网友:给你一篇参考一下:概率在生活中的应用由于新课程强调数学教育的基础性、现实性、大众性,重视素质教育与中考、高考的兼容性,概率统计在社会现实中具有很高的应用价值.在复习中要关注生活背景、社会现实、经济建设、科技发展等各个方面,并从中提炼出具有社会价值的数学应用背景。 应注意培养学生善于从普通语言中捕捉信息、将普通语言转化为数学语言的能力,使学生能以数学语言为工具进行数学思维与数学交流。有关概率的知识在生活中应用非常广泛。第一部分: 概念重难点 (1)了解必然发生的事件、不可能发生的事件、随机事件的特点.(2)在具体情境中了解概率的意义一点就透(1)有关概率的注意事项:a.概率是随机事件发生的可能性的大小的数量反映.b.概率是事件在大量重复试验中频率逐渐稳定到的值,即可以用大量重复试验中事件发生的频率去估计得到事件发生的概率,但二者不能简单地等同.(2)频率与概率的区别与联系:从定义可以得到二者的联系, 可用大量重复试验中事件发生频率来估计事件发生的概率.另一方面,大量重复试验中事件发生的频率稳定在某个常数(事件发生的概率)附近,说明概率是个定值,而频率随不同试验次数而有所不同,是概率的近似值,二者不能简单地等同.生活中来你能指出下列事件中哪些是必然发生的,哪些是不可能发生的,哪些是随机事件吗?1.通常加热到100°C时,水沸腾;2.姚明在罚球线上投篮一次,命中;3.掷一次骰子,向上的一面是6点;4.度量三角形的内角和,结果是360°;5. 经过城市中某一有交通信号灯的路口,遇到红灯;6.某射击运动员射击一次,命中靶心;7.太阳东升西落;8.人离开水可以正常生活100天;9.正月十五雪打灯;10.宇宙飞船的速度比飞机快. 第二部分: 列举法求概率重难点学会用列表法、画树形图法计算概率,并通过比较概率大小作出合理的决策.第三部分: 利用频率估计概率疑难分析(1)当试验的可能结果不是有限个,或各种结果发生的可能性不相等时,一般用统计频率的方法来估计概率.(2)利用频率估计概率的数学依据是大数定律:当试验次数很大时,随机事件A出现的频率,稳定地在某个数值P附近摆动.这个稳定值P,叫做随机事件A的概率,并记为P(A)=P.(3)利用频率估计出的概率是近似值.经典一例例: 某商场设立了一个可以自由转动的转盘(如图),并规定:顾客购物10元以上能获得一次转动转盘的机会,当转盘停止时,指针落在哪一区域就可以获得相应的奖品,下表是活动进行中的一组统计数据:(1) 计算并完成表格:转动转盘的次数n1001502005008001000落在“铅笔”的次数m68111136345546701落在“铅笔”的频率 (2) 请估计,当 很大时,频率将会接近多少?(3) 转动该转盘一次,获得铅笔的概率约是多少?(4) 在该转盘中,标有“铅笔”区域的扇形的圆心角大约是多少?(精确到1°) 解答:(1)0.68、0.74、0.68、0.69、0.6825、0.701;(2)0.69;(3)0.69;(4)0.69×360°≈248°.评注:(1)试验的次数越多,所得的频率越能反映概率的大小;(2)频数分布表、扇形图、条形图、直方图都能较好地反映频数、频率的分布情况,我们可以利用它们所提供的信息估计概率. 第四部分:概率在考证历史中的应用——考证《红楼梦》作者 数学思维的价值在于创意。复旦大学数学系李贤平教授关于红楼梦作者的工作一直引起我的关注。自从胡适作《红楼梦考证》以来,都认为曹雪芹作前80回,后40回为高鹗所续。《红楼梦》的作者是谁,当然由红学家来考证。但是我们是否可以用数学方法进行研究,并得出一些新的结果来?1987年,李贤平教授做了。一般认为,每个人使用某些词的习惯是特有的。于是李教授用陈大康先生对每个回目所用的47个虚字(之,其,或,亦……,呀,吗,咧,罢……;的,着,是,在,……;可,便,就,但,……,儿等)出现的次数(频率),作为《红楼梦》各个回目的数字标志,然后用数学方法进行比较分析,看看哪些回目出自同一人的手笔。最后李教授得出了许多新结果: 前80回与后40回之间有交叉。 前80回是曹雪芹据《石头记》写成,中间插入《风月宝鉴》,还有一些别的增加成分。 后40回是曹雪芹亲友将曹雪芹的草稿整理而成,宝黛故事为一人所写,贾府衰败情景当为另一人所写。 在平时的生活中,应要求学生多关心国家大事,了解信息社会,讲究联系实际,重视概率统计在生产、生活及科学中的应用,并加强对学生进行偶然性与必然性的对立统一观点的教育.具体还是自己还根据实际情况来写。