上幼儿园的时候,老师就开始教授数字,鸡蛋形状的0 ,火柴棍一样的1,水上游的鸭子的2,发育畸形的耳朵3,三角小红旗招展的4,称钩子的5,体育老师的哨子6,农民的锄头7,七个葫芦娃的8,一把勺子的9,是每个小孩的必须课程。 今天已经少有孩子知道火柴棍是个什么样的玩意,杆秤之后有磅秤电子称地秤,七个葫芦娃早就被名侦探柯南虹猫蓝兔喜羊羊和大灰狼取代,农民用的也都是大中小型的拖拉机收割机。 为什么0 就只能像鸡蛋,不能像鸭蛋鹅蛋鸵鸟蛋?为什么2只能是鸭子,不能是大雁天鹅和鸳鸯?为什么 4必须是三角的小红旗,不能是小蓝旗小白旗么?为什么8就不像老爸夏天出门戴的太阳镜?关于数字的十万个为什么我不能回答给朋友的小女儿。因为自己一向不曾有过正形,实在不是模范形象,误人子弟是绝对不可饶恕的大过。 被教育着开始数数,从1到100,三两岁的年纪能够单独的完成了,厉害!父母的脸面都从这个位十位百位的数字上获得了。 上到小学就开始学习加减乘除。个位数的计算用两只手的指头就足以应付了。 苹果和糖果的分配是最常用的例子,谁取得多少,失去多少,孩子的心里就有了计算。高明一点的老师会讲到礼让的故事,却不是每一个孩子都在心里滋长那样品格。毕竟还有别人教育着他们:一旦你的失去了,就成为别人的了。 大一点的就把数手指头变成了数指关节,顺便就开始了人体构造的第一课学习。手脚都不够用的时候就是黄豆花生一类的工具,但经常性的缺失,因为它们的普遍功用是作为食物。 之后是乘除。九九乘法表是关于数字最普遍最常用的规律,必须要倒背如流才能顺畅的使用,正用是乘,反用是除。颠倒的算计中,有无相生的哲学原理的体现。古人智慧可嘉。 加法的倍数运算,一斤白菜三毛六,三斤白菜多少钱?还有四斤呢?五斤呢?六斤呢?春晚出来的著名的数学运算,把已经上初中的妹妹给折腾了一把,口算心算都难一笔清。佩服那个孩子耳濡目染的彻底! 到菜市场买菜她总是可以拿个计算器的,找对了数字,按几下,出来的数值又快又准。 你要拿计算器上菜市场买菜? 有人还拿手提电子秤呢?要不去超市也行,直接称完价钱就出来了。何必劳神费心的去计算呢? 开始懂得什么是平均分配。1/X,就是把一个完整的事物平均的分为多少分之后的其中一份。这个X越大,这一份就越小;X越小,这一份就越大。无赖的想法就是,干脆不要分配最好了,那样的最大! 一个苹果可以很容易平均分成2、4、8、16份,却很难被公平的分成3、6、9或者5、7 份。看似公平的体制,却有除不尽的烦恼。余数,做什么用呢?做公用基金或者变成小数点后的数字。 原来数字不仅仅是整的,还可以带零头的,一块二毛九分钱的肥皂。给他一块三就该找五分。可是一分的货币不流通了,那他就算了吧。如果是一块二毛四分的话,我只要给一块二毛就好了。这个叫做四舍五入。真是个好方法,模糊具体的数额。每次的白白被超市占了一 分钱的便宜。 当一个男人问我年龄的时候,我告诉他说四舍五入的话今年二十岁,明年三十岁。哈哈,那个男人说我相当的幽默。幽默是需要智慧的。当然也可以用在个人所得税的交纳上,多交或者少交,重点就在于如何计算。偷税漏税违法,合理避税没有什么不可以。 除了口算心算,中国最有名的一种计算方法是珠算。古人延续了几千年的计算方法,据说计算机得以发明,其中就有珠算的功劳。上二下五的珠子。一样的珠子却代表不一样的数值,一或者五。一边背九九乘法表,一边拨弄珠子,珠子是很好的计数工具。除了啪啪清脆的响声之外,还必须要相关的口诀,谁能记得那许多。 一个孩子脑子灵活,手指头僵硬的时候是不能合理的应用这样的工具的,一颗珠子就是一次运算,上下增减都是问题。太难! 亿、万亿、兆、万兆,似乎是不是常用的数值,经常被用来做天文学上的运算,计算行星、恒星的距离,黑洞、星云的宽窄,一个光年带的0就够把手写到酸的数值,它们叫做天文数字,庞大得遥远的于生活无关。至今有很多的人都不知道这个数值是怎样得出的。或者是计算机的运行速度概念表达,一般人谁能分清每分钟运行亿次或者万亿次的差别呢?或者用于计算国民GDP,分配到国民们各自的头上也不过最多成千上万。 米、分米、厘米、毫米、微米、纳米……千克、克、毫克、微克…关于10的10倍甚至百倍千倍的乘积或分割。单位!不是老爸上班的地方,而是一种关于某种事物的大小概念。换算,大小的变化的同一实质。 只是恶狠狠的多了一堆扰人头疼的0,不管是在小数点前还是小数点后,带着裂变或聚变的威力来叫人头疼眼花。 加减乘除的混合运算,比如每天买的不同菜色的不同重量之后总共花去的人民币,有较强数字概念的人都是能够轻松的在头脑中完成的。可是几乎所有的财会人员都会一笔一笔的记录在案。 加上大中小的括号,难度无疑增加了,再一次在先乘除后加减的逻辑上增加另一个逻辑,先括号里的在括号外的,而就括号的区分也是有的,先大的还是先小的,这是一个问题!就是逻辑的不断的叠加,最后得到的是一个头昏脑胀的孩子和一个费尽周折也不一定正确的数值。要多大的一个系统才能够用到一个带上大中小括号和加减乘除同时存在的一个运算?答案只有一个,航天工程! 假想设定的数值X、Y、Z,由已知到未知最后使未知成为确知。一元两次的方程式,非常精明的计算。只需要一个已知就可以得出两个甚至三个的未知!赞!算是见微知著,学会这个就可以做成福而摩斯一样的侦探了,却只是用来计算两辆不同车速的汽车的行驶和一家三代中爷爷、爸爸和儿子具体的年龄。开个车试试可以么?直接用问的或者看看户口本也应该是可以得到答案的吧? 以上是当年某人学习的小学的数学的经历,在至今的生活中绰绰有余,还有许多不曾使用到的地方,例如亲眼所见带0 最多的数值就父母在购置房屋时拿出的有5个0的存折;身高体重的测量最多只是精确到毫米和克而已,纳米只是新闻报道的一个高精尖的科学技术的代号;带括号的计算除了在课堂上被老师强制的要求时勉强做过几次之外,生活中无论是计算生活费还是清理银行存款都没有用到过。 都说数学是自然科学王冠上的明珠,数字必然就是构成这颗明珠的化合物,碳酸钴二氧化三铁都可以让这个明珠熠熠生辉。而我们只是需要一些简单的计算,获得一些简单的数值,无须它光彩耀人,只要能够质朴无华的用得上而已。