镁法海绵钛爬壁钛生成量的初探沈俊宇(遵义钛业股份有限公司 贵州省 563004)摘要:在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,一炉产品爬壁钛的生成量少则500 kg左右,多则达800至1000 kg,爬壁钛不仅产品取出困难,增加操作人员劳动强度,而且其质量较差,经济损失大。本文分析了海绵钛爬壁钛的形成机理及生产过程中爬壁钛增多的原因,提出了还原中后期最大加料速度限制,以缓解反应剧烈程度和控制反应液面高度在1#范围内小幅波动,防止形成新的活性中心,是生产过程中减少爬壁钛生成量的主要途径。关键词:海绵钛 爬壁钛 生成量 加料速度 反应液面高度A Study the Production of the Titanium on Walls Produced in the Process of Sponge Producing by Magnesium ProcessJunyu,Shen(Zunyi Titanium CO.LTD.Guizhou 563004)Abstract:A quantity of annular titanium will be produced on upper walls of reactors during the reduction and distillation。The production per batch is from 500kg to 800 or 1,000kg. It is difficult for operators to take products out ,and also influences the quality .Therefore ,the titanium on walls not only strengthens the labor intensity ,but also causes a big loss The paper analyzes the formation mechanism of the titanium on wall and reasons why its production increases.Also,in order to ease the strong reaction,make the liquid level in reaction waves no more than 1’’and prevents the formation of new active centers ,the paper introduces a main method to reduce the production of the titanium on walls,that is to retrict the max.feed speed in mid or late period of reduction and distillation.Keywords:titanium sponge the titanium on walls production feed speed liquid level in reaction 1 前言在海绵钛的还原生产过程中,反应器的上部器壁会生成大量环状的爬壁钛,如图1所示。爬壁钛会导致以下不良后果: 第一,由于目前使用双法兰反应器,反应器上部热损失较大(上部有三圈水套,反应器约300 mm高度在加热炉外),上部爬壁钛中的氯化镁很难被蒸发出去,使爬壁钛中含有较高的杂质元素氯,剥取产品时会看到反应器口部(爬壁钛的最上部)粘有大量的镁和氯化镁。第二,海绵钛还原、蒸馏反应器为铁制反应器,由于爬壁钛在反应器器壁上粘附较强,加之双法兰反应器上部热损失大,为保证反应器上部温度,蒸馏期间加热炉1#、2#加热电阻丝送电频率高且时间长,致使爬壁钛普遍有发亮现象,分析结果显示杂质元素铁含量较高。第三,爬壁钛在反应器上部空间极易被泄漏进的空气污染,使产品中杂质元素氮、氧含量较高。由表1可看出,产品分析爬壁钛质量级别基本上在3—5级(极少部分在2级以上),同时,也有少部分因杂质元素过高成为等外品。一炉产品爬壁钛的生成量少则500kg左右,多则达800至1000 kg,经济损失较大。另外,爬壁钛过多也给产品取出带来困难,增加操作人员劳动强度。为了减少爬壁钛生成量,降低损失,我们进行了控制液面高度及调整料速试验。表1 2007年下半年爬壁钛质量统计表分析批数(批) 2级品批数(批) 3~5级品批数(批) 等外品批数(批) 2级品影响因素 3~5级品、等外品影响因素75 12 51 12 HB、Fe、Cl、O、N HB、Fe、Cl2 爬壁钛形成机理镁还原TiCl4主要反应为:TiCl4+2Mg=Ti+2MgCl2,在还原反应刚开始时,加入的TiCl4大部分气化,发生气相TiCl4—气相Mg或气相TiCl4—液相Mg反应,同时也有一部分TiCl4液体未来得及气化,进入液镁中,发生液相TiCl4—液相Mg间的反应。还原刚开始在反应器铁壁和熔镁表面夹角处上,一旦有钛晶粒出现后,裸露在熔镁面上方的钛晶体尖峰或棱角便成为活性中心。[1] 镁还原TiCl4主要在此活性中心上进行。液镁靠表面张力沿铁壁和钛晶体毛细孔上爬,被吸附在活性中心上,与气相TiCl4反应生成最初的海绵钛颗粒。随着反应的进行,生成的海绵钛颗粒依赖其与反应器壁的粘附力和熔体浮力的支持沿反应器壁在熔体表面逐渐长大,并浮在熔体表面。随着生成的海绵钛块增厚、增大,加之排放氯化镁,失去熔体浮力支持的海绵钛块体大部份就会沉落在熔体底部,这样在反应器器壁上,将有环状海绵钛粘附在其上,其实,这部分也是最初的爬壁钛。另外,在还原反应初期,液镁有很大的蒸发表面,而空间压力较低,故镁具有很大的蒸发速度。还原反应中期,反应温度较高和对反应器底部加热时,也会有部分镁蒸发。镁蒸气挥发后,冷凝在反应器器壁和大盖底部,与气相TiCl4反应也会生成部份爬壁钛。海绵钛块沉落熔体底部后,熔体表面会重新暴露出液镁的自由面,还原反应将恢复到较大的速度。随着反应的进行,在熔体表面会重新生成海绵钛桥,通过排放氯化镁,钛桥被破坏,海绵钛块靠自重下沉,又为下一层海绵钛生长创造条件,爬壁钛也在这一过程中逐渐形成,还原反应如此周而复始进行,直至镁的利用达到65%—75%之后。3 生产中爬壁钛增多原因分析3.1中后期加料速度随着还原反应的进行,特别是进入中期后,加料速度逐渐增加,反应进行的非常剧烈,熔体表面反应区中心部最高温度可达1200℃以上,而镁的沸点仅1105℃,此时镁处于沸腾状态。加之目前还原操作料速按玻璃转子流量计实际刻度与自动加料系统对照进行加料,因玻璃转子流量计出厂时是用水标定,当被测介质改为TiCl4时,其修正系数,经计算应为1.13。当玻璃转子刻度显示最大加料量为150 kg /0.5h,实际料速已达160~170 kg /0.5h。