一、答辩陈述:
在答辩的陈述中,我从四个方面介绍了我的论文:
1、文章中需要用到的有关二次型、正定二次型等概念;
2、正定二次型的性质及判定方法;
3、半正定二次型的性质及判定方法;
二、答辩分析:
第一部分主要介绍了论文中需要用到的有关二次型、正定二次型等概念。
第二部分介绍了正定二次型的4中判定方法。
第三部分是文章的重点部分,我通过查找资料以及与正定二次型性质判定方法作对比,从而总结了4中主要的判定方法。
最后一部分根据正定二次型的性质判定方法归纳了其9方面的应用。
三、答辩中提出的问题及回答要点:
1、正定二次型的矩阵的行列式值有什么特点?
答:正定二次型的矩阵为正定矩阵,它的行列式值大于零。
四、判断方法:
主要介绍了4种判定方法,分别为:
1、二次型半正定的充分必要条件是它的标准型的所有系数都是非负的;
2、二次型半正定的充分必要条件是它的正惯性指数与秩相等;
3、二次型半正定的充分必要条件是它的矩阵的特征值均为非负数;
4、二次型半正定的充分必要条件是它的矩阵的各阶主子式均为非负数。其次,还可以用半正定二次型的定义进行判定。
五、论文虽未论及,较密切相关的问题:
1、本文主要介绍了正定、半正定二次型的性质及判定方法,然而在实际应用中,更多的会用到正定矩阵相关概念。
2、如(正定二次型在线性最小二乘法问题的解中的应用),对于此部分知识文中没有论及。因此,需要进一步归纳总结正定矩阵的性质,并将其与本文内容相结合,使本部分内容系统化。