在统计学中,统计模型是指当有些过程无法用理论分析 方法 导出其模型,但可通过试验或直接由工业过程测定数据,经过数理统计法求得各变量之间的函数关系。下文是我为大家整理的关于统计模型论文的 范文 ,欢迎大家阅读参考!
统计套利模型的理论综述与应用分析
【摘要】统计套利模型是基于数量经济学和统计学建立起来的,在对历史数据分析的基础之上,估计相关变量的概率分布,并结合基本面数据对未来收益进行预测,发现套利机会进行交易。统计套利这种分析时间序列的统计学特性,使其具有很大的理论意义和实践意义。在实践方面广泛应用于个对冲基金获取收益,理论方面主要表现在资本有效性检验以及开放式基金评级,本文就统计套利的基本原理、交易策略、应用方向进行介绍。
【关键词】统计套利 成对交易 应用分析
一、统计套利模型的原理简介
统计套利模型是基于两个或两个以上具有较高相关性的股票或者其他证券,通过一定的方法验证股价波动在一段时间内保持这种良好的相关性,那么一旦两者之间出现了背离的走势,而且这种价格的背离在未来预计会得到纠正,从而可以产生套利机会。在统计套利实践中,当两者之间出现背离,那么可以买进表现价格被低估的、卖出价格高估的股票,在未来两者之间的价格背离得到纠正时,进行相反的平仓操作。统计套利原理得以实现的前提是均值回复,即存在均值区间(在实践中一般表现为资产价格的时间序列是平稳的,且其序列图波动在一定的范围之内),价格的背离是短期的,随着实践的推移,资产价格将会回复到它的均值区间。如果时间序列是平稳的,则可以构造统计套利交易的信号发现机制,该信号机制将会显示是否资产价格已经偏离了长期均值从而存在套利的机会 在某种意义上存在着共同点的两个证券(比如同行业的股票), 其市场价格之间存在着良好的相关性,价格往往表现为同向变化,从而价格的差值或价格的比值往往围绕着某一固定值进行波动。
二、统计套利模型交易策略与数据的处理
统计套利具 体操 作策略有很多,一般来说主要有成对/一篮子交易,多因素模型等,目前应用比较广泛的策略主要是成对交易策略。成对策略,通常也叫利差交易,即通过对同一行业的或者股价具有长期稳定均衡关系的股票的一个多头头寸和一个空头头寸进行匹配,使交易者维持对市场的中性头寸。这种策略比较适合主动管理的基金。
成对交易策略的实施主要有两个步骤:一是对股票对的选取。海通证券分析师周健在绝对收益策略研究―统计套利一文中指出,应当结合基本面与行业进行选股,这样才能保证策略收益,有效降低风险。比如银行,房地产,煤电行业等。理论上可以通过统计学中的聚类分析方法进行分类,然后在进行协整检验,这样的成功的几率会大一些。第二是对股票价格序列自身及相互之间的相关性进行检验。目前常用的就是协整理论以及随机游走模型。
运用协整理论判定股票价格序列存在的相关性,需要首先对股票价格序列进行平稳性检验,常用的检验方法是图示法和单位根检验法,图示法即对所选各个时间序列变量及一阶差分作时序图,从图中观察变量的时序图出现一定的趋势册可能是非平稳性序列,而经过一阶差分后的时序图表现出随机性,则序列可能是平稳的。但是图示法判断序列是否存在具有很大的主观性。理论上检验序列平稳性及阶输通过单位根检验来确定,单位根检验的方法很多,一般有DF,ADF检验和Phillips的非参数检验(PP检验)一般用的较多的方法是ADF检验。
检验后如果序列本身或者一阶差分后是平稳的,我们就可以对不同的股票序列进行协整检验,协整检验的方法主要有EG两步法,即首先对需要检验的变量进行普通的线性回归,得到一阶残差,再对残差序列进行单位根检验,如果存在单位根,那么变量是不具有协整关系的,如果不存在单位根,则序列是平稳的。EG检验比较适合两个序列之间的协整检验。除EG检验法之外,还有Johansen检验,Gregory hansan法,自回归滞后模型法等。其中johansen检验比较适合三个以上序列之间协整关系的检验。通过协整检验,可以判定股票价格序列之间的相关性,从而进行成对交易。
Christian L. Dunis和Gianluigi Giorgioni(2010)用高频数据代替日交易数据进行套利,并同时比较了具有协整关系的股票对和没有协整关系股票对进行套利的立即收益率,结果显示,股票间价格协整关系越高,进行统计套利的机会越多,潜在收益率也越高。