这样更加剧了反应的剧烈程度,沸腾的液镁将不断吸附在最初反应器壁上已形成的少量环状爬壁钛上,通过钛晶体毛细孔上爬,与气相TiCl4反应生成新爬壁钛,使原环状爬壁钛增多、增厚。另外,由于反应剧烈程度增加,也加剧了液镁的气化,液镁蒸气挥发后,冷凝附着在反应器器壁上部和大盖底部,与气相TiCl4反应生成爬壁钛,这些爬壁钛主要粘附在反应器器壁上部和大盖底部。因此,最大料速持续的时间越长,生成爬壁钛也就越多(表2)。表2 部分大料速爬壁钛生成量统计表最大料速(kg /0.5h) 持续的时间(h) 爬壁钛占毛产量比例(%)生产炉-1 155~165 35 12.75生产炉-2 145~155 40 13.55生产炉-3 155~165 36 15.67生产炉-4 155~165 40 10.35生产炉-5 155~165 35 10.753.2 反应液面高度反应液面高度太低、波动范围过大会增加爬壁钛生成量,其原因如下:第一,当反应液面高度过低时,TiCl4距液镁表面间距面相对较远,发生液相TiCl4—液相Mg间的反应相对减少,气相TiCl4与镁蒸气反应相对增加,从而增加爬壁钛生成量。第二,因未定时、定量准确排放MgCl2,反应液面高度大幅上下波动,易在钛晶体活性中心之外,形成新的活性中心,液镁靠表面吸引力沿铁壁和钛晶体孔隙上爬,被吸附在活性中心上,这样在反应器壁上会粘附形成新的爬壁钛。因此,不控制好液面高度,及时准确排放MgCl2,也将增加爬壁钛的生成量(表3)。表3 反应液面高度大幅波动量统计表反应液面高度波动范围 爬壁钛占毛产量比例(%)生产炉-6 1#~2# 11.88生产炉-7 1#~2# 12.82生产炉-8 1#~2# 13.67生产炉-9 1#~2# 15.02生产炉-10 1#~2# 14.02生产炉-11 1#~2# 12.814 措施通过上述分析,可以知道爬壁钛是海绵钛生产过程中必然要形成的,但其生成量是可以控制的,因此,我们对加料速度以及反应液面高度进行了调整。结合生产实践,采取两项措施:第一,我们对部分处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140 kg /0.5h,以缓解反应剧烈程度,特殊炉次,因反应温度太低,可以适当提高至160~170 kg /0.5h,但持续时间不能太长,最多3~4 h;后期最大料速限制在105~110 kg /0.5h。第二,控制反应液面在1#范围内小幅波动,防止形成新的活性中心,以达到降低爬壁钛生成量的目的(表4)。表4 调整料速及排放MgCl2制度试验对比表料速及排放MgCl2制度 平均爬壁钛占毛产比例(kg) 平均钛坨重量(kg) 平均加料时间(h) 中期平均最大料速(kg /0.5h) 后期平均最大料速(kg /0.5h)调整前 11.56 5291 89 160 120调整后 8.28 5483 87 138 107从表4的统计数据可以看出,通过控制最大料速以及控制好液面高度及时准确的排放MgCl2,产品生成的爬壁钛占毛产比例大大下降,调整前平均爬壁钛为11.56%,调整后平均爬壁钛8.28%,平均下降3.28%。在进行调整料速试验期间,对生产炉-59一炉产品还原中期加料再次进行提高料速到155~165 kg /0.5h试验,结果爬壁钛增至占毛产量的14.93%,从这点也证明了加料速度对爬壁钛形成的影响。此外,调整前,钛坨平均重5291 kg,调整后,钛坨平均重5483 kg,平均毛产重量未受影响;调整前平均加料时间89小时,调整后平均加料时间87小时,加料时间也略有减少。试验在降低爬壁钛生成量的同时,缩短了还原生产周期,降低了还原电耗,取得了较好的效果。5 结论5.1对处于通风不好而影响散热的炉子还原中期最大加料速度限制在135~140kg /0.5h,后期最大料速限制在105~110 kg /0.5h 5.2控制反应液面高度在1#范围内小幅波动。本试验在巩固海绵钛钛坨产量的情况下,降低了爬壁钛生成量,试验取得了效果,为进一步研究探索海绵钛爬壁钛生成量打下了基础。参考资料[1] 莫畏, 邓国珠 ,罗方承 . 钛冶金[M].版次(第二版).北京:冶金工业出版社,1998:281-293
镍冶金渣资源化利用现状分析论文
摘要:镍冶金渣作为重要的二次资源,含有铁、镍、铜等有价金属。随着镍需求量的增大,排放的镍渣也越来越多,若不能得到合理利用,既造成资源浪费,又污染环境。本文对镍冶金渣资源化利用现状进行分析,并讨论了进一步资源化的方向。
关键词:镍冶金渣;资源化;有价金属;建筑材料
随着我国对有色金属需求量增大,每年有色冶金渣的数量不断增长,这些冶炼弃渣由于未得到合理利用,不仅占用大量的土地资源,同时对环境有着潜在的威胁,从而不利于可持续发展,因此有色冶金渣的资源化利用就有着十分重要的意义。中国是世界上镍资源消费最大的国家,每生产1t镍约排除6~16t渣,仅金川集团的镍冶金渣堆存量多达4000万t,每年还新增约200万t[1-3]。镍渣的组成因其矿石种类和冶炼工艺不同而变化较大。以金川镍闪速炉渣的物相组成为例,主要由铁氧化物、硅氧化物、钙和镁的氧化物组成,渣中含有约40%的铁元素,还含有一定数量的有色金属元素镍、铜、钴;铁主要以铁橄榄石形式存在,橄榄石间充填的非晶态玻璃质并且机械夹杂着大颗粒镍硫[4]。镍渣的处理已经成为镍冶炼过程的重要工序,如何正确有效的回收再利用这些二次资源,使得镍冶炼过程顺畅,解决排渣占地和环境污染等问题,成为镍冶金发展循环经济的主要问题。本文对目前镍渣资源化利用进行综述,再利用的主要研究包括:有价金属的提取,用作填充材料,制作微晶玻璃,生产建材等[5-7]。
1、镍渣资源化利用现状
1.1有价金属提取
倪文[8]等利用以焦炭为还原剂的熔融还原法提取闪速炉水淬镍渣中的有价铁,探讨了不同碱度,不同还原温度,不同还原时间对提铁率的影响。结果表明控制100g渣配加34.7gCaO、4.04gCaO和8.5g焦炭,熔融温度为1500℃,还原时间为180min,铁的还原率达96.32%。王爽[9]等将镍渣、氧化钙和焦粉制备成含碳球团进行深度还原回收有价金属铁、镍和铜,结果表明碱度对有价金属的回收率有影响,适当提高碱度可以促进金属相生长,改变形态结构有利于后续分离,碱度过高会使金属相中产生杂质,当碱度确定为1.0时,铁、铜、镍的回收率分别为91.04%、56.93%、55.80;镍渣中的铁经深度还原后以金属铁的形式存在,镍和铜主要与铁以固溶体形式存在。卢雪峰[10]等利用自制小型直流电弧炉对镍渣进行硅钙合金回收,以焦炭和为还原剂,控制镍渣、生石灰及还原剂的比例,可以获得相应的的硅钙合金。肖景波[11]等对镍渣进行铁、镍、镁回收,实验过程将镍渣破碎后的粉末进行酸浸,向酸浸液中加入氧化剂与pH控制剂生成铁沉淀物,分离后与硫酸作用生成硫酸铁溶液,精制后采用氧化沉淀法获得高纯铁沉淀物;沉铁溶液加入硫化物生成硫化镍沉淀,经分离、洗涤、干燥制得镍精矿;提镍溶液加入助剂LN除杂,得到精制硫酸镁溶液与氨水反应制得氢氧化镁产品。
