1导论 面部识别系统”的原因之一,吸引了这么多的研究关注和维持 在过去的30年发展的巨大潜力是在众多的政府和商业 应用程序。1995年,Chellappa缪群。[5]列少量的应用程序的脸 识别技术,描述了它们的优点和缺点。但是,他们这么做 没有任何系统分析中应用部署。即使在最近的评论(35),在那里 潜在的应用已被分为五类,没有进行这样的 分析。在1997年,至少有25个脸部识别系统可以从13家[3]。 从那时起,这个数字的人脸识别系统和商业企业都有很大的影响 增加了由于出现了许多新的应用领域,进一步改善 人脸识别技术,并增加购买力的系统。我们会举出10 具有代表性的商业的人脸识别技术公司,他们的人脸检测, 面部特征提取,并面临相似,他们比较方法在表1。这些 10公司也参加了最新的人脸识别测试(2002)FRVT卖主 [27]独立进行评估的美国政府最新的人脸识别 技术。虽然这些技术还没有公开为私有 原因,可以推断出许多其他人已纳入商业系统。 作为一种最nonintrusive人脸识别技术的特点、发展 接近人民的日常生活。这就是证据在2000年国际民用航空 组织支持面部识别作为最合适的生物识别技术对航空旅行[11]。, 我们的知识,没有评论文章均可在该新扩大应用场景 然后[3—5次,35)。我们希望这一章将会延长在以往的研究。我们复习 许多面部识别应用程序的人脸识别技术已经使用。这个 是一套应用了更大的集合,在文献[3]. 同时我们也回顾一些 新方案将很可能利用人脸识别技术,在不久的将来。 这些情况被分成十大类,显示在表。尽管我们设法 覆盖尽可能多的范畴,这10个种类既不是专属不彻底。 为每个类别,一些范例程序也可以列出。最后的范畴,给我打电话 “别人”,包括未来的应用,并指出了当前应用程序,我们没有了 进入。这十个类别从第三节,评述了第11节。在第12,有些the372托马斯黄,自由,和Zhenqiu张 易纲预期表。面部识别算法进行了比较,在FRVT从10商业系统 2002年。N / A:不可以。