1、独立样本T检验一般仅仅比较两组数据有没有区别,区别的显著性,如比较两组人的身高,体重等等,而这两组一般都是独立的,没有联系的,只是比较这两组数据有没有统计学上的区别或差异。
2、单因素ANOVA也就是单因素方差分析,是用来研究一个控制变量的不同水平是否对观测变量产生了显著影响。说白了就是分析x的变化对y的影响的显著性,所以一般变量之间存在某种影响关系的,验证一种变量的变化对另一种变量的影响显著性的检验。一般的,方差分析都是配对的。
如果从计算来看,独立样本之间不需要进行计算,只在本组中进行计算均值、标准差等,而方差分析中,要计算数据之间的组间差异和组内差异等。另外,多因素方差分析就是分析多种因素对某一变量的影响有多大的检验分析。
而协方差分析是多种影响因素下,在不考虑某一种因素下,其他因素对该变量的影响有多大。比如,冰棍的销量、温度的变化、扇子的销量(例子不是很好,但大概就是这个意思,就是a对b有相应,b又对c有影响,但a对c不一定有影响),就是扇子的销量越多。
那么冰棍的销量也是 越多的,所以她们之间成正比关系。显然是错的。因为扇子和冰棍的销量均和温度有关,这类问题的分析时要用协方差分析。
扩展资料
方差分析的基本原理是认为不同处理组的均数间的差别基本来源有两个:
(1) 实验条件,即不同的处理造成的差异,称为组间差异。用变量在各组的均值与总均值之偏差平方和的总和表示,记作SSb,组间自由度dfb。
(2) 随机误差,如测量误差造成的差异或个体间的差异,称为组内差异,用变量在各组的均值与该组内变量值之偏差平方和的总和表示, 记作SSw,组内自由度dfw。
总偏差平方和 SSt = SSb + SSw。
组内SSw、组间SSb除以各自的自由度(组内dfw =n-m,组间dfb=m-1,其中n为样本总数,m为组数),得到其均方MSw和MSb,一种情况是处理没有作用,即各组样本均来自同一总体,MSb/MSw≈1。另一种情况是处理确实有作用,组间均方是由于误差与不同处理共同导致的结果,即各样本来自不同总体。那么,MSb>>MSw(远远大于)。
MSb/MSw比值构成F分布。用F值与其临界值比较,推断各样本是否来自相同的总体。
参考资料:方差分析的百度百科