能是由于通过相同区段的液相模量较高引起固相模量的增加导致了固体平均流速提高。纯粹基于这些实验,结果似乎表明随着液体超临界流速的加大固相流速有一种趋于“饱和值”的倾向。然而,这些结果仍期待着未来进一步的实验来做强有力的验证。结论直至今日,流化床和提升管的设计仍停滞在经验法则的水平上。此类系统中的实际现象远比作为设计程式基础的启发式近似算法获得的结果要复杂的多。因此,液-固提升管的使用者和设计者可以从此类系统中的水动力学基本认识中获得极大的启发。当前的研究只是向同类实验定量方面迈出了一小步。在CREL(作者的实验室), 各种操作条件和使用不同粒径的颗粒的提升管配置研究工作正在进展中。此类体系中的静止现象研究也在未来的计划中。数据将做进一步的处理来计算固相的动力学能量、粘流剪切应力以及粘流分散系数。本研究努力的整体目标是了解影响液-固提升管效能的一些关键变量,进而研究更基础的按比例增大规律。我们期望我们的实验数据能作为液-固提升管流体的计算机动态建模的基准。图表题目翻译如下:图1. 液-固提升管的装备图纸图2. 20 cm/s液体超临界流速下不同轴向位置的固体含率(浓度)分布图3. 20 cm/s液体超临界流速下的固体流速场: (a) 流速矢量图; (b) 轴向平均流速图。致谢(略)参考文献(略)
摘要:一1,2环氧化物水在各种Thiolysis30 ° C和pH值7.0的强烈加速氯化锌(10摩尔%)除非氨基酸和carboxythiophenol使用。该水相介质及催化剂的回收和再利用在各种运行而不会影响该过程的效率。介绍该A - hydroxysulfide单位目前的化合物生物及药理interest1,是通用基团合成烯丙醇,benzoxathiepines, benzotiazepines,的R - thioketones,研究取代R是不饱和enones,和A - hydroxysulfoxides使用在天然化合物的合成。最简单的访问,hydroxysulfides是thiolysis1,2,也就是通常进行了环氧有机溶剂(四氢呋喃,二氯甲烷,甲醇,乙腈,或心理健康热线)通过使用硫醇在碱性conditions8或存在的助剂和/或催化剂
断层和粒子追踪研究,在液固冒口而shantanu罗伊,金文,陈乙山库马尔,晚上基地dahhan , * 杂项dudukovic ' 化学反应工程实验室( crel )部,化工,华盛顿大学,圣路易,密苏里州63130 液-固循环流化床是一个潜在的反应堆感兴趣的,在多种工业进程,如石油精炼,并在合成精细化学品,石油化工, 和食品。快速失活的固体催化剂,在这些进程中,需要再生和再循环的固体进入冒口条,其中主要反应完成。在这项研究中,我们证明了计算机自动化放射性粒子追踪( carpt ) ,可以用来获取的固体速度模式,在提升管和回流的固体存在于测试液速度等。 ç线计算机断层扫描( ct )的揭示略高固体浓度为中心的栏目。这是对比的气固提升管反应器其中浓度的固体较高,在墙壁。 导言液-固循环流化床正迅速日益普及,作为反应堆的选择,在多种工业生产过程一样,精细化学品合成与石化和炼油(亮等人, 1995年) 。这一进程要求调动使用这种反应堆存在一个液相反应物,这是典型的碳氢下高压力和低温(托马斯, 1970 ) ,和一个固相催化剂,其中获得停用迅速( corma和马丁内斯, 1993年) 。主要是反应在一个垂直立塔高升/ d值(其中固体流态化,并经液相) 。再生失活催化剂是在一个单独的进程,这是耦合向主要反应在冒口分发固体连续在一个封闭的环路。 设计和scaleup这种连续流气液固系统都需要有知识的流格局的每一个阶段和第二阶段持分布。