根据随机游走模型我们可以检验股票价格波动是否具有“记忆性”,也就是说是否存在可预测的成分。一般可以分为两种情况:短期可预测性分析及长期可预测性分析。在短期可预测性分析中,检验标准主要针对的是随机游走过程的第三种情况,即不相关增量的研究,可以采用的检验工具是自相关检验和方差比检验。在序列自相关检验中,常用到的统计量是自相关系数和鲍克斯-皮尔斯 Q统计量,当这两个统计量在一定的置信度下,显著大于其临界水平时,说明该序列自相关,也就是存在一定的可预测性。方差比检验遵循的事实是:随机游走的股价对数收益的方差随着时期线性增长,这些期间内增量是可以度量的。这样,在k期内计算的收益方差应该近似等于k倍的单期收益的方差,如果股价的波动是随机游走的,则方差比接近于1;当存在正的自相关时,方差比大于1;当存在负的自相关是,方差比小于1。进行长期可预测性分析,由于时间跨度较大的时候,采用方差比进行检验的作用不是很明显,所以可以采用R/S分析,用Hurst指数度量其长期可预测性,Hurst指数是通过下列方程的回归系数估计得到的:
Ln[(R/S)N]=C+H*LnN
R/S 是重标极差,N为观察次数,H为Hurst指数,C为常数。当H>0.5时说,说明这些股票可能具有长期记忆性,但是还不能判定这个序列是随机游走或者是具有持续性的分形时间序列,还需要对其进行显著性检验。
无论是采用协整检验还是通过随机游走判断,其目的都是要找到一种短期或者长期内的一种均衡关系,这样我们的统计套利策略才能够得到有效的实施。
进行统计套利的数据一般是采用交易日收盘价数据,但是最近研究发现,采用高频数据(如5分钟,10分钟,15分钟,20分钟收盘价交易数据)市场中存在更多的统计套利机会。日交易数据我们选择前复权收盘价,而且如果两只股票价格价差比较大,需要先进性对数化处理。Christian L. Dunis和Gianluigi Giorgioni(2010)分别使用15分钟收盘价,20分钟收盘价,30分以及一个小时收盘价为样本进行统计套利分析,结果显示,使用高频数据进行统计套利所取得收益更高。而且海通证券金融分析师在绝对收益策略系列研究中,用沪深300指数为样本作为统计套利 配对 交易的标的股票池,使用高频数据计算累计收益率比使用日交易数据高将近5个百分点。
三、统计套利模型的应用的拓展―检验资本市场的有效性
Fama(1969)提出的有效市场假说,其经济含义是:市场能够对信息作出迅速合理的反应,使得市场价格能够充分反映所有可以获得的信息,从而使资产的价格不可用当前的信息进行预测,以至于任何人都无法持续地获得超额利润.通过检验统计套利机会存在与否就可以验证资本市场是有效的的,弱有效的,或者是无效的市场。徐玉莲(2005)通过运用统计套利对中国资本市场效率进行实证研究,首先得出结论:统计套利机会的存在与资本市场效率是不相容的。以此为理论依据,对中国股票市场中的价格惯性、价格反转及价值反转投资策略是否存在统计套利机会进行检验,结果发现我国股票市场尚未达到弱有效性。吴振翔,陈敏(2007)曾经利用这种方法对我国A股市场的弱有效性加以检验,采用惯性和反转两种投资策略发现我国A股若有效性不成立。另外我国学者吴振翔,魏先华等通过对Hogan的统计套利模型进行修正,提出了基于统计套利模型对开放式基金评级的方法。
四、结论
统计套利模型的应用目前主要表现在两个方面:1.作为一种有效的交易策略,进行套利。2.通过检测统计套利机会的存在,验证资本市场或者某个市场的有效性。由于统计套利策略的实施有赖于做空机制的建立,随着我股指期货和融资融券业务的推出和完善,相信在我国会有比较广泛的应用与发展。
参考文献
[1] A.N. Burgess:A computational Methodolology for Modelling the Dynamics of statistical arbitrage, London business school,PhD Thesis,1999.
[2]方昊.统计套利的理论模式及应用分析―基于中国封闭式基金市场的检验.统计与决策,2005,6月(下).
[3]马理,卢烨婷.沪深 300 股指期货期现套利的可行性研究―基于统计套利模型的实证.财贸研究,2011,1.
[4]吴桥林.基于沪深 300 股指期货的套利策略研究[D].中国优秀硕士学位论文.2009.
[5]吴振翔,陈敏.中国股票市场弱有效性的统计套利检验[J].系统工程理论与实践.2007,2月.
