一、 教材内容介绍: 这册教材中,“数与代数”领域的内容有认识万以内的数、初步认识简单的分数;会计算两位数除以一位数、三位数乘一位数、两位数加减两位数、简单的分数加减法;常见的量要认识千克和克,以及24时记时法。重点:认数与四则计算;难点:24时记时法 “空间与图形”领域中要认识长方形和正方形的特征,简单物体的三视图,知道周长的含义,会计算长方形和正方形的周长。重点:周长意义与计算长方形、正方形周长的方法;难点:观察物体 “统计与概率”领域中教学事件发生可能性相等或不相等。重点:把收集的信息进行整理,能用统计表或条形统计图呈现;难点:正确描述事件发生的可能性 “实践与综合应用”领域安排4次操作型活动与1次场景型活动。重点让学生知道独立探索的同时要加强合作交流,明白“倾听”、“尊重”、“互补”会让问题解决得更好;难点:如何有效地组织活动。 二、教材特点分析: ⒈教学内容的选择 “数与代数”领域以万以内的认数和四则计算(笔算和估算两位数除以一位、三位数乘一位数以及两位数的加和减)为主线,结合安排了认识常量单位(克与千克、24时记时法)以及直观认识分数(一个物体或图形平均分得到几分之一和几分之几)。 “空间与图形”领域在二年级观察物体基础上,进一步教学物体的正面、侧面和上面,安排了从这三个角度观察一些简单的物体和由三个同样大的正方体摆成的物体(三视图);在一年级直观认识长方体与正方体的基础上,教学这两种平面图形的特点以及计算周长的方法。 “统计与概率”领域,在学生初步理解了“可能”“一定”“不可能”的基础上,教学事件发生的可能性有时大些、有时小些,学会用“经常”“偶尔”等词语描述事件发生的可能性。 “实践与综合应用”领域共安排了五次实践活动,其中《称一称》、《周末一天的安排》、《周长是多少》、《摸牌与下棋》都是操作型的活动,而《农村新貌》是场景型的活动。 ⒉教学内容安排 这册教材的教学内容里,把数学基础知识、基本技能与解决实际问题密切结合,并没有明显的区分。尽量把数学知识和自然科学、社会生活紧密联系,力求让数学思考、解决问题、情感态度等方面的培养目标在知识与技能的教学中得以落实,让教学内容更加有利学生全面、持续、和谐地发展。 把几个领域的教学内容交叉安排,有利于各领域的教学互相支持,形成有机体,这是个亮点,也是我们教学中所追求的。例如,数与代数领域中的许多数学活动方法,应用到其他领域的学习中同样能收到良好的效果;条形图与线段恰当地应用到数与代数领域,能直观地显示数量间的关系,有助于发现规律;统计与概率中对“可能性”的理解与把握,则有利于学生在学习其他领域的内容时,思考更全面。 ⒊教材的编写 选择学生身边的、感兴趣的、富有数学内容的事情作为教学材料,并以现实的、有意义的和富有挑战性的方式呈现在教材中,让学生知道数学源于生活,就在我们身边,并不陌生,从而激发学生对学习数学的愿望与热情,激活学生已有的数学活动经验,让学生主动获取数学知识。例题的编写着力于安排教学活动的内容、线索与呈现方式,给创造性地“教”与“学”留出了必要的空间。例题一般不直接呈现和现成的解题方法,而是突出情景中的数学内容、指向解决问题的操作与实践活动,以及学生独立探索后的相互交流。练习的编写注意到学生掌握和巩固新知识需要适当的练习量,同时避免机械地模仿、记忆与重复训练。经常设计一些题组,让学生对同组的几道题进行比较,分析异同,自主构建认知结构;教材中还出现不少的开放性题目,提高学生灵活思考问题、综合运用知识的能力。 从本册教材开始,教材增设了“你知道吗”栏目,结合教学内容,适当介绍一些数学史料,以及和数学有关的科普知识,使学生了解数学知识的产生与发展首先源于人类生活的需要,体会数学在人类发展历史中的作用,感受现实生活中处处有数学,激发学生学习数学的兴趣。本册中,出现了适量的提高题,体现教材的弹性,满足学生的不同学习需求,使全体学生都能得到相应的发展。 