1.2生产充填材料
镍渣被用于井下填充材料技术相对成熟,既解决了镍渣的资源化问题,又可以降低填充成本,减少水泥的消耗,降低水泥生产过程中环境污染。目前水淬渣用作充填材料关键在于对活性渣进行激发,激发方式分为机械激发和化学激发。传统的机械激发采用普通机械球磨进行物理细化,高能球磨可以使矿渣迅速细化,增加比表面积,增大水化反应面提高物料的物理化学活性。镍渣经过高能球磨处理后,抗压强度会显著提高。化学激发利用激发剂与矿渣的化学反应生成具有水硬胶凝性能的物质来提高矿渣的活性,激发剂多采用硫酸盐类、碳酸盐类等。杨志强[12]等采用机械活化和化学活化两种方式进行实验研究。
结果表明,机械活化镍渣、脱硫石膏、电石渣、水泥熟料的最佳比表面积分别为620,200,200,300m2/kg,化学活化以脱硫石膏和电石渣为主,硫酸钠和水泥熟料为辅,前两者比例相同各占总量5%时,镍渣充填体强度最高;加入3%的硫酸钠和2%的水泥熟料可以提高激发效果;外加0.156%的PC高效减水剂,配置胶砂比为1∶4,料浆浓度为79%的充填浆料完全满足矿山对充填体的强度要求,可以替代水泥应用于金川矿山交接充填采矿。高术杰[13]等利用水淬二次镍渣制备矿山充填材料,利用脱硫石膏和电石渣等物质激发生成大量水化产物,产生较高充填强度。并且水淬镍渣充填料的'流动度好于P42.5水泥充填料的流动度。结果表明,脱硫膏与电石渣比为1∶1混合再与少量硫酸钠及水泥熟料配置复合激发剂,具有较好地激发效果。
1.3制作高附加值玻璃
微晶玻璃和泡沫玻璃均数高附加值玻璃,微晶玻璃具有玻璃和陶瓷的双重特性,比陶瓷亮度高,比玻璃韧性强。泡沫玻璃具有不燃烧、不变形、热学性能稳定、力学强度较高且易加工的优点。王亚利[14]等对镍渣熔融炼铁剩余熔渣制备微晶玻璃进行了研究。提铁二次渣经过均化→澄清→浇注→晶化→退火→研磨→抛光制备出符合建筑装饰国家标准的微晶玻璃,确定了最优原料比。冯桢哲[15]等以镍渣和废玻璃为主要原料,添加碳酸钠作为发泡剂,烧制出泡沫玻璃。探讨了碳酸钠添加量、发泡温度、保温时间对泡沫玻璃质量的影响,结果表明,主要原料镍渣和废玻璃分别为20%和80%,外加5%~7%的碳酸钠发泡剂、2%的硼酸为稳泡剂和2%的硼砂为助溶剂,在870℃下恒温1h,可以制备出总气孔率为85.14%,抗折强度高达2.062MPa的镍渣基泡沫玻璃。
1.4生产建材
镍渣的主要成分是SiO2、Al2O3、Fe2O3,利用镍渣生产硅酸盐水泥可以部分替代黏土和铁粉,减少能源消耗。镍渣中存在的少量镍、铜、钴等元素对降低熟料的液相最低共熔点和黏度有积极的作用,可以改善其易烧性,有利于熟料矿物的形成。吴阳[16]等用镍渣替代铁粉制备道路硅酸盐水泥,通过合理配料制备出以C3S,C2S和C4AF为主要矿物的道路硅酸盐水泥熟料,其强度、矿物组成、安全性等性能符合国标要求;最佳条件为镍渣掺杂量(质量分数)10%,煅烧温度1370℃。王顺祥[17]等探讨了镍渣不同细度和不同掺杂量对硅酸盐水泥水化特性的影响。结果表明,随着镍渣的掺量增加,使得水泥浆体凝结时间延长,水化反应放热减少,硬化水泥砂浆的抗压强度、抗折强度讲师;相反,随着镍渣细度的提高可以改善上述影响,并且有利于硬化水泥浆体的结构致密化。镍渣作为混凝土掺合料和集料使用,能够提高混凝土的强度,并且镍渣结构致密且金属含量较高,含有大量的橄榄石,使得镍渣硬度高,从而使掺入镍渣后的混凝土耐磨度提高。李浩[18]等研究了镍渣砂掺量对混凝土耐磨性的影响,当镍渣粉、粉煤灰、镍渣砂同时掺入混凝土中,掺量分别为10%、10%、40%时,混凝土的耐磨性最好。丁天庭[19]等基于镍渣的掺量对混凝土的抗压强度影响进行研究,当镍渣掺量为20%时,混凝土的抗压强度最大,当镍渣掺量为50%时,混凝土的抗压强度最小。
2、发展趋势
资源利用率低,资源紧缺,产业结构不合理成为制约我国经济社会发展的战略问题。结合我国目前矿产资源现状来看,镍渣中含有的主体金属是铁,应该以提铁为主进行资源化利用,不但可以缓解我国铁矿石资源压力,而且有利于可持续发展,又可增加企业效益。提铁后的二次渣还可以用来制备微晶玻璃,充填材料等建筑材料,镍渣资源得到充分利用。
3、结语
镍渣作为重要的二次资源,含有铁、镍、钴、铜等有价元素,单纯提取有价金属经济性有限,并且存在二次渣的废弃问题;单纯做非金属资源处理造成对有价金属元素的浪费;因此,将有价金属提取后的二次渣进行非金属资源处理更有利于达到镍渣的高效化和生态化利用。
参考文献
[1]张燕云.熔融氧化法富集镍渣中铁资源的热力学研究[D].兰州:兰州理工大学,2018.
[2]李国洲,张燕云,马泳波,等.镍冶金渣综合利用现状[J].中国冶金,2017,27(8):1-5.
[3]李小明,沈苗,王翀,等.镍渣资源化利用现状及发展趋势分析[J].材料导报,2017,31(5):100-105.
[4]刘晓民,杨书航,张晓亮,等.金川镍渣的工艺矿物性质分析[J].矿产综合利用,2018(1):82-85.
[5]谢庚.金川镍渣多组分综合利用研究[D].陕西:西安建筑科技大学,2015.
[6]郭亚光,朱荣,裴忠冶,等.镍渣熔融还原提铁动力学[J].中国有色冶金,2017,46(5):75-80
冶金分析是核心,其他的我不知道,我在北京大学图书馆2008版《中文核心期刊要目总览》没找到,反正中国计量学院学报在我们学校算是核心,本校,呵呵
核心以下级别的期刊,应该中的难度都不大吧!主要就是挑个版面费便宜的就行。核心就比较难了,
这两个期刊以前都是EI one page,但2009年以后就不是了
不是核心期刊。冶金工业的核心期刊有:1.冶金分析;2.钢铁;3.粉末冶金技术;4.稀土;5.轻金属;6.钢铁研究学报;7.有色金属(改名为有色金属工程);8.有色金属(冶炼部分);9.稀有金属;10.炼钢;11.粉末冶金工业;12.烧结球团;13.粉末冶金材料科学与工程;14.钢铁钒钛;15.稀有金属与硬质合金;16.湿法冶金;17.炼铁;18.特殊钢;19.材料与冶金学报;20.中国稀土学报;21.冶金自动化; 22.贵金属
论文格式与论文参考文献格式 科学技术报告、学位论文、学术论文以及其它类似文件是主要的科技信息源,是记录科学技术进步的历史性文件.为了统一这些文件的撰写、编辑、印刷、出版、发行,便于处理、储存、检索、利用、交流、传播.现将中华人民共和国国家标准GB 7713-87中有关论文格式、参考文献著录格式摘录如下:论文格式1.论文格式——题目:题目应当简明、具体、确切地反映出本文的特定内容,一般不宜超过20字,如果题目语意未尽,用副题补充说明。2.论文格式——作者:署名的作者只限于那些选定研究课题和制订研究方案、直接参加全部或主要研究工作、做出主要贡献,并了解论文报告的全部内容...