关于半参统计模型的估计研究
【摘要】随着数据模型技术的迅速发展,现有的数据模型已经无法满足实践中遇到的一些测量问题,严重的限制了现代科学技术在数据模型上应用和发展,所以基于这种背景之下,学者们针对数据模型测量实验提出了新的理论和方法,并研制出了半参数模型数据应用。半参数模型数据是基于参数模型和非参数模型之上的一种新的测量数据模型,因此它具备参数模型和非参数模型很多共同点。本文将结合数据模型技术,对半参统计模型进行详细的探究与讨论。
【关键词】半参数模型 完善误差 测量值 纵向数据
本文以半参数模型为例,对参数、非参数分量的估计值和观测值等内容进行讨论,并运用三次样条函数插值法得出非参数分量的推估表达式。另外,为了解决纵向数据下半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。另外,本文初步讨论了平衡参数的选取问题,并充分说明了泛最小二乘估计方法以及相关结论,同时对半参数模型的迭代法进行了相关讨论和研究。
一、概论
在日常生活当中,人们所采用的参数数据模型构造相对简单,所以操作起来比较容易;但在测量数据的实际使用过程中存在着相关大的误差,例如在测量相对微小的物体,或者是对动态物体进行测量时。而建立半参数数据模型可以很好的解决和缓解这一问题:它不但能够消除或是降低测量中出现的误差,同时也不会将无法实现参数化的系统误差进行勾和。系统误差非常影响观测值的各种信息,如果能改善,就能使其实现更快、更及时、更准确的误差识别和提取过程;这样不仅可以提高参数估计的精确度,也对相关科学研究进行了有效补充。
举例来说,在模拟算例及坐标变换GPS定位重力测量等实际应用方面,体现了这种模型具有一定成功性及实用性;这主要是因为半参数数据模型同当前所使用的数据模型存在着一致性,可以很好的满足现在的实际需要。而新建立的半参数模型以及它的参数部分和非参数部分的估计,也可以解决一些污染数据的估计问题。这种半参数模型,不仅研究了纵向数据下其自身的t型估计,同时对一些含光滑项的半参数数据模型进行了详细的阐述。另外,基于对称和不对称这两种情况,可以在一个线性约束条件下对参数估计以及假设进行检验,这主要是因为对观测值产生影响的因素除了包含这个线性关系以外,还受到某种特定因素的干扰,所以不能将其归入误差行列。另外,基于自变量测量存在一定误差,经常会导致在计算过程汇总,丢失很多重要信息。
二、半参数回归模型及其估计方法
这种模型是由西方著名学者Stone在上世纪70年代所提出的,在80年代逐渐发展并成熟起来。目前,这种参数模型已经在医学以及生物学还有经济学等诸多领域中广泛使用开来。
半参数回归模型介于非参数回归模型和参数回归模型之间,其内容不仅囊括了线性部分,同时包含一些非参数部分,应该说这种模型成功的将两者的优点结合在一起。这种模型所涉及到的参数部分,主要是函数关系,也就是我们常说的对变量所呈现出来的大势走向进行有效把握和解释;而非参数部分则主要是值函数关系中不明确的那一部分,换句话就是对变量进行局部调整。因此,该模型能够很好的利用数据中所呈现出来的信息,这一点是参数回归模型还有非参数归回模型所无法比拟的优势,所以说半参数模型往往拥有更强、更准确的解释能力。
从其用途上来说,这种回归模型是当前经常使用的一种统计模型。其形式为:
三、纵向数据、线性函数和光滑性函数的作用
纵向数据其优点就是可以提供许多条件,从而引起人们的高度重视。当前纵向数据例子也非常多。但从其本质上讲,纵向数据其实是指对同一个个体,在不同时间以及不同地点之上,在重复观察之下所得到一种序列数据。但由于个体间都存在着一定的差别,从而导致在对纵向数据进行求方差时会出现一定偏差。在对纵向数据进行观察时,其观察值是相对独立的,因此其特点就是可以能够将截然不同两种数据和时间序列有效的结合在一起。即可以分析出来在个体上随着时间变化而发生的趋势,同时又能看出总体的变化形势。在当前很多纵向数据的研究中,不仅保留了其优点,并在此基础之上进行发展,实现了纵向数据中的局部线性拟合。这主要是人们希望可以建立输出变量和协变量以及时间效应的关系。可由于时间效应相对比较复杂,所以很难进行参数化的建模。
另外,虽然线性模型的估计已经取得大量的成果,但半参数模型估计至今为止还是空白页。线性模型的估计不仅仅是为了解决秩亏或病态的问题,还能在百病态的矩阵时,提供了处理线性、非线性及半参数模型等方法。首先,对观测条件较为接近的两个观测数据作为对照,可以削弱非参数的影响。从而将半参数模型变成线性模型,然后,按线性模型处理,得到参数的估计。而多数的情况下其线性系数将随着另一个变量而变化,但是这种线性系数随着时间的变化而变化,根本求不出在同一个模型中,所有时间段上的样本,亦很难使用一个或几个实函数来进行相关描述。在对测量数据处理时,如果将它看作为随机变量,往往只能达到估计的作用,要想在经典的线性模型中引入另一个变量的非线性函数,即模型中含有本质的非线性部分,就必须使用半参数线性模型。