三、教学建议: ⒈紧扣学生实际,从学生已有经验入手 数学课程标准强调学生的数学学习必须从学生的生活经验和已有知识体验出发,创设生动、有趣的教学情境,引导学生通过观察、操作、类比等活动掌握基本知识和技能。如在教学三位数乘一位数时,由于其算法与两位数乘一位数基本相同, [1] [2] [3] 下一页09—10学年三年级上册数学教学计划 学生运用已有的学习经验容易实现有效的迁移。教学时,教师不必呈现具体的计算过程,可以提出适当的问题,引导学生在新旧知识之间建立联系,独立思考、自主探索。再如在教学除法验算时,也不把知识直接告诉学生,而是通过例题的教学让学生想到:乘法可以验算除法。这样把除法验算的教学建立在学生已有经验的基础上,不但有利于他们体会乘、除法之间的关系,理解乘法可以验算除法,而且有利于学生养成验算的好习惯。 ⒉关注学生探索与合作交流能力,培养学生的创新精神 在数学活动中,学生是学习的主体,教师要转变角色,依据学生的认识特点,创造性地设计一些探索性和开放性的问题,放手给学生提供动手实践、自主探索与合作交流的机会,让学生的创新得以落实。如在教学口算整千数加、减整千数,整千数加整百数及相应的减法时,不出示例题,而是在认数后的“想想做做”中出示相应的练习,教师给学生充分探索的时间与空间,通过让学生算一算、比一比、说一说等方式,让学生探索算法,交流体会。在教学两位数加、减两位数口算方法时,让学生先尝试口算出结果,再在小组中交流自己是怎样算的,使自己的算法得到确认或修正;教学长方形和正方形时,教师可引导学生把长方形、正方形折一折、量一量、比一比,探究长方形、正方形和角的特点,在认识周长的基础上,探索和交流一般平面图形周长以及长方形、正方形周长的计算方法。这样的安排有利于引导学生主动地去探索、去思考,学生可以运用自己的思考方式和知识经验,经历知识的形成过程,主动建构自己的认知结构。 ⒊培养学生“数感”,发展估算意识,提高估算能力 “数感”是对数和数的关系的一种良好的直觉,它是一个潜移默化的过程,需要用较长的时间逐步培养,学生“数感”的发展需贯穿于教学的全过程。估算可以发展学生对数的认识,同时具有重要的实用价值,可以结合生活实际说明这一点。因此,在教学中,应着力培养学生的“数感”和估算能力。例如为了让学生能够体验万以内这些较大的数的实际含义,可以通过数正方体上的小方块、拨计数器等方法来理解数的组成,让学生感受不同方式表示的万以内数的实际意义和大小,培养学生的“数感”。在现实生活中,许多地方需要估计。如购买一些物品用100元或用200元够不够等等。教学中,应结合有关教学内容或开发设计一些与学生生活密切联系的问题或习题让学生去估计。如第40页的第6题,先估计谁走的路近,再算一算;第42页的第5、6题,都是让学生先估计结果,再计算。有了这样的安排,特别是通过估计解决实际问题,有利于培养学生的估计意识和估算能力,也让学生觉得估算有用。 ⒋重视学生解决实际问题过程,发展应用意识 教学活动中,首先应让学生获得从“数学”的角度来认识和理解问题的机会,让学生在学习时善于从“数学”的角度提出问题、发现问题。其次,让学生学会运用已有的知识与技能,用多种方法解决问题,发展多样化的解题方法。教学中,教师应注意结合所学的内容,在“想想做做”、练习及复习中适当安排了一些实际问题,引导学生运用所学的知识去解决,发展应用意识。如教学用“连乘”解决的实际问题时,可创设有趣的场景,让学生收集有效信息,由学生自由地提出问题,让学生独立解决“买6袋球一共要用多少元?”然后组织学生交流明确解决问题的基本思路,体会解决问题策略的多样化。在单元的最后,安排的实践活动,让学生综合运用所学的知识,根据情境中提供的各种信息发现问题、提出问题、解决问题,进一步培养学生发现问题、提出问题和综合运用所学知识解决问题的能力。 ⒌促进学生形成良好的情感、态度、价值观 孩子对自然与社会现象的好奇心、求知欲是一种重要的素质。