有色冶金化工原理分析论文
摘要 :本文对有色冶金化工的生产过程进行了概括分析,对其中的工艺原理做出归纳探讨,以期让相关理论更加浅显明晰,对实际生产产生增益作用。
关键词 :有色冶金;化工过程;工作原理
1有色金属冶金技术现状及原理
目前金属的化工冶炼方法主要包括三种方式:火法冶金、湿法冶金和电冶金。
1.1火法冶金
火法冶金在冶金领域是非常传统的生产方式,在整个操作中并未加入水溶液,因此这种方法也叫做干法冶金,主要的原理是制造高温的条件,矿石就能经过化学、物理反应,让其中的金属与其他的成分分离,这样就能提炼出金属单质。实际操作流程的第一步是矿石准备,第二步是冶炼,第三步是精炼。第一步:矿石准备选择精矿后要加入适当的熔剂,对精矿进行加热,让其中的矿料可以在加热情况下形成块状,或者是加入一些粘合剂来制造成型,形成小球状后结成球团,然后放进鼓风炉里进行冶炼。第二步:冶炼这一过程主要是生成两个部分,分别是炉渣和金属液。金属液中也是有着少量的杂质,因此要进行进一步的精炼。这一过程是在鼓风炉中发生,其中加入了必要的材料以及熔剂,并加入焦炭来作为还原剂,主要是为了在铁矿中还原出生铁,在铜矿中还原出粗铜,还有对硫化铅矿进行冶炼,还原出粗铅。除了生成金属液以外,还有诸多杂质组成的炉渣。若是在氧化条件下反应,对生铁用转炉来精炼,在转炉中引入适当的氧气,用氧化的方式将铁水中的杂质去除,并炼出一定品质的钢水,可以将其铸成钢锭,这就是氧化吹炼的过程。造锍熔炼是对硫化铜或者硫化镍矿石进行处理,通常来说是在反射炉以及矿热电炉中进行反应,也可以是用鼓风炉来反应。在其中会加入一些石英石熔剂,便于形成炉渣,炉渣之下会留下熔锍。第三步:精炼。这个步骤是为了将金属液中依旧存在的一些少量杂质进一步去除掉,可以让金属的纯度得到提升。如在炼钢的时候,可以对生铁进行适当的精炼,这样就能在其中去除掉更多的非金属杂质,或者是进行更加深入地脱硫。精炼铜则是将粗铜放在反射炉里氧化,再用电解的.方式进行精炼。不同的金属有着不同的精炼方式,在设备以及原料上都是有所区别的。
1.2湿法冶金
这种方法的另一个名字叫水法冶金,是借助各类熔剂,通过一系列的化学反应,实现对金属的提取以及分离,主要的步骤分为四步,其中第一步就是浸出。①浸出就是将矿物里的目标成分引入到溶液里,便于接下来的步骤逐渐展开。②通过过滤等方法,将浸出液与残渣分离,同时将夹带于残渣中的冶金溶剂和金属离子回收。③采用萃取法或离子交换法,将浸出液中目标组分富集,并和其他杂质离子分离。④从净化液中提取目标金属或化合物。湿法冶金在钴、镍、铝、铜、锌等工业中占有重要地位,世界上全部的氧化铝、大部分锌和部分铜都采用此法生产。湿法冶金对低品位矿和相似金属分离都具有很好的适用性,而且金属回收程度高,不会造成严重的环境污染,生产过程易实现连续化和自动化,利于提高生产效率[1]。
1.3电冶金
电冶金是以电能为能源进行提取和处理金属的工艺,根据电能转化形式的不同分为电化冶金和电热冶金两类。电化冶金是利用电极反应而进行的冶炼方法,对电解质水溶液或熔盐等离子导体通以直流电,电解质便发生化学变化,在阳极上发生氧化反应,而在阴极上发生还原反应。电热冶金具有加热速度快、调温准确、温度高(可达2000℃),可以在各种气氛、压力或真空中作业,具有金属烧损少等优点,是冶炼稀有高熔点金属、半导体材料等的一种主要方法。例如,目前冶炼金属铝就属于电热冶金方式,首先从铝土矿中提取氧化铝,然后在氧化铝中加入冰晶石作为助熔剂,在高温下熔融电解。
2有色冶金化工生产的核心设备的工作原理
虽然冶金化工产品种类众多,冶炼方法一般各不相同,但诸多生产流程所应用原理却大致相同,核心设备上也有着一定的共同点[2],下面对几种主要设备介绍。高炉冶炼原理:高炉生产乃连续进行,在实际操作中,是从炉顶的位置加入各类原料以及添加剂,从下部的风口鼓入高温达到一千摄氏度以上的热风,同时喷入煤粉等燃料。铁矿石的成分主要是铁的氧化物,这样用高温的方式就可以用燃料在燃烧后形成的一氧化碳,用来进行还原反应,实现对铁矿石中氧化物的还原,就能得到单质铁。这种情况下形成的是高温铁水,从出铁口就可以放出。同时在铁矿石中有着诸多的其他物质,构成了炉渣,炉渣就要从出渣口的位置排出,经过除尘处理之后,这些还能作为一些工业的生产原料。
3结束语
理论对实践具有指导意义,通过对理论的研究解析,了解工艺、反应及设备的本质,使实际生产具有更高的经济效益和时间效益。本文浅析了冶金化工生产中的几种主流方法的原理和工艺流程,对部分设备进行了理论分析。当前我国冶金设备正在高速地革新,冶金设备提升的同时,冶金化工在不同领域也会有广泛的发展前景。面对当前的压力和未来的挑战,我们需要不断深入地研究原理,并与先进技术相结合优化现有设备与工艺,在实践中解决各类有色冶金化工问题。
参考文献
[1]中国工程院化工、冶金与材料工程第十一届学术会议——“‘化工、冶金、材料’前沿与创新”在宁波隆重举行[J].杭州化工,2016,46(04):44.
[2].济南冶金化工设备有限公司一流的煤化工及焦化设备专业制造商[J].燃料与化工,2016,47(01):2.
作者:胡睿康 单位:澧县第一中学
提供一些成本会计类论文的参考文献,供参考。[1] 孙忠泽. 关于成本会计几个问题的探讨[J]. 冶金财会, 2005,(11) [2] 杨红. 探讨成本会计的几个理论问题[J]. 科技成果纵横, 2006,(05) [3] 黄坚. 区域文化发展战略指导思想的理论探讨[J]. 福建论坛(社科教育版), 1987,(06) [4] 李文俊. 试论成本会计信息的成本效益原则[J]. 天津经济, 2008,(05) [5] А.Г.格里德契娜 , 黎汶. 马克思对生产力理论探讨的某些方面[J]. 国外社会科学, 1980,(04) [6] 夏志良. 略论成本会计信息的相关性[J]. 会计之友, 1995,(06) [7] 张迎建, 吴斌. 成本会计信息的产权分析[J]. 会计之友, 2005,(10) [8] 夏志良. 略论成本会计信息的相关性[J]. 财会月刊, 1995,(08) [9] 王建民. 对“定编”工作的理论探讨[J]. 数量经济技术经济研究, 1997,(04) [10] 吴仲时. 企业成本会计信息的真实性和相关性问题探讨[J]. 商业经济与管理, 2000,(07)