另外就是指由各个部分组成的形态,研究对象是非线性系统中产生的不光滑和不可微的几何形体,对应的定量参数是维数,分形上统计模型的研究是当前国际非线性研究的重大前沿课题之一。因此,第一种途径是将非参数分量参数化的估计方法,也称之为参数化估计法,是关于半参数模型的早期工作,就是对函数空间附施加一定的限制,主要指光滑性。一些研究者认为半参数模型中的非参数分量也是非线性的,而且在大多数情形下所表现出来的往往是不光滑和不可微的。所以同样的数据,同样的检验方法,也可以使用立方光滑样条函数来研究半参数模型。
四、线性模型的泛最小二乘法与最小二乘法的抗差
(一)最小二乘法出现于18世纪末期
在当时科学研究中常常提出这样的问题:怎样从多个未知参数观测值集合中求出参数的最佳估值。尽管当时对于整体误差的范数,泛最小二乘法不如最小二乘法,但是当时使用最多的还是最小二乘法,其目的也就是为了估计参数。最小二乘法,在经过一段时间的研究和应用之后,逐步发展成为一整套比较完善的理论体系。现阶段不仅可以清楚地知道数据所服从的模型,同时在纵向数据半参数建模中,辅助以迭代加权法。这对补偿最小二乘法对非参数分量估计是非常有效,而且只要观测值很精确,那么该法对非参数分量估计更为可靠。例如在物理大地测量时,很早就使用用最小二乘配置法,并得到重力异常最佳估计值。不过在使用补偿最小二乘法来研究重力异常时,我们还应在兼顾着整体误差比较小的同时,考虑参数估计量的真实性。并在比较了迭代加权偏样条的基础上,研究最小二乘法在当前使用过程中存在的一些不足。应该说,该方法只强调了整体误差要实现最小,而忽略了对参数分量估计时出现的误差。所以在实际操作过程中,需要特别注意。
(二)半参模型在GPS定位中的应用和差分
半参模型在GPS相位观测中,其系统误差是影响高精度定位的主要因素,由于在解算之前模型存在一定误差,所以需及时观测误差中的粗差。GPS使用中,通过广播卫星来计算目标点在实际地理坐标系中具体坐标。这样就可以在操作过程中,发现并恢复整周未知数,由于观测值在卫星和观测站之间,是通过求双差来削弱或者是减少对卫星和接收机等系统误差的影响,因此难于用参数表达。但是在平差计算中,差分法虽然可以将观测方程的数目明显减少,但由于种种原因,依然无法取得令人满意的结果。但是如果选择使用半参数模型中的参数来表达系统误差,则能得到较好的效果。这主要是因为半参数模型是一种广义的线性回归模型,对于有着光滑项的半参数模型,在既定附加的条件之下,能够提供一个线性函数的估计方法,从而将测值中的粗差消除掉。
另外这种方法除了在GPS测量中使用之外,还可应用于光波测距仪以及变形监测等一些参数模型当中。在重力测量中的应用在很多情形下,尤其是数学界的理论研究,我们总是假定S是随机变量实际上,这种假设是合理的,近几年,我们对这种线性模型的研究取得了一些不错的成果,而且因其形式相对简洁,又有较高适用性,所以这种模型在诸多领域中发挥着重要作用。
通过模拟的算例及坐标变换GPS定位重力测量等实际应用,说明了该法的成功性及实用性,从理论上说明了流行的自然样条估计方法,其实质是补偿最小二乘方法的特例,在今后将会有广阔的发展空间。另外 文章 中提到的分形理论的研究对象应是非线性系统中产生的不光滑和不可微的几何形体,而且分形已经在断裂力学、地震学等中有着广泛的应用,因此应被推广使用到研究半参数模型中来,不仅能够更及时,更加准确的进行误差的识别和提取,同时可以提高参数估计的精确度,是对当前半参数模型研究的有力补充。
五、 总结
文章所讲的半参数模型包括了参数、非参数分量的估计值和观测值等内容,并且用了三次样条函数插值法得到了非参数分量的推估表达式。另外,为了解决纵向数据前提下,半参数模型的参数部分和非参数部分的估计问题,在误差为鞅差序列情形下,对半参数数据模型、渐近正态性、强相合性进行研究和分析。同时介绍了最小二乘估计法。另外初步讨论了平衡参数的选取问题,还充分说明了泛最小二乘估计方法以及有关结论。在对半参数模型的迭代法进行了相关讨论和研究的基础之上,为迭代法提供了详细的理论说明,为实际应用提供了理论依据。
参考文献
[1]胡宏昌.误差为AR(1)情形的半参数回归模型拟极大似然估计的存在性[J].湖北师范学院学报(自然科学版),2009(03).
[2]钱伟民,李静茹.纵向污染数据半参数回归模型中的强相合估计[J].同济大学学报(自然科学版),2009(08).
[3]樊明智,王芬玲,郭辉.纵向数据半参数回归模型的最小二乘局部线性估计[J].数理统计与管理,2009(02).
[4]崔恒建,王强.变系数结构关系EV模型的参数估计[J].北京师范大学学报(自然科学版).2005(06).
[5]钱伟民,柴根象.纵向数据混合效应模型的统计分析[J].数学年刊A辑(中文版).2009(04)
[6]孙孝前,尤进红.纵向数据半参数建模中的迭代加权偏样条最小二乘估计[J].中国科学(A辑:数学),2009(05).