要让学生学会用数学的眼光看身边的事物,培养学习数学的自信心、意志力,感受数学的严谨,形成质疑和独立思考的习惯。教学中,教师必须注重组织丰富多彩的数学活动,如让学生积极主动地参与操作和观观察活动,让学生在课堂中有成功的体验,让学生合作交流的机会,分享同学的活动成果。 ⒍让教学评价的方式多样化 在课堂观察时,教师不仅要关注学生知识、技能的掌握情况,还要关注学生其它方面的表现。例如,既要评价学生对乘法、除法计算方法等知识技能方面的理解和掌握,也要评价学生在学习过程中的自主探索和合作交流等
数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。把数学教学与生活联系起来,使学生在不知不觉中感悟数学的真谛。下面是我为大家整理的小学 六年级数学 教学论文,希望对大家有所帮助! 小学六年级数学教学论文篇1:培养数学应用意识及实践 培养学生的数学应用意识和实践能力 《数学课程标准》指出:“数学教学,应从学生已有的知识 经验 出发,让学生亲身经历参与特定的教学活动,获得一些体验,并且通过自主探索,合作交流,将实际问题抽象成数学模型,并对此进行解释和应用。”基于此认识,我认为在新教材的教学中,应体现以下几点: 一、 源于生活,创设轻松愉快的学习情境 苏霍姆林斯基指出,教师在教学中如果不想方设法使学生产生情绪高昂和智力振奋的内心状态,而只是不动情感的脑力劳动,就会带来疲倦。因此,我们的教学应营造一种轻松愉快的情境,使学生乐此不疲地致力于学习内容。 数学离不开生活,生活中处处有数学。在教学中,以教材为蓝本,注重密切数学与现实生活的联系,创设轻松愉快的数学情境。 现实的学习情境,可以激发学生学习数学的兴趣,充分调动学生学习的积极性和主动性,诱导学生积极思维,使其产生内在学习动机,并主动参与教学活动。如教学“认位置”,以学生眼前的教室为情境,为学生提供了一个观察生活中人与人、人与物、物与物之间位置关系的场景,让学生在从指定观察到自由观察、换位观察的过程中不断加深对知识的认识和理解,使他们不光会表述物体间的位置关系,还能感受到物体间位置关系的相对性,从而使学习变成一种主动探索的过程。 心理学研究表明:比起现实情境来,幻想的情境更能激发学生丰富的情感,给他们带来深刻的内心体验。 儿童 最富于想象和幻想,儿童的世界最是千奇百怪、色彩斑澜。儿童感兴趣的“现实生活”,成人常常不可理喻,就像教材中的“小兔采蘑菇”、“青蛙跳伞”、“小蜜蜂采蜜”等,我们认为不合逻辑常理,孩子们却兴趣盎然。因此,我们需要保有一颗纯真的童心,善于从儿童的生活经验和心理特点出发,努力避免成人化的说教,这样,才能捕捉到一幅幅令他们心动的画面,设计出一个个可亲可近的情境。 例如教学“比一比”通过学生喜爱的卡通形象――蓝猫邀请大家参观客厅来导入新课,学生兴趣盎然;引导学生发现猫大哥客厅里的数学秘密,学生兴趣高涨。又如教学“统计”,借助媒体创设大象过生日的情境,并以此为线索展开学习活动,提高学生的学习兴趣。 二、 用于生活,培养学生的应用意识和实践能力 新课程强调人人学有价值的数学,人人学有用的数学。因此,数学学习必须加强与生活实际的联系,让学生感受到生活中处处有数学。 数学只有回到生活中,才会显示其价值和魅力,学生只有回到生活中运用数学,才能真实地显现其数学学习水平。 如在教学“比一比”时,通过找教室周围的物体的长短高矮的比较,使学生学会用数学的眼光观察周围事物。 如在学习“认位置”后,回家观察一下自己的卧室,并用上下、前后、左右描述一下卧室内物体的相对位置关系,然后说给爸爸妈妈听。观察一下自家房屋周围、村庄周围都有些什么,到学校后,和小伙伴交流。 又如在学习了“统计”后,问学生你准备统计什么?