∫cos(√x)dx令√x=u,则dx/2√x=du,dx=2(√x)du=2udu,原式=2∫ucosudu=2∫ud(sinu)=2[usinu-∫sinudu]=2(usinu+cosu)+C=2[(√x)sin(√x)+cos(√x)]+C~~~~~~~~~~~~~~~~~~~~~~~~~∫√x(x+1)^2dx令√x=t, 则dx=2tdt,带入=∫t(t^2+1)^2*2tdt=∫2t^6+4t^4+2t^2dt=2/7t^7+4/5t^5+2/3t^3+c反带回=2/7(√x)^7+4/5(√x)^5+2/3(√x)^3+c~~~~~~~~~~~~∫e^x/(1+e^x)^(1/2)dx=∫2d[(1+e^x)^(1/2)]=2(1+e^x)^(1/2)+c