[7]张三国,陈希孺.EV多项式模型的估计[J].中国科学(A辑),2009(10).
[8]任哲,陈明华.污染数据回归分析中参数的最小一乘估计[J].应用概率统计,2009(03).
[9]张三国,陈希孺.有重复观测时EV模型修正极大似然估计的相合性[J].中国科学(A辑).2009(06).
[10]崔恒建,李勇,秦怀振.非线性半参数EV四归模型的估计理论[J].科学通报,2009(23).
[11]罗中明.响应变量随机缺失下变系数模型的统计推断[D].中南大学,2011.
[12]刘超男.两参数指数威布尔分布的参数Bayes估计及可靠性分析[D].中南大学,2008.
[13]郭艳.湖南省税收收入预测模型及其实证检验与经济分析[D].中南大学,2009.
[14]桑红芳.几类分布的参数估计的损失函数和风险函数的Bayes推断[D].中南大学,2009.
[15]朱琳.服从几类可靠性分布的无失效数据的bayes分析[D].中南大学,2009.
[16]黄芙蓉.指数族非线性模型和具有AR(1)误差线性模型的统计分析[D].南京理工大学,2009.
猜你喜欢:
1. 统计学分析论文
2. 统计方面论文优秀范文参考
3. 统计优秀论文范文
4. 统计学的论文参考范例
统计学毕业论文不一定要建模的,当时我也是请教的莫‘文网,非常多的专业老师,后来没时间还是帮忙搞定的论文从统计学的角度看留学生对于动宾式离合词的习得空间统计学及其在空间模式分析中的应用高校教务管理系统中的数据分析和模型研究初中学生语文偏误的统计学调查与研究地统计学和神经网络在遥感影像分类中的应用研究我国股票价值投资的统计学实证脑动静脉畸形临床表现及血管构筑学指标的统计学分析研究基于古今医案数据分析的黄疸病证治规律研究契丹居民DNA多态性研究与生物统计学分析
***统计方法的应用
时代金融摘 要:关键词:一、 引言一个国家的国民经济有很多因素构成, 省区经济则是我国国民经济的重要组成部分, 很多研究文献都认为中国的省区经济是宏观经济的一个相对独立的研究对象, 因此, 选取省区经济数据进行区域经济的研究, 无疑将是未来几年的研究趋势。而省区经济对我国国民经济的影响, 已从背后走到了台前, 发展较快的省区对我国国民经济的快速增长起到了很大的作用, 而发展相对较慢的省区, 其原因与解决方法也值得我们研究。本文选取华中大省湖北省进行研究, 具有一定的指导和现实意义。湖北省 2006 年 GDP 为 7497 亿元, 人均 GDP13130 元, 达到中等发达国家水平。从省域经济来说, 湖北省是一个较发达的经济实体。另一方面, 湖北省优势的地理位置和众多的人口使之对于我国整体经济的运行起到不可忽视的作用, 对于湖北省 GDP的研究和预测也就从一个侧面反映我国国民经济的走势和未来。尽管湖北省以其重要位置和经济实力在我国国民经济中占据一席之地, 但仍不可避免的面临着建国以来一再的经济波动,从最初的强大势力到如今的挣扎期, 湖北省的经济面临着发展困境。近年来, 湖北省的经济状况一再呈现再次快速发展的趋势, 但是这个趋势能够保持多久却是我们需要考虑的问题。本文选择了时间序列分析的方法进行湖北省区域经济发展的预测。时间序列预测是通过对预测目标自身时间序列的处理来研究其变化趋势的。即通过时间序列的历史数据揭示现象随时间变化的规律, 将这种规律延伸到未来, 从而对该现象的未来作出预测。二、 基本模型、 数据选择以及实证方法( 一) 基本模型ARMA 模型是一种常用的随机时序模型, 由博克斯, 詹金斯创立, 是一种精度较高的时序短期预测方法, 其基本思想是: 某些时间序列是依赖于时间 t 的一组随机变量, 构成该时序的单个序列值虽然具有不确定性, 但整个序列的变化却具有一定的规律性, 可以用相应的数学模型近似描述。通过对该数学模型的分析,能够更本质的认识时间序列的结构与特征, 达到最小方差意义下的最优预测。现实社会中, 我们常常运用 ARMA模型对经济体进行预测和研究, 得到较为满意的效果。但 ARMA模型只适用于平稳的时间序列, 对于如 GDP 等非平稳的时间序列而言, ARMA模型存在一定的缺陷, 因此我们引入一般情况下的 ARMA模型 ( ARIMA模型) 进行实证研究。事实上, ARIMA模型的实质就是差分运算与 ARMA模型的组合。 本文讨论的求和自回归移动平均模型, 简记为 ARIMA ( p, d, q) 模型,是美国统计学家 G.E.P.Box 和 G.M.J enkins 于 1970 年首次提出, 广泛应用于各类时间序列数据分析, 是一种预测精度相当高的短期预测方法。建立 ARIMA ( p, d, q) 模型计算复杂, 须借助计算机完成。本文介绍 ARIMA ( p, d, q) 模型的建立方法, 并利用Eviews 软件建立湖北省 GDP 变化的 ARIMA ( p, d, q) 预测模型。( 二) 数据选择1.本文所有 GDP 数据来自于由中华人民共和国统计局汇编,中国统计出版社出版的 《新中国五十五年统计数据汇编》 。