目标,这方面的工作,就是要研究实验速度和持分布固体第一阶段在冒口的一个实验室规模的冷态流模型的循环液-固体系。 试验段了一份该实验室规模的液固循环流化床格局如图1所示。该冒口节是一个15厘米( 6英寸)直径的有机玻璃柱,高度约210厘米( 7英尺) 。玻璃珠(直径2.5毫米)的流化床与普通自来水水在冒口节,并已分发到系统通过漏斗和eductor 。固体质量流量在冒口保持控制液体流量通过eductor (即辐射校正固体流量作为一个函数的动机水流速) 。总体预期固体/液体流动比率得到供应,其余液体通过经销商板在底层的一栏。 1 恒高流量和水头,在栏并在eductor进气道是由流通通过泵和储罐,在一个封闭的环路。 实验结果用carpt (计算机- 自动化放射性粒子跟踪)和ct (电脑断层扫描)设施发达,在化学反应工程实验室,华盛顿大学, 圣路易斯,钼( devanathan , 1991年;库马尔1994年) 。它可能会注意到,该系统在研究中,是非常稠密和动荡,只有无创flowmonitoring 方法一样, carpt和ct有能力准确地测量固体速度和浓度。 目前设置的目的是使该冒口科可安装供研究中的carpt -电脑断层平台。 之前的研究固相流体力学停留时间分布测量数据进行在液相中。导电性液体一个阶段是监控战略地点后,脉搏注射氯化钾溶液。这项研究的结果分别为报,在其他地方(罗伊等人, 1996年) 。结果发现: 液相流动实际上在塞流, 小色散效应。因次方差的*作者向谁所有函件应予以处理。液体示踪剂电子商务曲线总是位于低于0.1 。 图1 。图式的液固冒口格局。 4666位于印第安纳州英语。化学。第。 1997年, 36岁, 4666年至4669年s0888 - 5885 ( 97 ) 00292-3矮壮素: $ 14.00 © 1997年美国化学学会为carpt研究( devanathan , 1991年;杨等人, 1992年) ,示踪粒子是由引进放射性资深大律师- 46颗粒(强度350 íci和半衰期83个工作日)在一个空心铝球,其大小和密度均符合玻璃粒子被流态化。经过一个复杂的校准程序用在carpt法(杨等, 1992 ) , 颗粒被放置在周围200-300已知地点在试验段和标定地图,获得了为远程强度的辐射关系每个探测器。当校准完成, 理想的液体表面的速度和定保持和粒子被允许自由流动在流场,模拟议案的一个典型玻璃粒子。位置示踪粒子记录随着时间的函数,其形式光子计数,由该探测器等,在相当长的一段时间内( 8小时) 。意思和脉动分量,湍流参数, 和动能的固体颗粒,可随后计算过滤和处理原始数据( devanathan , 1991年; larachi等人, 1997年) 。这是第一次使用carpt已成功地证明了在一个制度下,示踪剂粒子定期休假,并重新进入第正在接受审问,由探测器。 电脑断层扫描仪在crel ,华盛顿大学,圣路易,钼,用扇束几何测量衰减ç辐射作用,因为它经过给定的对象,在这种情况下,提升管科。原料衰减测量,然后利用重建横截面时均持分布该阶段进行。源头是一个包裹100 mci的政务司司长- 137同位素,以及一个角阵11乃探测器(最大值) ,是用于衰减测量。该估计最大化算法,基于最大似然原则(兰格和卡森, 1984 ) , 用于图像重建,从投影测量。详细的软件和硬件方面的crel扫描器讨论由库马尔等。 ( 1995年)和库马尔和dudukovic ' ( 1997年) 。 在本研究中,试验段(液固冒口) ,扫描四项战略轴向位置沿专栏。 结果与讨论实验表演,在一系列的液体表面流速,从12至23厘米/美国在这项研究中, 典型所取得的成果运行系统在液体表面流速20厘米/秒。