微生物冶金技术及其应用 摘要:综述微生物冶金技术及冶金过程的机理,并介绍了该技术的历史沿革和发展现状。 关键词:微生物;冶金;机理;应用 0 引言 随着人类社会的快速发展,人类对自然资源的需求量 与日俱增,而自然矿产资源的枯竭,对矿冶工作提出了更 高的要求。微生物冶金技术是近代学科交叉发展生物工程 技术和传统矿物加工技术相结合的工业上的一种新工艺, 其能耗少、成本低、工艺流程简单、无污染等优点,在矿 物加工、三废治理等领域展示了广阔的应用前景,并取得 了较好的经济效益。 1 微生物冶金技术[1] 按照微生物在矿物加工中的作用可将生物冶金技术分 为:生物浸出、生物氧化、生物分解。 1·1 生物浸出 硫化矿的细菌浸出的实质是使难溶的金属硫化物氧化, 使其金属阳离子溶入浸出液,浸出过程是硫化物中S2-的 氧化过程。其浸出机理是: ———直接作用:指细菌吸附于矿物表面,对硫化矿直 接氧化分解的作用。可用反应方程式表示为: 2MS+O2+4H+细菌参与2M2++2S0+2H2O 式中M———Zn、Pb、Co、Ni等金属。 ———间接作用:指金属硫化物被溶液中Fe3+氧化,可 用以下反应式表示: MS+2Fe3+M2++2Fe2++S0 所生成的Fe2+在细菌的参与下氧化成Fe3+: 4Fe2++O2+H+细菌参与4Fe3++2H2 ———原电池效应。两种或两种以上的固相相互接触并同 时浸没在电解质溶液中时各自有其电位,组成了原电池,发 生电子从电位低的地方向高的地方转移并产生电流。例如, 对于由黄铁矿、黄铜矿、闪锌矿组成的矿物体系,在浸出过 程中静电位高的矿物充当阴极,低的矿物则充当阳极: 阳极反应: ZnS Zn2++S0+2e CuFeS2Cu2++ Fe2++2S0+4e 阴极反应: O2+4H++4e 2H2O 原电池的形成会加速阳极矿物的氧化,同时细菌的存 在会强化原电池效应。 1·2 生物氧化 对于难处理金矿,金常以固-液体或次显微形态被包裹 于砷黄铁矿(FeAsS)、黄铁矿(FeS2)等载体硫化矿物 中,应用传统的方法难以提取,很不经济。应用生物技术 可预氧化载体矿物,使载金矿体发生某种变化,使包裹在 其中的金解离出来,为下一步的氰化浸出创造条件,从而 使金易于提取。在溶液pH值2~6范围内,细菌对载体矿 物砷黄铁矿的氧化作用可用下式表示: 4FeAsS+12·75O2+6·5H2O 3Fe3++Fe2++ 2H3AsO4+2H2AsO-4+H2SO4+3SO2-4+H++4e 生物预氧化方法其投资少、成本低、无污染等优点, 在处理难处理金矿过程中体现了理想的效果,并取得了较 好的经济效益。 1·3 生物分解[2] 铝土矿存在许多细菌,该类微生物可分解碳酸盐和磷 酸盐矿物。例如: Bacillus mucilaginous分泌出的多糖可和 铝土矿中的硅酸盐、铁、钙氧化物作用,应用Aspergillus niger、Bacillus circulans、Bacillus polymyxa和 Pseudomonus aeroginosa可从低品位铝土矿中选择性浸出 铁和钙。微生物分解碳酸盐矿物可用如下反应过程表示: 微生物代谢产生的酸使碳酸盐分解: CaCO3+H+Ca2++HCO-3 呼吸产生的CO2溶解产生H2CO3,从而加速碳酸盐的 分解: CaCO3+H2CO3Ca2++2HCO-3 2 生物冶金技术应用现状 2·1 微生物冶金技术的历史沿革[1,3] 1687年,在瑞典中部的Falun矿,人们使用微生物技 术已经至少浸出了2 000 000吨铜,但当时人们对其反应机 理并不清楚,细菌浸矿技术的发展十分缓慢。直到1947 年, Colmer与Hinkel首次从酸性矿坑水中分离出一种可以 将Fe2+氧化为Fe3+的细菌即氧化亚铁硫杆菌(Thiobacillus ferrooxidans)[3]。1954年, L·C·Bryner和J·V·Beck等人 开始利用该菌种进行硫化铜矿石的实验室浸出试验研究, 并发现该细菌对硫化矿具有明显的氧化作用。1955年10 月24日S·R·Zimmerley, D·Gwilson与J·D·Prater首次申 请了生物堆浸的专利并委托给美国Kennecott铜矿公司, 开始了生物湿法冶金的现代工业应用。 2·2 微生物冶金技术的应用现状[4] 2·2·1 微生物冶金技术在金、银矿石中的应用[5~12] 微生物湿法冶金技术在金、银矿中主要应用于氧化预 处理阶段,近年来已有6个生物氧化预处理厂分别在美国、 南非、巴西、澳大利亚和加纳投产。南非的Fairvirw金矿 厂采用细菌浸出,金的浸出率达95%以上;美国内华达州 的Tomkin Spytins金矿于1989年建成生物浸出厂,日处理 1 500 t矿石,金的回收率为90%;澳大利亚于1992年建 成Harbour Lights细菌氧化提金厂,处理规模为40 t/d。 巴西一家工厂于1991年投产,处理量为150 t/d。我国陕 西省地矿局1994年进行了2 000 t级黄铁矿类型贫金矿的细 菌堆浸现场试验,原矿的含金只有0·54 g/t,经细菌氧化 预处理后金的回收率达58%,未经处理的只有22%; 1995 年云南镇源金矿难浸金矿细菌氧化预处理项目启动,建起 我国第一个微生物浸金工厂。新疆包古图金矿经细菌氧化 预处理后,金浸出率高达92%~97%。 2·2·2 微生物冶金技术在铜矿石中的应用[13~17] 最初生物浸出铜主要用于从废石和低品位硫化矿中回 收铜,细菌是自然生长的,近年来这种方法已用来处理含 铜品位大于1%的次生硫化铜矿,称为生物浸出。现在, 美国和智利用SX-EW法生产的铜中约有50%以上是采用 生物堆浸技术生产的,如世界上海拔最高4 400 m的湿法炼 铜厂位于智利北部的奎布瑞达布兰卡,该厂处理的铜矿石 含Cu 1·3%,主要铜矿物为辉铜矿和蓝铜矿,采用生物堆 浸,铜的浸出率可以达到82%。生产能力为年产7·5万t 阴极铜。我国已开采的铜矿中85%属于硫化矿,在开采过 程中受当时选矿技术和经济成本的限制产生了大量的表外 矿和废石,废石含铜通常为0·05%~0·3%。德兴铜矿采 用细菌堆浸技术处理含铜0·09%~0·25%的废石,建成了 生产能力2 000 t/a的湿法铜厂,萃取箱的处理能力达到了 320 m3/h,已接近了国外萃取箱的水平。该厂1997年5月 投产,已正常运转了几年,生产的阴极铜质量达到A级。 福建紫金山铜矿已探明的铜金属储量253万t,属低品位含 砷铜矿,铜的平均品位0·45%,含As 0·37%,主要铜矿 物为蓝辉铜矿、辉铜矿和铜蓝。该矿采用生物堆浸技术已 建立了年产300 t阴极铜的试验厂,“十五”期间计划建立 更大的生产厂。 2·2·3 微生物冶金技术在铀矿石中的应用[18~20] 细菌浸铀也已有多年历史。葡萄牙1953年开始试验细 菌浸铀,到1959年时某铀矿用细菌浸铀浸出率达60%~ 80%。在60年代,加拿大就开始用细菌浸出ElliotLake铀 矿中的铀。在该区的3个铀矿公司都有细菌生产厂, 1986 年U3O8年产量达3 600 t。