这一环节充分利用学生已有的生活经验,把所学的知识应用到生活中去,解决身边的数学问题,了解数学在现实生活中的作用,从而使学生体会到学习数学的重要性,学而有用的喜悦感,数学与生活的联系得到了最好的体现。 使学生感受数学与生活的密切联系,能运用生活经验对有关的数字信息作出解释并初步学会用具体的数描述现实世界中的简单现象,是课程标准中规定的第一学段的教学目标之一。一年级的小孩子正如他们在课堂上所说的那样,“我把我的书包分类清理好了”、“我学会了数数,上次家里来了好多客人,我就知道摆多少双筷子了”、“我学了加减法,就可以帮助妈妈上街买菜,不会算错钱了”,也就像家长说的那样,“我的孩子回家把他的玩具和他书包里的书都分类收拾好了,真不错!”“我的孩子现在都会自己看钟去上学了”。可见,新教材在培养学生数感和应用意识,培养学生的自理能力和劳动意识,体现学习有价值的数学等方面取得了初步的成效。 总之,数学离不开生活,生活中处处有数学,它来源于生活又应用于生活。来于生活、归于生活的知识才是有价值的知识。把数学与生活联系起来,使学生在不知不觉中感悟数学的真谛。 小学六年级数学教学论文篇2:浅谈数学的创造性学习 什么是数? 开天辟地之初,人类就开始与数打交道。数即是数目的意思。正如《汉书·律历志上》云:“数者,一十百千万也。” 数进入数学体系就成为它的最基本概念之一,数的概念是随着人类的生产和生活实践的不断发展而逐渐形成的,并且永无止境地发展着。从古至今,以自然数为开端,接着是有理数与无理数、正数与负数、实数与虚数,直至复数,共同构成数的概念不断拓展的系列。每一次拓展都是一次创造思维的跃升。 什么是数学? 数学是研究现实世界的空间形式和数量关系的科学。古时候,人类在生产和生活实践中便获得了数的概念和一些简单几何形体的概念。自此开始,到16世纪,创立了包括算术、初等代数、初等几何和三角的初等数学。17世纪引入变量概念是数学发展史中的转折点,这使得运动和辩证法进入数学,开始研究变化中的量与量之间相互制约关系和图形间的相互变换。近年来,由于数学在自然科学和技术领域的广泛应用,又由于计算技术的迅猛发展,数学对人类认识自然和改造自然的重要作用也显示得更加清楚了。至今,现代数学已经形成了包括数理逻辑、数论、代数学、几何学、拓扑学、函数论、泛函分析、微分方程、概率论、数理统计、计算数学及边缘学科运筹学、控制论等在内的庞大体系。 与数的发展一样,数学发展史也是创造思维不断发展的历史。 数学是中小学生的主科。数学学习是中小学生增长学习能力和创造能力的广阔天地。 一.驴唇怎能对得上马嘴呢 阴错阳差的巧事,张冠李戴的误会,在大千世界,这等笑话,时有发生。可是,在数学课上,难道也会发生驴唇不对马嘴的事情吗? (一)平地起风雪 话题是从一道浅显的代数题引发的。这是一个发生在某中学初一新生的一节数学课上的小 故事 。快下课时,老师出了一道题:“若a为自然数,说出a以后的7个连续自然数。”一个小女孩举手抢答:“a,b,c,d,e,f,g。”话音刚落,便引起哄堂大笑,老师也愕然了。女孩觉察到,自己的答案,驴唇不对马嘴。出了笑话,落个满脸通红。 接着,一个男孩起来补正:“a+1,a+2,a+3,a+4,a+5,a+6,a+7。”尔后,下课铃响了。 事情平平常常。一个女孩答错了题,一个男孩纠正过来,全班同学都明白了正确答案。下课,大家就都散了。 那么,这件事是否到此就算了结了呢? 请思考10分钟,然后,发表你的见解。 单兵——我看是了结了。老师完成了教学任务,学生也完成了学习任务。 焦小敏——如果说没有了结,那就是老师还得 教育 同学们,不要把这事当成奚落那位小姑娘的笑柄。 张娟——还有,班上的同学也有义务鼓励那位小姑娘。 赵老师——直截了当地说,我认为没有了结。因为任何结果都有原因。小姑娘答成“a,b,c,d,e,f,g”这是她思维的结果。那么,她一定有个由此及彼的思维过程,其中深藏着错误的原因。老师与那个小姑娘的任务是找出原因,避免再错。