沉积岩型铅锌矿床是指赋存于碳酸盐岩和硅质碎屑岩中,且成因与岩浆活动无关的一类铅锌矿床,是世界上铅锌资源的主要来源(Leach et al.,2005)。根据赋矿围岩岩性和成矿元素组合的不同,可细分为砂岩型(Sandstone-type,SST)铅矿、砂岩型铅锌矿、密西西比河谷型(Mississippi Valley-type,MVT)铅锌矿、沉积岩容矿块状硫化物型(Sedimentaryexhalative,SEDEX)铅锌矿4类。其中SEDEX 型矿床主要形成于陆内裂谷-裂陷环境,是对流循环的中温(220~290℃)、中低盐度(3%~13%)流体(Basuki et al.,2004)发生喷流-沉积作用形成的同生块状Pb-Zn硫化物矿体,呈层状和透镜状赋存于碎屑岩建造中(Large,1988;Sangster,1990;Huston et al.,2005)。MVT铅锌矿是指赋存于台地碳酸盐岩中成因与岩浆活动无关的浅成后生层状铅锌矿床(Leach et al.,1993),因其代表地区位于美国中部密西西比河流域而得名(Leach et al.,2005)。MVT铅锌矿床提供了世界上约25%的铅锌资源,它们分布于全球,以北美和欧洲最为丰富(Leach et al.,2005)。MVT型矿床主要形成于陆内裂谷盆地(Clendenin et al.,1990;Sangster,1990)或造山带前陆盆地环境中(Bradley et al.,2003),是低温(80~220℃)、高盐度(>15%)、高氧逸度的盆地卤水长距离运移汇聚(Garven,1985,1986,1995;Leach et al.,1986;Chi et al.,1998;Nakai et al.,1990),并在未变形的台地型碳酸盐岩建造内部淀积Pb-Zn硫化物而形成的后生矿床(Sverjensky,1986,1987,1989;Sangster,1990;Leach et al.,1993)。SST型矿床以海相石英砂岩含矿建造及铅锌矿石高Pb/Zn值(Bjorlykke et al.,1981)区别于MVT型矿床。SSC型矿床又称砂岩型Cu矿,通常产于砂岩红层内部,与富含硫酸盐的膏盐建造和还原前锋密切相关(Misra,2000),主要含水层为红层本身(Bjor-lykke et al.,1981),盆地卤水具有中等盐度和中性pH值,成矿物质通过盆地卤水从红层萃取而来(Misra,2000)。近年来,对这4类矿床的深入研究,有效地指导了铅锌矿床的找矿勘查。
以沉积岩为容矿围岩的铅锌矿床种类繁多,储量巨大,是世界上铅、锌资源的主要来源(杨庆坤等,2010),一直受到广大矿床地质工作者的重视。由于这类铅锌矿床分布广泛,成因复杂,其成矿作用和成矿规律已经成为当前区域成矿学研究的前沿热点之一。
一、MVT矿床基本特点
MVT型铅锌矿是指赋存于台地碳酸盐岩中,提供了世界上约25%的铅锌资源,它们分布于全球,MVT型矿床主要形成于陆内裂谷盆地或造山带前陆盆地环境中,并在未变形的台地型碳酸盐建造内部淀积Pb-Zn硫化物而形成的后生矿床。
MVT矿床又具有以下基本特点(Leach et al.,2005):①矿床产出于造山带边缘前陆环境或靠近克拉通一侧的沉积盆地环境;②容矿围岩以白云岩为主,仅有少数矿床产于灰岩中;③矿床具有后生特征,其形成与岩浆活动无直接联系;④可发育层控的、断层控制及受喀斯特地形控制的矿体,矿体形态变化较大,可以为层状、筒状、透镜状、不规则状等;⑤矿物组合简单,主要为闪锌矿、方铅矿、黄铁矿、白铁矿、白云石、方解石和石英,仅在少数矿床/矿区发育重晶石和萤石,个别矿区发育有含银或者含铜的矿物;⑥硫化物通常交代碳酸盐岩或充填开放孔隙空间,组构变化较大,矿石由粗粒到细粒,由块状到浸染状;⑦围岩蚀变主要有白云岩化、方解石化和硅化,主要涉及围岩的溶解作用和重结晶作用等;⑧最重要的控矿因素为断层、破碎带和溶解坍塌角砾岩等;⑨成矿流体为低温中高盐度盆地流体,温度一般为50~250℃,盐度一般为10%~30%;⑩金属和硫具有壳源特征。
二、MVT矿床研究方法
1.MVT型铅锌矿流体包裹体