1983年成功地以原位浸出的方 式从Dension矿中回收了大约250 t U3O8。到目前为止,美 国、前苏联和南非、法国、葡萄牙等国都有工厂在用生物 堆浸法回收铀。1966年加拿大研究成功了细菌浸铀的工业 应用,用细菌浸铀生产的铀占加拿大总产量的10% ~ 20%,而西班牙几乎所有的铀都是通过细菌浸出获得的, 印度、南非、法国、前南斯拉夫、塔吉克斯坦、日本等国 也广泛应用细菌法溶浸铀矿。我国在20世纪70年代初, 也曾在湖南711铀矿作了处理量为700 t贫铀矿石的细菌堆 浸扩大试验,而在柏坊铜矿则将堆积在地表的含铀0·02% ~0·03%的2万多吨尾砂历经8年用细菌浸出铀浓缩物2 t 多。进入20世纪90年代后,新疆某矿山利用细菌地浸浸 出铀取得了良好的经济效益。此外,北京化工冶金研究院 在细菌浸矿方面做过许多研究工作,他们曾在相山铀矿进 行过细菌堆浸半工业试验研究,而赣州铀矿原地爆破浸出 试验及在草桃背矿石堆浸试验中也都应用了细菌技术。 2·2·4 微生物冶金技术在其它金属矿中的应用[21~24] 据报道,锑、镉、钴、钼、镍和锌等硫化物的生物浸 出试验比较成功。由此可知,氧化铁硫杆菌和喜温性微生 物可从纯硫化物或复杂的多金属硫化物中将上述重金属有 效地溶解出来。金属提取速度取决于其溶度积,因而溶度 积最高的金属硫化物具有最高的浸出速度。这些金属硫化 物可用细菌直接或间接浸出。除上述金属硫化物外,铅和 锰的硫化物、二价铜的硒化物、稀土元素以及镓和锗也可 以用微生物浸出。硅酸铝的生物降解曾被广泛研究,特别 是采用在生长过程中能释放出有机酸的异养微生物的生物 降解,这些酸对岩石和矿物有侵蚀作用。另外,它还应用 在贵金属和稀有金属的生物吸附锰、大洋多金属结核、难 选铜-锌混合矿、大型铜-镍硫化矿、含金硫化矿石、稀 有金属钼和钪的细菌浸取等众多方面。 3 结语 随着社会的发展,人类对自然资源的需求量与日俱增, 而自然矿产资源的枯竭,环境污染日益严重影响着人类的 生存与发展。为了解决这一问题,微生物冶金技术在矿产 资源中的应用愈来愈受到人们的重视。微生物冶金技术具 有工艺简单、投资少、环境污染少等许多优点,正发挥着 巨大的作用,显示出巨大的潜力和广阔的前景,将对人类 产生深远的影响。 参考文献: [1] 杨显万,沈庆峰,郭玉霞·微生物湿法冶金[M]·北京: 冶金工业出版社, 2003-09· [2] EhrlichH L·Manganese oxide reduction as a form of anaerobicrespiration [J]·Geomicrobiology Journal, 1987, 5 (4): 423~431· [3] A·R·Colmer, M·E·Hinkel·Theroleofmicroorganismin acid mine drainage·A preliminary report·Science, 1947, 106: 253~256· [4] 邱木清,张卫民·微生物技术在矿产资源利用与环保中的应 用[J]·《矿产保护与利用》, 2003 (6)· [5] J·Needham, L·Gwei—Djen·Science and civilization in China [J]·Chenistry and Chemical Technology, 1974 (5): 25, 250· [6] 徐家振,金哲男·重金属冶金中的微生物技术[J]·《有色 矿冶》, 2001 (2): 31~34· [7] 钟宏·生物药剂在矿物加工和冶金中的应用[J]·《矿产 保护与利用》, 2002 (3): 28~32· [8] 肖松文·《黄金》[J]·1995, 16 (4): 31· [9] Dutrizac, J·E·eta1·Miner·Sci·Ere·[J]·1974 (6) 2: 50· [10] Souraitro Nagpal eta1·Biohydrometallurgical Technologies, VolumeI [z]·ed·by Torma, A·E·eta1·A Pub~eafion of TMS, 1993·49· [11] J·盖维尔·生物预处理在菱镁矿尾渣浮选回收上的应用 [J]·《国外金属矿选矿》, 1999 (3)· [12] G·Rossi·Biohydrometallurgy [J], 1990: 1~7· [13] 刘大星,蒋开喜,王成彦·铜湿法冶金技术的国内外现状 及发展趋势[J]·《湿法冶金》, 1997 (6)· [14] 孙业志,吴爱祥,黎建华·微生物在铜矿溶浸开采中的应 用[J]·《金属矿山》, 2001·
冶金工程毕业论文题目
冶金工程毕业论文题目大家了解了吗,有哪些题目可以供大家选择呢?下面我为大家介绍冶金工程毕业论文题目,希望能帮到大家!
41、摆线转子数控加工程序的研究
42、球团烟气氨法脱硫控制系统及仪表检测
43、PDCA循环在高炉本体安装项目中的应用
44、山西文水炼钢连铸EPC项目风险管理研究
45、冶金建设工程质量监督重点
46、试论机电自动化在工程机械制造中的应用分析
47、冶金建设项目计划管理模式优化
48、基于逆向工程的激光熔覆搭接率的确定
49、冶金机械设备安装研究
50、机电自动化在工程机械制造中的应用
51、冶金流程工业机械装备智能化与在役再制造工程战略研究
52、微波技术在冶金工程中的运用与实践探索
53、再制造工程技术在冶金工业中的应用探微
54、冶金防腐工程的浅析
55、冶金工程中可回收式锚索施工工艺探讨
56、多点驱动带式输送机的设计研究
1、润滑系统在冶金设备中的应用与分析
2、冶金电气设备安装工程安装调试要点
3、浅谈微波技术在冶金工程中的运用
4、起重机械检验过程中的设备问题和管理研究
5、HTR-PM余热排出系统水冷壁制造方案
6、中国钢铁企业固体废弃物资源化处理模式和发展方向
7、沈阳有色冶金设计研究院
8、镍基合金在激光熔覆再制造中的应用研究综述
9、新型水泥基复合注浆材料的配比实验
10、大型冶金工程项目机电安装BIM应用研究
11、冶金工程实验室安全管理实践与思考
12、深竖井支洞在水工隧洞中的应用
13、氧化亚铁硫杆菌及其应用研究进展
14、冶金工程质量管理与改进
15、浅谈铁路信号工程技术施工管理
16、基于X射线实时成像技术的产品缺陷检测
17、BIM技术在大型冶金工程中的实际应用
18、工业含铬废水处理技术研究进展
19、冶金工程设计的发展现状和展望
20、H公司电石冶炼厂建设项目的`采购风险管控研究
21、钙镁诱导低合金高强度钢针状铁素体强韧化机制研究
22、链箅机-回转窑制备全赤铁矿氧化球团的关键技术研究
23、基于透明计算技术的智能手表设计与实现