2.本文的所有数据处理均使用 EViews5.0 软件进行。( 三) 实证方法ARMA模型及 ARIMA模型都是在平稳时间序列基础上建立的, 因此时间序列的平稳性是建模的重要前提。任何非平稳时间序列只要通过适当阶数的差分运算或者是对数差分运算就可以实现平稳, 因此可以对差分后或对数差分后的序列进行 ARMA( p, q) 拟合。ARIMA ( p, d, q) 模型的具体建模步骤如下:1.平稳性检验。一般通过时间序列的散点图或折线图对序列进行初步的平稳性判断, 并采用 ADF 单位根检验来精确判断该序列的平稳性。对非平稳的时间序列, 如果存在一定的增长或下降趋势等,则需要对数据取对数或进行差分处理, 然后判断经处理后序列的平稳性。重复以上过程, 直至成为平稳序列。此时差分的次数即为ARIMA ( p, d, q) 模型中的阶数 d。为了保证信息的准确, 应注意避免过度差分。对平稳序列还需要进行纯随机性检验 ( 白噪声检验) 。白噪声序列没有分析的必要, 对于平稳的非白噪声序列则可以进行ARMA ( p, q) 模型的拟合。白噪声检验通常使用 Q 统计量对序列进行卡方检验, 可以以直观的方法直接观测得到结论。2.ARMA拟合。首先计算时间序列样本的自相关系数和偏自相关系的值, 根据自相关系数和偏自相关系数的性质估计自相关阶数 p 和移动平均阶数 q 的值。一般而言, 由于样本的随机性, 样本的相关系数不会呈现出理论截尾的完美情况, 本应截尾的相关系数仍会呈现出小值振荡的情况。又由于平稳时间序列通常都具有短期相性, 随着延迟阶数的增大, 相关系数都会衰减至零值附近作小值波动。根据 Barlett 和 Quenouille 的证明, 样本相关系数近似服从正态分布。一个正态分布的随机变量在任意方向上超出 2σ 的概率约为 0.05。因此可通过自相关和偏自相关估计值序列的直方图来大致判断在 5%的显著水平下模型的自相关系数和偏自相关系数不为零的个数, 进而大致判断序列应选择的具体模型形式。同时对模型中的 p 和 q 两个参数进行多种组合选择, 从 ARMA ( p,q) 模型中选择一个拟和最好的曲线作为最后的方程结果。一般利用 AIC 准则和 SC 准则评判拟合模型的相对优劣。3.模型检验。模型检验主要是检验模型对原时间序列的拟和效果, 检验整个模型对信息的提取是否充分, 即检验残差序列是否为白噪声序列。如果拟合模型通不过检验, 即残差序列不是为白噪声序列, 那么要重新选择模型进行拟合。如残差序列是白噪声序列, 就认为拟合模型是有效的。模型的有效性检验仍然是使谭诗璟ARIMA 模型在湖北省GDP 预测中的应用—— —时间序列分析在中国区域经济增长中的实证分析本文介绍求和自回归移动平均模型 ARIMA ( p, d, q) 的建模方法及 Eviews 实现。广泛求证和搜集从 1952 年到 2006 年以来湖北省 GDP 的相关数据, 运用统计学和计量经济学原理, 从时间序列的定义出发, 结合统计软件 EVIEWS 运用 ARMA建模方法, 将 ARIMA模型应用于湖北省历年 GDP 数据的分析与预测, 得到较为满意的结果。湖北省 区域经济学 ARIMA 时间序列 GDP 预测理论探讨262008/01 总第 360 期图四 取对数后自相关与偏自相关图图三 二阶差分后自相关与偏自相关图用上述 Q 统计量对残差序列进行卡方检验。4.模型预测。根据检验和比较的结果, 使用 Eviews 软件中的forecas t 功能对模型进行预测, 得到原时间序列的将来走势。 对比预测值与实际值, 同样可以以直观的方式得到模型的准确性。三、 实证结果分析GDP 受经济基础、 人口增长、 资源、 科技、 环境等诸多因素的影响, 这些因素之间又有着错综复杂的关系, 运用结构性的因果模型分析和预测 GDP 往往比较困难。我们将历年的 GDP 作为时间序列, 得出其变化规律, 建立预测模型。本文对 1952 至 2006 年的 55 个年度国内生产总值数据进行了分析, 为了对模型的正确性进行一定程度的检验, 现用前 50 个数据参与建模, 并用后五年的数据检验拟合效果。最后进行 2007年与 2008 年的预测。( 一) 数据的平稳化分析与处理1.差分。利用 EViews 软件对原 GDP 序列进行一阶差分得到图二:对该序列采用包含常数项和趋势项的模型进行 ADF 单位根检验。结果如下:由于该序列依然非平稳性, 因此需要再次进行差分, 得到如图三所式的折线图。根据一阶差分时所得 AIC 最小值, 确定滞后阶数为 1。然后对二阶差分进行 ADF 检验:结果表明二阶差分后的序列具有平稳性, 因此 ARIMA ( p, d,q) 的差分阶数 d=2。二阶差分后的自相关与偏自相关图如下:2.对数。利用 EViews 软件, 对原数据取对数:对已经形成的对数序列进行一阶差分, 然后进行 ADF 检验:由上表可见, 现在的对数一阶差分序列是平稳的, 由 AIC 和SC 的最小值可以确定此时的滞后阶数为 2。 