所有实验结果与玻璃颗粒2.5 毫米直径,以eductor水流量为25加仑/ 闵。一个水流量为33加仑/分钟,维持在底层的冒口,以维持整体的液体表面流速20厘米/秒,在一栏。 图2是一个阴谋方位的平均值和timeaveraged 径向固含(固体浓度) 分布,测量4个轴向位置,在一个流动性表面流速20厘米/秒。它指出, 规模的固含不相同十分显着(最大变化是4 % )与增加径向位置,但跌幅轻微轴向位置(最高4 % ) 。该固含,在任何特定的轴向位置,是稍高在该中心的专栏作为比较,在墙上。这是一个很有意思的结果, 这是广为报道,在气-固立了相反的趋势是观察(罗德和geldart , 1989年; 罗德, 1990 ) 。径向梯度在固含分布也少得多。 图3显示固体速度场作为评价从carpt实验。数字,第3 a是一个速度向量图,它清楚地表明,在一定时间的平均值从某种意义上说,固相有一个循环:固形物升序在该中心的一栏,并降在墙上。图3b及第显示同一事实定量无论在时间平均轴组件固体速度,在四个地点中的专栏。可以注意到,而下行速度固形物在墙面的小程度作为比较,以向流速度,其总质量固体下行仍是值得称道( 9.6 % ,在此情况下) 图2 。固含(浓度)分布在不同轴向位置(液体表面流速) , 20厘米/秒) 。 图3 。固体速度场在液体表面流速20厘米/秒: (一)速度矢量情节; ( b )轴平均流速剖面。 位于印第安纳州英语。化学。第卷。 36 ,第11号,一九九七四六六七由于较高的截面积,流量更大径向位置。 评论对固含剖面上水平33厘米的栏,是在命令。这个水平,仅略高于分销商和eductor在栏(图1 ) ,是的一个组成部分混合区,并明显地显示出了异常持低姿态比78厘米水平。这是还证实,由carpt结果:图3 a条明确显示固形物速度矢量是随机指示在这一水平上,而更高了,在一栏明确循环可以被认出。因此,流量33 厘米一栏仍是发展中国家,立意显然越轨行为时相比,要休息该栏目。 用一种新颖的方式,固体停留时间分布(热电阻) ,在提升管科计算间接由carpt数据。由于示踪剂粒子被认为是一个典型的分散相实体其中获得多次分发到冒口节中,分配的时候,所花的,它在冒口节期间,它的每一个访问,是衡量其发展权。 这些"停留时间" ,在接连访问是策划作为一个直方图如图4 。招来遍历假设,这给发展权的固相。 最后,在图5中,轴向平均每场平均轴向速度固形物是作为一个函数的液体表面流速。做实验,在不同的情况表明,总体增加幅度中线以及墙(下行)速度。这是的,当然,可以预料的,因为较高的势头该液相会传授更多的动力固相通过相间阻力,从而导致较高的平均流速的固体。纯粹基于这些实验结果似乎显示了固相速度达到某种" saturationprofile " 随着越来越多的液体表面流速。然而, 严格核查这种结果还有待未来实验。 结束语设计实践流化床和上升器即使在今天在于对传统的"规则- -拇指" 。实际现象,在这种系统要复杂得多比抓获启发式方法,用来作为根据设计方程。因此,用户和设计师的液固立管应最终利润从改善基本的了解,加深对流体力学在这类系统。本研究有意作为第一步,在实验量化对相同的。 在crel ,工作正在进展中,在学习冒口体制下的各种操作条件和使用频谱的粒子的大小。调查的瞬态现象,在这些系统,还计划在未来。进一步处理的数据将被做为了计算动能,湍流剪讲,湍流扩散系数在固相。总体目标本研究工作制定一个了解的关键变数影响表现液固冒口制定更从根本上为基础的大规模行动规则。该实验数据的预期也将作为基准为计算流体动力学模拟研究液固冒口流。 确认作者感谢工业赞助的化学反应工程实验室( crel ) 在圣路易斯的华盛顿大学,为支持本工程。 