如若不然,再遇类似问题,也许她又答成“甲、乙、丙、丁、戊、己、庚” 呢。 肖冬春——我同意这种看法。换句话说,知道男孩答案正确,并不等于找到自己的错误原因。 韩小彧——前面几位同学的发言,从不同的角度,各有各的道理。但是,又都有一个绝对化的框框束缚着。这就是姑娘的答案一无是处;小男孩的答案绝对正确,天衣无缝。这个框框正是上面5个发言的潜在的共同前提。当然,错误答案之正确部分及正确答案之不足部分,如果真有,我现在还未想出。 赫峰——她提出的问题,是一条崭新的思路,很有启发。我发现小姑娘的答案中有一个合理的因素,7个字母与题目要求的7个自然数合得上。 曹博——这么说来,错误答案中的合理因素,可不止这一个。题目要求“a以后”,按照英语字母表由b到g都在a以后。 姚树——题目要求“连续”,按英语字母表,从a到g是连续的,并没断开,也没跳跃。 祝越——7个符号都可以表示自然数。这一点。也是符合题目要求的。 李河——这么说来,“a以后”、“7个”、 “连续”、“自然数”4大要素都合乎题目要求,错在哪里呢? 讨论至此,真是平地起风云。看来已经结束的问题,却又引出一片新话题。况且本来被公认为绝对错误的答案,现在却找不到一点破绽了。 (二)罕见的对话 正像大家的看法一样,当堂听课的主任觉察到:这件事并未结束。 下课后主任与老师讨论,老师认为“a+1”到“a+7”是唯一正确的答案,全班已懂,教学任务已告完成。主任又去问学生。大家说那个小女孩在小学时,特别喜欢英语。主任领悟了:小学时只是在 英语学习 中才见到过a,题目似乎要求写出“a以后的7个”来,自然,a,b,c,d,e,f,g”在头脑中出现了,又在口中说出了。这正是心理学上所说的副定势起了作用。 尔后,主任将女孩找到办公室。先肯定她喜欢英语,大胆举手的优点,接着是双方一连串的对话。 “那题明白了吗?” “明白了。” “你的答案呢?” “全错了。” “一点对的地方也没有?” “没有。” “一丁点儿都没有?” “没有。” “真的吗?” “我没想过。”(唉!没有想过就坚定地认为自已全错了!) “现在想想看。” “想不出。” “b,c,d,e,f,g,不是在a以后吗?” “是”。 “字母不是说了7个吗?” “是”。 “7个字母,排列有序,为什么不跳着说呢。” “题目上说……” “你看,‘a以后’、‘7个’、‘连续’,都有了。这些字母又都能表示自然数。那么,哪有错的地方呢?” “咦,怎么没有错的地方了呢?” 最后,在主任启发下,发现了错误:对于这些字母,没有给出符合题意的数学含义。一句话,把英语字母转化为数学符号的任务,没有完成。 找出错误原因,就能纠正错误。简单说,将7个英语字母赋予符合题意的数学含意就是了。这样,找到了与众不同的答案:若a为自然数,令a'=a+1,b=a+2,c=a+3,d=a+4,e=a+5,f=a+6,g=a+7,则a',b,c,d,e,f,g”便是正确答案。 就是这样,正确与错误之间,只有一小撇之差。 还应指出,运用这种灵活变通的 思维方式 ,求解此题,正确答案是无穷尽的。即使是“甲、乙、丙、丁、戊、己、庚”,只要将其赋予符合题意的数学含义,也能成为正确答案。这么看来,把“a+1,a+2,a+3,a+4,a+5,a+6,a+7”看成唯一正确答案,失之于思维呆板,并且导致片面性和绝对化。 (三)深刻的启示 中小学生在数学学习中,错误常见,改错也常见。但是,这样的改错方式从未见过。 这样的改错方式给我们的启示是深刻的,是多方面的。 1.在变通性的动态思考中更深刻地掌握数学新原理 掌握数学概念和原理,运用相关概念、原理解答数学问题,从而获得系统的数学知识,提高思维能力,这是数学学习的基本任务。 用符号表示数是代数学的根本特点。在小学算术中只用阿拉伯数字表示固定的具体数目。而在中学代数中,就要用抽象符号表示多种多样的数学含义。用符号表示数的课题,是代数起始课的重点和难点。