因为是进行了一阶差分, 因此认为 ARIMA ( p, d, q) 中 d=1。( 二) ARMA ( p, q) 模型的建立ARMA ( p, q) 模型的识别与定阶可以通过样本的自相关与偏自相关函数的观察获得。图一 1952- 2001 湖北省 GDP 序列图表 1 一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC 备注0 - 2.136479 - 4.161144 - 3.506374 - 3.183002 11.20582非平稳1 - 2.764521 - 4.165756 - 3.508508 - 3.184230 11.171892 - 2.101495 - 4.170583 - 3.510740 - 3.185512 11.180023 - 2.418890 - 4.175640 - 3.513075 - 3.186854 11.205434 - 2.230514 - 4.180911 - 3.515523 - 3.188259 11.27059表 2 二阶差分的 ADF 检验Lag Length t- Statistic 1% level 5% level 10% level1 (Fixed) - 5.714836 - 4.170583 - 3.510740 - 3.185512表 3 对数一阶差分的 ADF 检验ADF t- Statistic 1% level 5% level 10% level AIC SC 备注0 - 5.448501 - 3.574446 - 2.923780 - 2.599925 - 1.536478 - 1.458512平稳 1 - 3.832346 - 3.577723 - 2.925169 - 2.600658 - 1.662966 - 1.5448712 - 3.398029 - 3.581152 - 2.926622 - 2.601424 - 1.770517 - 1.6115043 - 3.324520 - 3.584743 - 2.928142 - 2.602225 - 1.747432 - 1.546692图五 对数后一阶差分自相关与偏自相关图理论探讨27时代金融摘 要:关键词:使用 EViews 软件对 AR, MA的取值进行实现, 比较三种情况下方程的 AIC 值和 SC 值:表 4ARMA模型的比较由表 4 可知, 最优情况本应该在 AR ( 1) , MA ( 1) 时取得, 但AR, MA都取 1 时无法实现平稳, 舍去。对于后面两种情况进行比较, 而 P=1 时 AIC 与 SC 值都比较小, 在该种情况下方程如下:综上所述选用 ARIMA ( 1, 1, 0) 模型。( 三) 模型的检验对模型的 Q 统计量进行白噪声检验, 得出残差序列相互独立的概率很大, 故不能拒绝序列相互独立的原假设, 检验通过。模型均值及自相关系数的估计都通过显著性检验, 模型通过残差自相关检验, 可以用来预测。( 四) 模型的预测我们使用时间序列分析的方法对湖北省地方生产总值的年度数据序列建立自回归预测模型, 并利用模型对 2002 到 2006 年的数值进行预测和对照:表 5 ARIMA ( 1, 1, 0) 预测值与实际值的比较由上表可见, 该模型在短期内预测比较准确, 平均绝对误差为 6.876% , 但随着预测期的延长, 预测误差可能会出现逐渐增大的情况。下面, 我们对湖北省 2007 年与 2008 年的地方总产值进行预测:在 ARIMA模型的预测中, 湖北省的地方生产将保持增长的势头, 但 2008 年的增长率不如 2007 年, 这一点值得注意。GDP毕竟与很多因素有关, 虽然我们一致认为, 作为我国首次主办奥运的一年, 2008 将是中国经济的高涨期, 但是是否所有的地方产值都将受到奥运的好的影响呢? 也许在 2008 年全国的 GDP 也许确实将有大幅度的提高, 但这有很大一部分是奥运赛场所在地带来的经济效应, 而不是所有地方都能够享有的。正如 GDP 数据显示, 1998 年尽管全国经济依然保持了一个比较好的态势, 但湖北省的经济却因洪水遭受不小的损失。作为一个大省, 湖北省理应对自身的发展承担起更多的责任。总的来说, ARIMA模型从定量的角度反映了一定的问题, 做出了较为精确的预测, 尽管不能完全代表现实, 我们仍能以ARIMA模型为基础, 对将来的发展作出预先解决方案, 进一步提高经济发展, 减少不必要的损失。四、结语时间序列预测法是一种重要的预测方法, 其模型比较简单,对资料的要求比较单一, 在实际中有着广泛的适用性。在应用中,应根据所要解决的问题及问题的特点等方面来综合考虑并选择相对最优的模型。在实际运用中, 由于 GDP 的特殊性, ARIMA模型以自身的特点成为了 GDP 预测上佳选择, 但是预测只是估计量, 真正精确的还是真实值, 当然, ARIMA 模型作为一般情况下的 ARMA 模型, 运用了差分、取对数等等计算方法, 最终得到进行预测的时间序列, 无论是在预测上, 还是在数量经济上, 都是不小的进步, 也为将来的发展做出了很大的贡献。