命名ul )的液体表面流速,公分z )的水平在提升,公分文献corma ,甲;内斯答:化学,催化剂及工艺异构烷烃-烯烃烷基化:实际状况和未来趋势。催化剂。牧师-工商局局长。英语。 1993年, 35 , 483 。 devanathan号调查的液体流体力学中的泡沫栏目通过计算机自动放射性粒子追踪( carpt ) 。 d.sc.论文,华盛顿大学,圣路易斯, 莫, 1991 。 库马尔,锑电脑断层测量无效分数与建模流泡沫栏目。博士论文,佛罗里达大西洋大学,博卡顿,外语, 1994 。 库马尔,锑; dudukovic '阁下,电脑辅助伽马和x射线断层扫描:是否适用于多相流系统。 在非侵入式监测多相流动; chaouki ,威廉斯, larachi ,楼dudukovic '阁下,合编; elsevier公司科学出版社: 阿姆斯特丹,荷兰, 1997年;页47-103 。 库马尔,布; moslemian ,四; dudukovic ' ,杂项伽玛射线断层扫描成像空隙率分布在泡沫柱。流量测量。仪器。 1995年, 6 , 61 。 图4 。停留时间分布的固相在液体表面流速20厘米/秒(从carpt实验) 。 图5 。轴向平均轴指固体速度作为功能的液体表面流速。 4668位于印第安纳州英语。化学。第卷。 36 ,第11号, 1997 兰格k. ;卡森, r.电子商务mreconstruction算法排放与传输断层。 j.计算机。协助。 tomogr 。 1984年, 8 , 306-316 。 larachi ,楼; chaouki ,威廉斯;英豪, g. ; dudukovic ' ,杂项放射性粒子追踪,在多相反应器:原理和申请。在非侵入式监测多相流动; chaouki ,威廉斯。 larachi ,楼dudukovic '阁下,合编; elsevier公司科学出版社:荷兰阿姆斯特丹, 1997年;页335-406 。 亮,工作组;余剂zq ;进耀,王, zw ,王,耀合成直链烷基苯在液固循环流化床床反应堆。 j.化学。工艺。 biotechnol 。 1995年, 62 , 98 。 罗兹,兆焦耳造型的流场结构向上移动气体固体悬浮物。粉工艺。 1990年, 60岁, 27-38 。 罗兹,兆焦; geldart ,四水动力循环流化床。在循环流化床技术; basu , 页,编辑;珀盖蒙出版社新闻:纽约, 1986年;页193-200 。 罗伊,扇平;陈,威廉斯;库马尔,锑;基地dahhan ,晚上; dudukovic ' ,米。 页液相混合过程液固循环反应堆。 本文介绍了在aiche年度会议上,芝加哥, 1996年。 托马斯,氯催化过程,并证明了催化剂;学术记者:纽约, 1970年。 杨,镱; devanathan号; dudukovic ' ,国会议员液体返混在泡沫柱透过计算机,自动化放射性粒子追踪( carpt ) 。化学。英语。工商局局长。 1992年, 47 , 2859 。 收到复核1997年4月21日修订文稿收到1997年8月1日接纳8月9日, 1997x ie970292l x摘要事先公布的acs文摘, 10月1日, 1997 。 位于印第安纳州英语。化学。第卷。 36 ,第11号,一九九七四六六九
169 浏览 2 回答
189 浏览 2 回答
83 浏览 7 回答
343 浏览 6 回答
327 浏览 3 回答
349 浏览 3 回答
159 浏览 1 回答
296 浏览 4 回答
108 浏览 4 回答
164 浏览 6 回答
275 浏览 7 回答
206 浏览 5 回答
125 浏览 10 回答
98 浏览 1 回答
325 浏览 6 回答