24、箱型钢柱加固的非线性有限元分析
25、浅析海外冶金与矿山工程的设计管理
26、端曲面齿联轴器的创成原理及设计
27、膜技术在含金属离子废水中的应用进展与发展趋势
28、反渗透技术在冶金行业的应用
29、选择性激光烧结在3D打印中的应用
30、冶金工业高压供配电系统施工与运营关键技术
31、冶金外墙装饰施工中的问题及应对策略探析
32、多铁性颗粒复合材料内部的平行多裂纹问题
33、高铬型钒钛磁铁矿中铬氧化物还原热力学影响因素分析
34、中碳钢中的氧化物冶金行为及脉冲磁场对其的影响
35、冶金机械设备安装的关键问题探讨
36、现代钢铁冶金工程设计方法研究
37、加载环境对合金超高周疲劳行为的影响
38、电气安装与调试成套技术在炼铁及轧钢工程快速改造大修中的应用
39、盾构刀盘驱动无级变速离合器摩擦副烧损失效机理的研究
40、绿色可循环钢铁厂工程设计研究与实践
57、Cu基金属粉末的特种微成形工艺及性能评估
58、创建面向冶金生产过程的开放型自动化专业人才培养模式
59、汽轮发电机组设备安装施工技术
60、冶金设备安装调试要点分析
61、酸性环境用低温无缝钢管(-50℃)的研制
62、微型流化床反应分析的方法基础与应用研究
63、新型滤筒除尘器的性能实验研究及工业应用
64、高强度贝氏体精轧钢筋性能优化及断裂行为研究
65、激光增材制造镍基高温合金数值模拟与试验研究
66、冶金自动化工程项目风险管理研究
67、多热源作用下侧吸罩流场及捕集效率特性的研究
68、典型冶金原辅料的微波吸收特性及其应用研究
69、基于光场成像理论的弥散介质光热特性重构
70、铁合金等离子体的时空特性研究
71、活塞式发动机故障诊断方法研究与工程应用
72、铜冶炼项目管理工作中遇到的问题探究
73、概算包干模式下冶金工程的造价管理初探
74、基于METSIM的钨冶炼工艺过程仿真研究
75、基于直觉模糊层次分析法的大型高炉工程施工阶段风险评价研究
76、磷矿浆脱除燃煤锅炉烟气中SO_2的研究
在早期的文明国度和地区中,中国使用铜、铁等金属的年代相对说来是较晚的。但是,由于中国在冶铸技术方面的发明和创新,使中国的冶金业很快就后来居上,跃升于世界的前列,并为中国古代文明的高度发达奠定了坚实的物质基础。从这里我们可以看到一个技术进步带动生产发展,并进而促进社会文明进步的典型范例。 埃及大约在公元前5000年时开始进入青铜时代,公元前1000年左右开始进入铁器时代;美索不达米亚地区大约在公元前7000年时开始利用自然铜,公元前4000年时开始进入青铜时代,公元前1200年左右开始进入铁器时代;爱琴海地区大约在公元前3300年时开始进入青铜时代,公元前1000年左右开始进入铁器时代;印度大约在公元前2500年时开始进入青铜时代,公元前800年左右开始进入铁器时代;而中国是在公元前1500年左右开始进入青铜时代,公元前500年左右开始进入铁器时代的。 中国冶金史上的一个最突出的特点,是铸造技术占有重要的地位,以至于铸造既作为成形工艺而存在,又成为冶炼工序中的一个组成部分,达到了“冶”与“铸”密不可分的地步。因此在古代文献中往往是冶铸并称,并对中国文化产生了深刻的影响。如常用词汇“模范”、“范围”、“陶冶”、“就范”等,都是由冶铸技术衍生而来的。这种冶与铸密不可分的冶金传统,是古代世界上其它国家和地区所无法比拟的。 1.青铜冶炼 被认为是中国古文明象征的商周到战国的青铜器,在某种意义上可以说是铸造技术所造就的。中国开始冶炼青铜的时期虽然晚于西方约千余年,然而后来居上,冶炼水平很快超过了西方。 从重875公斤的司母戊方鼎、精美的曾侯乙尊盘和大型的随县编钟群,以至大量的礼器、日用器、车马器、兵器、生产工具等,可以看到当时中国已经非常熟练地掌握了综合利用浑铸、分铸、失蜡法、锡焊、铜焊的铸造技术,在冶铸工艺技术上已处于世界领先的地位。而《考工记》中所记载的:“金有六齐。六分其金而锡居一,谓之钟鼎之齐。五分其金而锡居一,谓之斧斤之齐。四分其金而锡居一,谓之戈戟之齐。三分其金而锡居一,谓之大刃之齐。五分其金而锡居二,谓之削杀矢之齐。金、锡半,谓之鉴燧之齐”,是世界上最早的合金配比的经验性科学总结,表明当时中国已认识到合金成分与青铜的性能和用途之间的关系,并已定量地控制铜锡的配比,以得到性能各异,适于不同用途的青铜合金。 《考工记》中还记载有:“凡铸金之状,金与锡,黑浊之气竭,黄白次之;黄白之气竭,青白次之;青白之气竭,青气次之,然后可铸也”,说明当时已掌握了根据火焰的颜色,来判定青铜是否冶炼至精纯程度的知识,这是后世化学中火焰鉴别法的滥觞。用以比喻工夫达到纯熟完美境界的成语“炉火纯青”,就是由此引伸出来的。 在炼铜中的另一项重要成就是湿法炼铜,也叫胆铜法。这是利用炼丹家所发现的铁对铜离子的置换反应,进行冶铜的方法。其工艺过程是把硫酸铜或碳酸铜(古称曾青、胆矾、石胆等)溶于水,使成胆水,然后投铁块于溶液中,因铁的化学性能比铜活泼,铁离子会置换出铜来。这是世界上最早的湿法冶金,宋代已用此法进行大规模的炼铜生产。 2.铸铁冶炼 中国冶炼块铁的起始年代虽然迟至公元前6世纪,约比西方晚900年,然而冶炼铸铁的技术却比欧洲早2000年。中国铸铁的发明出现在公元前5世纪,而欧洲则迟至公元后的15世纪。由于铸铁的性能远高于块铁,所以真正的铁器时代是从铸铁诞生后开始的。社会发展的历史表明,铸铁的出现是社会生产力提高和社会进步的主要标志。中国从块铁到铸铁发明的过渡只用了约一个世纪的时间,而西方则花费了近三千年的漫长路程。中国古代炼铁技术发展得如此迅速是世界上绝无仅有的。英国著名科学史家贝尔纳说,这是世界炼铁史上的一个唯一的例外。 由于生铁含碳量高,虽硬但脆,不耐碰击,易毁坏,为改进生铁的性能,中国古代发明了一系列的生铁加工技术: 其中,首先是战国时期问世的铸铁柔化术。该项技术又分为两类,一类是在氧化气氛下对生铁进行脱碳热处理,使成白心韧性铸铁;一类是在中性或弱氧化气氛下,对生铁进行石墨化热处理,使成黑心韧性铸铁。而在西方,白心韧性铸铁的生产技术1722年方由法国人首次记述,黑心韧性铸铁是1831年才在美国问世的。到汉代,铸铁柔化术又有新的突破,形成了铸铁脱碳钢的生产工艺,可以由生铁经热处理直接生产低、中、高碳的各种钢材,中国从此成为世界上的先进钢铁生产国。其产品亦随着中外交通贸易的发展,输运到周围各国以及中亚、西亚和阿拉伯一带。 另一杰出的生铁加工技术是炒钢,它是中国古代由生铁变成钢或熟铁的主要方法,大约发明于西汉后期。其法是把生铁加热成液态或半液态,并不断搅拌,使生铁中的碳份和杂质不断氧化,从而得到钢或熟铁。河南巩县铁生沟和南阳瓦房庄汉代冶铁遗址,都提供了汉代应用炒钢工艺的实物证据。