流体包裹体:对于MVT这类低温热液矿床而言,流体包裹体的温压数据是研究成矿系统的基础,也是地球化学分析的基本方法。对不透明矿物流体包裹体观察的红外显微技术在矿床学研究中也有重要意义(张本仁,2005)。
Leach等(1993)和Basuki等(2004)对MVT矿床统计,包裹体均一温度为50~250℃,但多在90~150℃之间,这一温度通常比矿化时正常的地温梯度或估算的地层埋藏温度要高,可能与盆地下部存在热对流或者矿床下部基底岩石中有深部循环流体上升影响正常地温梯度有关(Leach et al.,2005)。包裹体的盐度在10%~30%之间(Leach et al.,2005),许多MVT矿区,如爱尔兰Midland地区、密苏里地区、上西里西亚地区和Cevennes山脉地区,矿床的形成温度超过由地温梯度推算的温度(据埋藏的地层厚度估算),故推断MVT矿床可能形成于高地温梯度的环境中,或与盆地深部对流热传递(密苏里地区)或基底岩石中深部循环的上升流体(波兰U per Silesia和爱尔兰Midland地区)有关(Leach et al.,2005)。包裹体的盐度在10%~30%之间(Leach et al.,2005),与油田水组分相似,反映了MVT铅锌矿成矿流体为盆地卤水起源(Hanor et al.,1979)。Hanor等(1979)认为主要是蒸发盐溶解、同源盐卤水混入或者发生过蒸发作用的地表水渗入导致了卤水的形成。Kharaka等(1987)及kesler等(1996)利用现代盆地卤水中离子含量判断源区,基本支持Hanor等(1979)的观点。
2.MVT型矿床同位素测年
氧、碳同位素:碳酸盐岩是MVT铅-锌矿的赋矿围岩,用δ18O,δ13C值可以指示碳酸盐类矿物的形成背景。应用共生矿物对的氧同位素来反演成矿温度是其重要的应用之一。在川滇黔地区从含矿方解石、白云石到近矿的碳酸盐岩围岩δ18O和δ13C值有升高的趋势,表明成矿流体应该含有富集轻18O 和13C 等同位素的大气降水,而作为围岩的沉积碳酸盐岩(灰岩、白云岩等)则富集重同位素(周朝宪,1997;张长青,2005)。
铅同位素:MVT铅-锌矿床多数情况下呈现混合型铅同位素演化。利用铅同位素的演化线可分析成矿物质的来源,铅同位素组成则可探讨其成矿物质的多源性。青藏高原东北部多数贱金属矿床的Pb同位素组成介于区域上地壳Pb组成范围内,类似于MVT型矿床,显示Pb等金属元素来源于上地壳岩石(Vaasjoki et al.,1986;Sangster,1990)。
同位素定年:目前主要的同位素定年有Rb-Sr,Sm-Nd,U-Th-Pb等。其中SmNd同位素定年法是近几年才开始应用的,某些陆壳中的热液矿床的形成过程中稀土元素内部会发生分馏,致使一些热液矿物的Sm/Nd值变化很大,甚至远高出地壳岩石的正常值(李华芹,1992;彭建堂,2003)。
3.控矿因素
MVT地区铅锌矿主要控矿因素为断层破碎带、溶解坍塌角砾岩、生物礁-生物碎屑碳酸盐组合及基底隆起等(Repetski,1996)。其中断层和破碎带是MVT地区重要的控矿因素,许多矿体集中产于张性断层带内及其附近,如爱尔兰Midland(Hitzman,1999)和Upper Silesia地区矿石集中于正断层中(Kibitlewski,1991);Viburnum Trend矿体集中产于与扭性断层有关的张性空间中(Clendenin,1993;Clendenin et al.,1994);密苏里地区矿体集中于张性断层内(Hudson,2000);在Cevennes山脉地区,走滑断层之间的张裂带对矿石起着重要控制作用(Bradley et al.,2003)。矿体沉淀均与碳酸盐礁杂岩有关,如Pine Point矿体位于溶解坍塌角砾岩中,角砾岩发育于生物礁-生物碎屑碳酸盐组合中(Rhodes et al.,1984)。
4.MVT型铅锌矿成矿流体运移
目前,MVT型铅锌矿成矿流体运移主要存在3 种模式,即沉积和压实作用模式、地形或重力驱动模式及热-盐对流循环模式。
沉积和压实作用模式:驱使流体发生运移的原动力为沉积压实作用和成岩过程中孔隙度变化引起的压力梯度。Cathles等(1983)认为沉积盆地发生快速沉积和压实作用,在上覆地层压力和侧向应力存在的情况下,流体迅速转移,在矿集区内形成异常高压,因此流体包裹体温度通常超过正常压力梯度下的温度。