我们通过对湖北省地方总产值的实证分析, 拟合 ARIMA( 1, 1, 0) 模型, 并运用该模型对湖北省的经济进行了小规模的预测,得到了较为满意的拟和结果, 但湖北省 2007 年与 2008 年经济预测中出现的增长率下降的问题值得思考, 究竟是什么原因造成了这样的结果, 同时我们也需要到 2008 年再次进行比较, 以此来再次确定 ARIMA ( 1, 1, 0) 模型在湖北省地方总产值预测中所起到的作用。参考文献:【1】易丹辉 数据分析与 EViews应用 中国统计出版社【2】 Philip Hans Frances 商业和经济预测中的时间序列模型 中国人民大学出版社【3】新中国五十五年统计资料汇编 中国统计出版社【4】赵蕾 陈美英 ARIMA 模型在福建省 GDP 预测中的应用 科技和产业( 2007) 01- 0045- 04【5】 张卫国 以 ARIMA 模型估计 2003 年山东 GDP 增长速度 东岳论丛( 2004) 01- 0079- 03【6】刘盛佳 湖北省区域经济发展分析 华中师范大学学报 ( 2003) 03-0405- 06【7】王丽娜 肖冬荣 基于 ARMA 模型的经济非平稳时间序列的预测分析武汉理工大学学报 2004 年 2 月【8】陈昀 贺远琼 外商直接投资对武汉区域经济的影响分析 科技进步与对策 ( 2006) 03- 0092- 02( 作者单位: 武汉大学经济与管理学院金融工程)AR(1)MA(1) AR(1) MA(1) 备注AIC - 1.536412 - 1.321820 - 1.135728最优为 AR(1)MA(1)SC - 1.458445 - 1.282837 - 1.097119Variable Coefficient Std. Error t- Statistic Prob.AR(1) 0.586643 0.115236 5.090781 0.0000R- squared - 0.226023 Mean dependent var 0.104967Adjusted R- squared - 0.226023 S.D. dependent var 0.111688S.E. of regression 0.123668 Akaike info criterion - 1.321820Sumsquared resid 0.718807 Schwarz criterion - 1.282837Log likelihood 32.72369 Durbin-Watson stat 2.132697Inverted AR Roots .59年份 实际值 预测值 相对误差(%) 平均误差(%)2002 4975.63 4904.72 - 1.436.8762003 5401.71 5125.82 - 5.122004 6309.92 5496.78 - 12.892005 6687.78 6374.83 - 4.682006 7497.00 6728.05 - 10.26年度 GDP 值 7497.00 8026.08 8359.59增长率(%) — 7.06 4.16表 6 ARIMA ( 1, 1, 0) 对湖北省经济的预测一、模糊数学分析方法对企业经营 ( 偿债) 能力评价的适用性影响企业经营 ( 偿债) 和盈利能力的因素或指标很多; 在分析判断时, 对事物的评价 ( 或评估) 常常会涉及多个因素或多个指标。这时就要求根据多丛因素对事物作出综合评价, 而不能只从朱晓琳 曹 娜用应用模糊数学中的隶属度评价企业经营(偿债)能力问题影响企业经营能力的许多因素都具有模糊性, 难以对其确定一个精确量值; 为了使企业经营 ( 偿债) 能力评价能够得到客观合理的结果, 有必要根据一些模糊因素来改进其评价方法, 本文根据模糊数学中隶属度的方法尝试对企业经营 ( 偿债) 能力做出一种有效的评价。隶属度及函数 选取指标构建模型 经营能力评价应用理论探讨28
我给你分享几个统计学与应用这本期刊的题目吧,你参考参考:产业集聚对江苏省制造业全要素生产率的影响研究、基于文献计量分析的企业论文发表情况评价——以宁波市安全生产协会会员为例、基于泰尔指数的城乡收入差距的分析与预测、卡方分布下FSI CUSUM和VSI CUSUM控制图的比较、新冠肺炎疫情对中国旅游业的冲击影响研究——基于修正的TGARCH-M模型
104 浏览 4 回答
156 浏览 3 回答
183 浏览 5 回答
298 浏览 4 回答
118 浏览 3 回答
292 浏览 1 回答
331 浏览 2 回答
180 浏览 2 回答
303 浏览 4 回答
125 浏览 4 回答
138 浏览 3 回答
253 浏览 5 回答
152 浏览 4 回答
185 浏览 5 回答
346 浏览 2 回答