以下翻译请楼主费心审阅。The ionic conductivity of a polymer electrolyte depends on the concentration of the conducting species and their mobility. 聚合物电解质的离子电导率取决于导电物质的浓度和它们的迁移性。The low ionic conductivity in a polymer complex resulting from the crystalline phase that affects the mobility of ions could be overcome by blending, plasticizing, etc. 在一种由结晶相(这会影响离子的迁移性)产生的聚合物复合材料中的低离子电导率可以通过共混和增塑等方法来克服。In this work, blended polymer electrolytes with polymers PVC, PEG, and inorganic salt LiClO4 with different concentrations of ceramic filler (TiO2) were prepared.在本研究中, 我们用聚合物PVC(聚氯乙烯)、PEG(聚乙二醇)和无机盐LiClO4,以不同浓度陶瓷填充剂(TiO2)制备了共混的聚合物电解质。The weight ratios between PVC:PEG:LiClO4 were kept constant throughout, and the wt.% of TiO2 was varied (0, 5, 10,15, 20). PVC:PEG:LiClO4 之间的重量比始终保持不变,而TiO2的wt%(质量分数)则是变化的(0,5,10,15,20)。The polymer films so obtained were flexible, opaque, and free standing. 这样获得的聚合物薄膜是柔软而不透明的,而且是自支撑的。The ionic conductivity measurements have been carried out on these polymer electrolytes by employing variable frequency complex AC impedance technique (LCZ 3330 meter, Keithley, USA, in the frequency range 40–100 kHz).对这些聚合物电解质已进行了离子电导率的测量,采用的是可变频率复合交流阻抗技术(LCZ 3330仪表,美国Keithley公司,频率范围40-100kHz)。The thin films of the polymer complex were sandwiched between the two stainless steel electrodes attached to the conductivity jig specially designed for the ionic conductivity measurements. 这种聚合物复合材料的薄膜相三明治一样夹在两个不锈钢电极之间,不锈钢电极附着于专门设计用于离子电导率测量的电导率夹紧装置。The two SS electrodes act as blocking electrodes for Li+ ions under an applied electric field.这两个不锈钢电极的作用是在一个施加的电场下作为锂离子的阻塞电极。The conductivity values of the polymer complexes were calculated (using the formula σ=l/RbA) from the bulk resistance obtained from the intercepts of the Cole–Cole plot and are tabulated (Table 1). 这种聚合物复合材料的电导率数值由体电阻计算(用公式σ=l/RbA ),体电阻则由阻抗圆图的截距获得,电导率数值被列于表1中。The polymer electrolytes were also subjected to conductivity studies in the temperature range (300–373 K). The graphical plotting of the variation of Z′ and Z〃 for the polymer compositions are shown in Fig. 3. 该聚合物电解质还受到了(300-373K)温度范围的电导率研究。关于聚合物组分的Z′ and Z〃变化的图形绘制示于图3。Figure 4 depicts the Arrhenius plot of conductivity in PVC–PEG–LiClO4 polymer electrolyte in the form of thin films. 图4描绘了薄膜形式的PVC–PEG–LiClO4 聚合物电解质电导率的阿累尼乌斯图。The non-linearity in Fig. 4 indicates that ion transport in polymer electrolytes is dependent on polymer segmental motion.图4中的非线性现象表明, 在聚合物电解质中的离子输运取决于聚合物的链段运动。Thus, the result may be described by the VTF relation, which describes the transport properties in a viscous matrix.因此,其结果可以用VTF(Vogel-Tamman-Fulcher)关系来描述, 这一关系可以描述一种粘性母料中的输运性质。 It is also observed that as temperature increases, the conductivity values also increase for all the compositions. 我们还观察到,随着温度的升高,所有组分的电导率值也增加。At high temperature, thermal movement of polymer chain segments, and the dissociation of salts are improved, thereby increasing ionic conductivity. 在高温下,聚合物链段的热运动,以及盐的离解得到改善,从而使离子电导率提高。However, at low temperature, the presence of lithium salt leads to salt–polymer or cation–dipole interaction, which increases the cohesive energy of polymer networks. 可是在低温下,锂盐的存在导致了盐-聚合物或阳离子-偶极子的相互作用,这提高了聚合物网络的结合能。