地形或重力驱动模式:其过程为流体在重力的驱动下,在盆地边缘造山隆起区,在页岩地层的阻隔下,沿碳酸盐岩或砂岩等透水层运移。该模式可以很好地解释北美地区的Pine Point矿床流体沿Slave 湖剪切带运移的过程(Hitchon,1993)。Bethke 等(1988)模拟了Ouachita造山带流体从Arkorma盆地边缘隆起部位流动的过程,很好地解释了浅部地层经历高温和岩石中具有较高水岩比值的特征。
热-盐对流循环模式:热-盐对流循环形成于伸展环境下的流体温度和盐度的增高,裂谷盆地形成阶段是重力驱动流体系统向热-盐对流循环系统转化的开始。长时间的小规模对流循环可以形成大面积的碳酸盐化作用(Morrow,1998)。Russell(1986)提出密度驱动是爱尔兰Midland地区主要的流体运移机制,最终导致矿体主要沿后期活化的加里东构造带分布。
三、特提斯成矿域与沉积岩有关的铅锌矿床成矿特征
特提斯成矿域中与沉积岩有关的铅锌矿床分布广泛、延伸稳定,从土耳其的西南部沿Taurus带向东经伊朗的铅锌矿带,至巴基斯坦,再从青藏高原东部向南至中南半岛泰国等地。这条铅锌矿带中包含有不同成因类型、不同成矿背景的众多矿床,显示出特提斯演化的复杂性和成矿的多样性。
现有资料表明,伊朗、土耳其等地的铅锌矿床都受白垩纪末—中新世大陆碰撞挤压的影响,流体大规模运移形成。土耳其的Taurus成矿带,代表矿床有Bayindir层控铅锌矿床位于西安那托利亚的曼德列斯地块北部,含矿层位出露于南北走向的平卧褶皱的核部及两翼。铅锌成矿年龄为早奥陶世,与奥陶纪—早志留世的Sb-Hg-W组合具有相似的成因,铅锌成矿与同期海相火山活动有关(O.ÖDora.,1977)。位于土耳其中部Yahyali地区,产出有9个铅锌矿床,均为碳酸盐岩容矿,层控、构造控矿特征明显,其围岩为破碎结构及岩溶包含结构。这些矿床大多经历了风化和表生过程,矿石品位为18%~34%锌,2%~10%铅。矿石矿物主要为闪锌矿、方铅矿、白铁矿、黄铁矿及表生矿物针铁矿、菱锌矿、铜蓝及铅矾等;脉石矿物有白云石、方解石和石英。原生矿床(如Goynuk和Celaldagi Desandre)形成于晚三叠世—早白垩世的稳定大陆边缘,而再生矿床则发生于大陆边缘块状断层的形成过程中(Osman Koptagel et al.,2005)。
伊朗Zagros造山带中的Kuh-e-Surmeh矿床、Sanandaj—Sirjan构造带中的Irankuh矿床(Ohazban et a1.,1994)、Anjireh-Vejin矿床,与Emarat及Irankuh同在Malayer-Esfahan成矿带,萨南达-锡尔詹缝合带(Sanandaj-Sirjan zone)中部。为著名的四大矿山(Reichert,2007):Irankuh(储量20mt,品位2.5%Pb和11.0%Zn),Emarat(储量10Mt,品位2.2%Pb及6.0%Zn),Ahangaran(储量1.52Mt,品位3.7%Pb)及 Takiyeh(Rajabi A et al.,2012)。此外,还有很多矿床正在勘探,前景十分广阔(如Anjireh-Tiran铅锌储量1.2Mt,品位8.3%;Robat和Kuhkolangeh铅锌储量0.9Mt,品位8.6%)。萨南达-锡尔詹缝合带的演化主要与二叠纪新特提斯洋的形成有关,而后者在白垩纪到第三纪(古近-新近纪)随着阿拉伯板块和伊朗板块的汇聚及陆陆碰撞而消亡(Mohajjel et al.,2003;Agard et al.,2005;Ghasemi et al.,2005)。Malayer-Esfahan成矿带内发育巨量铅锌矿床,均为白垩纪碳酸盐岩容矿。虽然硫化物矿石是该带的主要矿石类型,次生非硫化物矿石也是很常见的(如Irankuh矿区)。Irankuh Zn-Pb-Ba矿床产于早白垩世碳酸盐岩地层,成矿流体沿Irankuh断裂运移、汇聚沉淀。该矿床具层控特征,矿体为透镜状,矿石主要为开放空间的充填类型,矿物组合主要有闪锌矿、方铅矿、黄铁矿和白铁矿,非硫化矿物有重晶石、白云石、菱锌矿和少量石英。其成矿过程可解释为晚石炭世造山环境中的卤水运移到断裂引起的扩张区,与海相成因的富硫酸盐的流体混合而形成的矿床(Ghazban F et al.,1994)。