上面的题,正是为了使学生掌握这个代数原理而设计的。 两种改错方式对理解原理的作用是不同的。先看一般方式: a,b,c,d,e,f,g→a+1,a+2,a+3,a+4,a+5,a+6,a+7 再看变通方式: a,b,c,d,e,f,g→令a'=a+1,b=a+2,c=a+3,d=c+4,e=a+5,f=a+6,g=a+7→a',b,c,d,e,f,g 后者增加“令a'=a+1,……,g=a+7”的一步,同时也就增加了“a'~g”的新的答案形式,最后回到“a+1,……,a+7”的答案。中间增加两步推导,都运用了“符号表示数”的原理。这样,也就加深了对这一原理的理解。 总之,对比两种处理方式,后者更有利于数学知识的掌握和学习能力的提高。 2.创造思维能力在运用中得到增长 运用变通性方式改错,不仅有利于学习能力的提高,也有利于创造思维能力的增长。 变通性改错方式,加大了思维难度,是进行 发散思维 而获得的结果。当然,这也不是唯一的结果。更为重要的是:原来被认为解法唯一,现在变成无穷了。这就启发我们提出问题: (1)数学概念和数学原理统统都是永恒不变的吗?其表述方式是唯一的吗? (2)被认为只有一种解答 方法 的数学题是统统都不会有第2、第3种解决方法吗? 当我们对这两个问题得出“不见得”的结论时,那么对今后的数学学习产生的影响,也就在其中了。即不以固定方式掌握数学概念、原理和题目解法为满足,而还要运用创造思维的发散性、灵活性,对每一个数学课题予以审视,积极发掘可能蕴含着的新内容、新方法、新的推理和新的表达方式。 这样坚持下去,就会收到数学学习能力与创造思维能力同步超常增长的效果。 小学六年级数学教学论文篇3:小学数学活动课的开设原则 原则之一 小学数学活动课,必须以小学生的个性要素得到发展为宗旨,设计教学目标、教学内容与教学 方法。《课程方案》对小学阶段的教育提出了明确的培养目标,这个培养目标包括两方面内容:一方面是为体 现小学阶段性质和任务而设计的国家要求,也就是国家关于知识和能力的质量标准;另一方面是为体现小学生 身心发展规律的个性发展要求。落实到小学数学课,国家质量标准就是要求小学生具有初步的运算技能、逻辑 思维能力和空间观念,以及运用所学数学知识解决一些简单的实际问题的能力这四项,这个任务主要由小学数 学的学科课(或者叫必修课)来担当。至于发展小学生个性的要求,《课程方案》明确提出主要由活动课来担 当,其教学目标就是“增强兴趣,拓宽知识,增长才干,发展特长”。有人会提出,这个要求在学科课所包含 的实际活动中就能做到,或者开展课外活动就可以实现。我认为这是误解。诚然,小学数学学科课所包含的实 际活动,诸如观察、实验、练习等,也能培养学生某些个性要素,但它服务的目的不同,它只是为学科课的教 学目标而服务的一种教学手段,是学科课教学活动的一部分,没有具体教学时间的界限;而小学数学活动课应 是以发展学生个性要素为首要目标的课型,每节课教学时间与学科课的教学时间相配合。还有,活动课也不同 于课外活动:①活动课属于课程的范畴,课外活动则是“在教学大纲范围之外由学生自愿参加的各种教育活动 的总称”,它不属于课程的范畴;②活动课有一定的结构性,它有特定的教学目标、内容和活动方式,而且教 学内容的广度和深度随着年级的上升而具有层次性,而课外活动则没有这种有序的要求;③活动课的设计和实 施要具有一定的规范,那就是活动课必须有教学纲要和活动课指导书,并严格按此规范实施教学进程,而课外 活动则不具备这个要求。 原则之二 小学数学活动课,必须淡化选拔教育,做到“人人受益”。小学阶段的教育是义务教育的初级 阶段的教育,国家教委副主任柳斌同志指出:“义务教育是国民教育,普及教育,平等教育,应当强调其普及 性,淡化其选拔性。”这个要求不仅在小学阶段的教育活动中要落实,更要在各科的教学活动中落实。