东汉时成书的《太平经》中也说:“有急乃后使工师击治石,求其中铁,烧冶之使成水,乃后使良工万锻之,乃成莫耶。”“莫耶”乃古代宝剑之称。这段文字虽失之疏简,但不难看出,它叙述的是由矿石冶炼得到生铁,再由生铁水经过炒炼,锻打成器的工艺过程。炒钢工艺操作简便,原料易得,可以连续大规模生产,效率高,所得钢材或熟铁的质量高,对中国古代钢铁生产和社会发展都有重要的意义。类似的技术,在欧洲直至十八世纪中叶方由英国人发明。 中国古代的炼钢技术主要是百炼钢。自从西晋刘琨写下“何意百炼钢,化为绕指柔”这一脍炙人口的诗句后,“千锤百炼”、“百炼成钢”便成为人们常用的成语。百炼钢肇始于西汉早期的块炼渗碳钢,其后不断增加锻打次数而成定型的加工工艺。到东汉、三国时,百炼钢工艺已相当成熟。上引《太平经》中的“万锻之,乃成莫邪”,即是其生动的写照。曹操曾令工师制作“百辟利器”,曹丕的《典论·剑铭》中说:“选兹良金(指铁),命彼国工,精而炼之,至于百辟”。刘备曾令“蒲元造刀五千口,皆连环,及刃口刻七十二湅”。《古今注·舆服》亦说:“吴大帝有宝剑三,……一曰百炼,二曰青犊,三曰漏景”。后世这一工艺一直被继承,并不断得到发展。 此外,在1981年经中国学者关洪野等人对513件出土的汉魏时期铁器研究后表明,中国早在两千多年前的汉代就已经发明了球墨铸铁,远远早于发达的欧洲国家。目前,中国学者所做的结论已经得到了国际学术界的承认。 创始于魏晋南北朝时期的灌钢技术,是中国冶金史上的一项独创性发明。陶弘景说:“钢铁是杂炼生柔作刀镰者”,北齐的綦母怀文“造宿铁刀,其法烧生铁精以重柔铤,数宿则成刚”,说的就是灌钢技术。灌钢的工艺过程大致为,将熔化的生铁与熟铁合炼,生铁中的碳份会向熟铁中扩散,并趋于均匀分布,且可去除部分杂质,而成优质钢材。灌钢技术在宋以后不断被改进,减少了灌炼次数,以至一次炼成。沈括在《梦溪笔谈》卷三说:“世间锻铁所谓钢铁者,用柔铁屈盘之,乃以生铁陷其间,泥封炼之,锻令相入,谓之‘团钢’,亦谓之‘灌钢’”,并说“二三炼则生铁自熟,仍是柔铁”,正反映了灌炼次数的减少。其中把柔铁屈盘起来是为了增加生熟铁的接触面,提高灌钢的效率,并促使碳份分布更均匀;封泥则可以促进造渣,去除杂质,并起保护作用。明代灌钢技术又进一步发展,据《天工开物》卷十四记载,已把柔铁屈盘改为薄熟铁片,进一步增加了生熟铁的接触面,加速“生熟相和,炼成则钢”的进程,泥封亦改为草泥混封。灌钢又称“抹钢”、“苏钢”,其工艺自清至近代仍很盛行。在坩埚炼钢法发明之前,灌钢法是一种最先进的炼钢技术。 铜、铁外,中国古代冶炼和使用的金属还有金、银、汞、铅、锡、锌等,其中锌的炼制是中国首先发明的。中国在先秦的青铜中已把锌作为伴生矿加入铜合金中,从汉代至元代更是有意识地把锌的氧化物“炉甘石”加入化铜炉中,以生产锌为主要合金元素的铜合金黄铜。明代时,则开始了大规模地用炉甘石作原料提炼金属锌。从十六世纪起,中国的锌便不断传进欧洲。欧洲到十七世纪才开始炼锌,其工艺也是源自于中国。另:百度文库上一篇名为《冶金史》的文章:
《铅》:电解铅生产工艺简介 铅冶金是白银生产的最佳载体:一般铅对金银的捕集回收率都在95%以上,因此金银的回收是与铅的生产状况直接相关的。现在世界上约有80%的原生粗铅是采用传统的烧结一鼓风炉熔炼工艺方法生产的。传统法技术成熟,较完善可靠,其不足之处在于脱硫造块的烧结过程中,烧结烟气的SO2浓度较低,硫的回收利用尚有一定难度,鼓风炉熔炼需要较昂贵的冶金焦炭。为了解决上述问题,冶金工作者进行了炼铅新工艺的研究。八十年代以来,相继出现了QSL法、闪速熔炼法、TBRC转炉顶吹法、基夫赛特汉和艾萨熔炼法等新的炼铅方法。其中,QSL法是德国鲁奇公司七十年代开发的直接炼铅新工艺,加拿大、韩国和我国虽然先后购买了此专利建厂,但生产效果不甚理想;闪速熔炼法尚未实现工业化生产;TBRC法是瑞典波里顿公司所创,但此法作业为间断性的,且炉衬腐蚀严重;基夫赛特法由原苏联有色金属研究院研究成功,现已有多个厂家实现了工业化生产,是一种各项指标先进、技术成熟可靠的炼铅新工艺,但采用该法单位投资大,只有用于较大生产规模的工厂时,才能充分发挥其效益。 艾萨炼铅技术基于由上方插入的赛罗浸没喷枪将氧气喷射入熔体。产生涡动熔池,让强烈的氧化反应或者还原反应迅速发生。在第一段,熔炼炉产出的高铅渣经过流槽送还原炉,氧化脱硫所产的烟气经除尘后送制酸系统。在第二段还原炉中,所产粗铅和弃渣从排放口连续放出,并在传统的前床中分离,所产烟气进行除尘处理后经烟囱排放。 艾萨法熔炼流程。该工艺流程先进,对原料适应性广、生产规模可大可小,比较灵活、指标先进、SO2烟气浓度高,可解决生产过程中烟气污染问题;同时冶炼过程得到强化,金银捕集率高,余热利用好,能耗低。它不仅适应308厂铅银冶炼的改建要求,而且能够对我国的银铅冶金生产和技术进步起到推动作用,故推荐引进艾萨法作为本项目粗铅冶炼生产工艺的第一方案。 传统的鼓风烧结——鼓风炉法虽然在烟气制酸方面尚有一定困难,但近年来,我国株洲冶炼厂、沈阳冶炼厂、济源冶炼厂等大型铅厂的改扩建工程仍然采用此法,是因为它具有建设快、投产、达产快的优点。 粗铅精炼工艺有火法和电解法两种。一般来说,电解法对银、金、铋和锑的分离效果好,铅、银等金属的回收率高,劳动条件好,机械化自动化程度高。电解法的缺点是基建投资较火法高。采用火法需要处理大量中间产物,能耗较高,致使其生产成本较电解法高。鉴于本项目粗铅含银、铋等金属较多。 常规方法处理铅阳极泥是采用火法——电解法流程获得金、银,渣进行还原熔炼,精炼得精铋等,流程简单、技术成熟,工人易操作,但有价金属回收率不高,锑、铅呈氧化物形态挥发进入烟尘,不但不便于综合回收,而且造成第二次污染。 《钨钴》:超硬质合金高温回收钨钴法 高温处理回收钨钴法:超硬质合金是由钨、钴和炭粉混合成型烧结加工制成的。日本新金属公司开发的超硬质合金高温处理法可以回收钨钴再生粉末,年产可达80吨。 超硬质合金碎屑洗净后,在1800~2300℃高温下的惰性气体中进行热处理,超硬质合金中的钴呈易于粉末化的海绵状态。在热处理温度下,超硬质合金中钴在1800℃以下不呈海绵状态,而在2300℃以上合金中的碳化钨将分解并生成第三相,结果不好。 热处理后的块状碎屑,用颚式破碎机或滚筒破碎机进行粗碎到-850μm,其后再微粉碎成再生粉末。本法得到的再生粉末,因经过粗大粒子化过程,烧结时有易于粒子成长的倾向。其中的钴含量、碳含量处理后几乎没有变化,仅杂质铁、硅量增加,对制造硬质合金没有影响。再生粉末粒度据粉碎条件,可能微粉碎到1μm以下。 本法用比较容易的工序,不损害超硬质合金的原组成,任何品种的超硬质合金均可再生成一定粒度的粉末,不需特殊设备,为经济的回收方法。较以往加化学试剂精炼后回收利用的方法,有很大优越性。
如图