伊朗的Kuh-e-Surmeh矿床是赋存于晚二叠世层状灰岩、白云岩中,位于伊朗西南部Zagms造山带Simply前陆褶皱冲断带中,是与造山有关的MVT矿床。矿化主要充填于开放空间条件下的角砾碳酸盐岩中(Liaghat et a1.,2000),平均含Zn 12%,Pb 5.4%,可采达矿石990000 t。矿石矿物主要为闪锌矿、方铅矿及少量黄铁矿、白铅矿、铅矾;脉石矿物有白云石、重晶石、石膏和方解石。矿床成因可以解释为区域构造压实作用使Zard-Kuh盆地脱水,驱使盆地源流体进入多孔的Dalan组角砾状白云岩岩石中,在高盐度(15%)低温条件下(重晶石、方解石包裹体均一温度为50~150℃)沉淀成矿(Liaghat et a1.,2000)。该类矿床的形成是由于晚白垩世—古近纪弧后盆地关闭,挤压作用导致盆地卤水长距离运移,并在成矿条件好的早白垩世地台型碳酸盐岩建造内沉积成矿(Farhad Ehya et al.,2010)。
在巴基斯坦和印度地段主要表现为伸展成矿,具同生层控的特点,赋存有巴基斯坦Lasbela-Khuzdar喷流-沉积型(SEDEX)铅锌矿带。大地构造上属印度古老陆块西北缘,在侏罗纪新特提斯洋盆扩张时,该区为新特提斯洋盆南部的被动陆缘,沉积有杜达(Duddar)、苏迈(Surmai)、贡嘎(Gunga)、顿格(Dhungei)4个矿床,构成著名的巴基斯坦Lasbel Khuzdar铅锌矿带(Silitoe,1978;Turner,1992;Jankovic,2001;Leach et al.,2005b)。
进入青藏高原东部,为挤压驱动流体、后生成矿模式,但含矿建造时代、矿体赋存方式等也不尽相同。卡兰古铅锌矿床位于塔里木板块西南缘的晚古生代碳酸盐台地环境中。该矿床受卡兰古向斜控制,矿体主要产于向斜两翼的白云岩或白云岩化灰岩中,矿体形态复杂,富矿段往往赋存于多组断裂构造交汇部位。矿石根据其结构大体可分两类:一类呈角砾状构造,硫化物呈浸染状,共(伴)生赤铁矿和磁铁矿;另一类矿石中硫化物以胶状、草莓状结构为主。矿物成分主要为方铅矿;其次有黄铜矿、黄铁矿及一些次生矿物;脉石矿物主要为白云石、方解石等。在成矿作用过程中,成矿金属(铅锌)以硫氢配合物形式迁移,喜马拉雅期逆冲推覆褶皱作用所引发的大规模热卤水运移、循环,导致了矿物质的进一步富集、沉淀(匡文龙等,2002)。
青藏高原东北部许多重要的喜马拉雅期硫化物矿床,如滇西金顶巨型铅锌矿床、白秧坪超大型Ag-Cu-Pb-Zn矿集区和金满中型Cu矿床及青南莫海拉亨、东莫扎抓大型铅锌矿床和茶曲帕查铅锌矿床(超大型远景)等,均产于碰撞造山带环境。这些MVT型矿床、矿点的时空分布和矿化特征表明,在青藏高原东北部形成了一个长达1000km、受大规模逆冲推覆构造系统控制的铅锌多金属矿带(侯增谦,2008)。作者研究认为东莫扎抓铅锌矿赋存于上三叠统结扎群波里拉组灰岩中,矿体呈层状、似层状产于角砾发育灰岩中,矿石矿物以闪锌矿、方铅矿为主,脉石矿物主要为黄铁矿、白云石、方解石、石英等,矿石呈角砾状、脉状构造,胶状、粒状结构,受层间断裂控制赋存于碳酸盐岩组矿床。
赋存于由碳酸盐岩组中Pb,Zn矿床向南延续至中南半岛,泰国等地的铅锌矿床是白垩纪末—中新世受大陆碰撞挤压的影响,流体大规模运移形成。泰国的Padaeng矿床,位于泰国西部Mae Sod附近,是世界上第一个次生的非硫化物型铅锌矿(Reynolds et al.,2003),目前的资源数量为5.14亿t,Zn品位为12.0%。由于多雨潮湿,该矿床大部分已氧化成为非硫化物型Zn矿。该矿床产于中侏罗统碳酸盐-碎屑岩岩系中,位于NW向Padaeng断裂上盘,层控特征明显,产于NW倾向、高度风化的中侏罗世白云质砂岩。非硫化物型Zn矿石主要为菱亚铅矿,含少量菱锌矿和水锌矿,硫化物型铅锌矿化广泛发育在Padaeng矿床附近,如Pha De和Hua Lon矿床,富闪锌矿,含少量方铅矿和黄铁矿,矿体属层控型,填充于小规模的开放空间中。非硫化物型矿床形成于中新世的Mae Sod山间盆地边缘,由于硫化物矿体抬升、氧化而成。