学科类 课程的教学活动做到人人受益,比较好操作,因为学科类课程所担负的国家关于知识和能力的各项规定,由统 一的大纲和教材所列举,由国家规范的教学、考查等计划予以落实和检查。而活动课是以培养个性特征为标志 的新课型,系统的操作硬件尚在建立之中,有一定的难处。但是,我们应当这样理解:小学数学活动课所说的 “人人受益”,不应当以分数、成绩的提高来理解,应当从学生的个性要素得到发展予以解释。从活动课参予 程度讲,不要像组织数学课外活动小组那样,只允许少数数学 爱好 者参加,而应要求每个学生都参加。从活动 课的课程设计讲,在学科课为每个学生打好共同基础的条件下,为发展学生的个性特长、 兴趣爱好 提供发展空 间;从活动课的教学效果讲,通过小学数学活动课,有的学生数学知识、能力和爱好都得到提高,这是受益。 通过小学数学活动课,有的学生数学知识和能力提高不甚明显,但是通过数学的橱窗对观察课外天地,观察实 际生活的兴趣产生了,这也是受益。更有甚者,通过小学数学活动课,虽然没有引起学习数学的兴趣,但这种 活动课教学尝试在学生记忆中留下思维印象,能成为今后处理问题的一种思维参考,这也应该说是受益。纵或 阻塞了他们对数学的爱好,但通过小学数学活动课促使他们去爱好 其它 学科,也同样属于受益之列。一言以蔽 之,小学数学活动课的受益,就是指小学生的个性要素,主要指兴趣和情感,通过数学的载体而得到发展。 原则之三 小学数学活动课,必须注意小学生身心发展的特点,充分保护“童心”。小学生的年龄阶段( 6~11、12岁), 在心理学上称为儿童期(或称学龄早期)。这一阶段,小学生不但身体发育进入了一个相对 平稳阶段,而且由于从一个备受家庭保护的幼儿变成必须独立完成学习任务、承担一定社会义务的小学生,这 就促使儿童心理特征产生质的飞跃,概括起来,就是产生了在幼儿期没有的“好奇、好动、好胜”的“童心” 。这三个“好”只有“好奇”“好动”充分得到发展,“好胜”的儿童价值特征才能得以建立。但是要注意, 要使“好奇”“好动”的心理状态健康成长,就必须从以下两个方面予以控制:①调控环境,促使小学生总是 保持向上振奋的心理状态。小学生向上振奋的心理状态的形成是立足于好奇感,而好奇感的永恒程度又依赖于 环境(包含教学环境)对小学生接受知识是否有一种愉快感。因此建立一种愉快接受教育的氛围是调控环境的 关键。小学数学活动课基于数学学科的抽象特点,愉快教育氛围的建立,特别要注意杜绝成人期望值的强加与 过量过高数学材料的灌输。就是说,不要设想通过小学数学活动课的教学,个个都成为数学神童;也不要认为 ,实施小学数学活动课教学,就是灌输小学数学之外使小学生难以接受的成人处理数学的材料。②树立模仿典 型,促使小学生形成稳固的知识、能力体系和健康的行为与习惯。小学生的“好动”,是建立在模仿基础上的 好动,通过模仿,一旦成为小学生稳定的心理成分,就左右小学生健康心理的形成。因此为了促使小学生形成 稳固的知识、能力体系和健康的行为习惯,我们的教学活动就应当提供学生认为有趣的、益于拓广知识的模仿 典型。小学数学活动课所提供的模仿典型,就是根据数学的特征以及小学生的知识、能力条件,通过游戏、观 察、拼图、制作、不完全归纳等思维及操作办法,让学生得到学科课内所没有的、又能激发学生求知兴趣的数 和形的一些结论(但是不要证明)。这些结论,要求学生都记住它是次要的,掌握得到的过程则是教会模仿的 本意。只有这样,“好动”的心理特点才可以说在数学活动课里得到健康地培育。 原则之四
298 浏览 3 回答
102 浏览 5 回答
107 浏览 2 回答
193 浏览 2 回答
256 浏览 4 回答
333 浏览 4 回答
336 浏览 5 回答
258 浏览 2 回答
266 浏览 2 回答
240 浏览 2 回答
304 浏览 3 回答
258 浏览 2 回答
295 浏览 7 回答
298 浏览 2 回答
349 浏览 5 回答