首页

> 学术发表知识库

首页 学术发表知识库 问题

岩体力学论文

发布时间:

岩体力学论文

工程地质学科的基本理论形态包括 成因演化论 、 结构控制论 和 相互作用论 ,这些理论有着相通的思想 方法 ,就是成因决定结构,结构控制行为,工程地质过程是工程建设与地质环境相互作用的过程。下面是我为大家整理的工程地质学论文,供大家参考。

工程地质学论文 范文 一:工程地质在水利水电工程中的价值

一、水利水电工程地质勘察的方法及其特点

1.1工程地质测绘

工程地质测绘是水利水电工程地质勘察中一项基础工作,工程设计之前,地质人员要详细查明拟定建筑区工程地质条件的空间分布规律,并按照一定比例尺将其如实地反映在地形底图上,作为工程地质预测的基础,提供给设计部门使用。

1.2工程地质勘探

对任何水利水电工程地质条件及工程地质问题,从地表到地下的研究,从定性到定量的评价,都离不开勘探工作,水利水电工程地质勘探包括:物探、钻探、坑探等。

1.3工程地质野外试验野外试验是水利水电工程地质勘察中一项经常进行的重要的勘察方法,是获得工程地质问题定量评价和工程设计及施工所需要参数的主要手段。水利水电工程野外试验包括:钻孔压水试验、灌浆试验、荷载试验触探试验等。水利水电工程地质野外试验水平的发展,主要体现在试验仪器和设备的发展。

1.43S技术应用

3S技术是指全球定位系统(GPS)、遥感(RS)、地理信息系统(GIS)等三大技术系统的集成与总称。遥感技术是3S技术的基础,它提供主要的遥感信息源。GPS技术用于遥感信息的精确定位,GIS技术则为遥感信息的获取提供辅助信息和专家思维,并对所提取的各种信息进行管理和分析且具有制图功能。近年来,国内开始在一些特大型、大型水利水电工程地质勘察中采用3S技术,许多大型水利水电工程采用了3S技术并取得了丰硕成果。

1.5水利水电工程地质的特点

水利水电工程地质的特点有:非凡性与复杂性、实践性与 经验 性、工程地质问题的长期性与隐伏性。

二、水利水电工程存在的工程地质问题和条件

2.1水利水电工程建设中存在的工程地质问题

在水利水电工程建设中,由于工程建设对原有的地质环境的改变,形成了各种各样的工程地质问题,如:泥石流、斜坡滑动、斜坡崩塌、洞室围岩坍塌、溶洞、地质缺陷等。

2.2库区工程地质问题

水库蓄水后,水位上升,水深加大,流速减缓,近坝一带水似静水体,形成一个广阔的人工湖,这就会对库区及其邻近地带的地质环境生产影响,产生库区渗漏、浸没、淤积、坍岸及诱发地震等工程地质问题。

2.3水利水电工程地质条件

水利水电工程地质问题不是孤立、偶然发生的,它与水利水电工程建设区域的自然条件和环境有着极为密切的必然联系,其形成、发展和变化,都是工程活动对这里自然地质条件影响的结果,这些直接或间接地影响工程建筑物的规划、设计、施工和正常运用的地质条件就是工程地质条件,它主要是指:地形地貌、地层岩性、地质构造、水文地质特征、物理地质现象等。

三、水利水电工程中典型工程地质问题形成条件及对策

3.1泥石流

泥石流形成条件有:流域内应有丰富的固体物质,并能源源不断地补给泥石流;要有陡峻的地形和较大的沟床纵坡;流域中上游应有由强大的暴雨或冰雪强烈消融及湖泊的溃决等形式补给的充沛水源。防治泥石流的原则是以防为主,兼设工程 措施 。可采用如下的防范措施:预防:在上游汇水区,做好水土保持,调整地表径流,加固岸堤;拦截:在中游流通区,设置一系列拦截构筑物;排导:在泥石流下游设置排导设施使泥石流顺利排除等措施。

3.2斜坡滑动

斜坡滑动形成的条件:原有斜坡结构被破坏、斜坡外部荷载超过其承受能力等。斜坡滑动的防治措施:排水、消坡、抗滑桩、抗滑挡土墙、预应力钢索锚固措施、灌浆法、砂井砂桩加固法、焙烧发等。

3.3斜坡崩塌

斜坡崩塌发生条件和发育因素:山坡坡度55-75度、表面凹凸不平;岩石性质和节理程度:软硬岩石互层组成;地质构造:岩层产状、构造作用。斜坡崩塌的治理措施:爆破或打楔、灌浆、调整地表水流、铺砌覆盖、坡面喷浆等等。

3.4水库地震

水库地震是指水库蓄水后诱发的地震,水库地震发生的条件有:地质条件、激发条件,其中激发条件包括直接效应和间接效应。水库诱发地震以3级左右为主。我国最大的水库诱发地震是广乐省新丰江水库诱发地震6.1级。矿山诱发地震震级在3.4~3.8级,一般震级较小,震源较浅。水库地震的防治措施:尽量减少对可诱发水库地震的地质条件的破坏、采用有效方法预测水库地震发生的频率和级别、做好预防水库地震应急预案等。(本文来自于《价值工程》杂志。《价值工程》杂志简介详见.)

四、结语

水利水电工程则是在各种地质环境中进行的,水利水电工程建筑物与地质环境之间必然产生一定方式的关联和制约,地质环境对水电工程建筑物的制约,可以由一定的作用影响工程建筑物的安全稳定和正常运用,也可以由于某些地质条件的欠佳而提高工程造价;而水利水电工程建设有可以各种方式影响地质环境,使其产生程度不同、范围不一的变化。因此,水利水电工程建设必须根据具体地质环境和工程建设方式、规模和类型,预见到其二者相互制约的基本形式和规律,才能合理有效地开发利用并妥善保护地质环境。

工程地质学论文范文二:论工程地质实践教学方式

杭州西郊群山环抱西湖,水光潋滟、山色葱郁,北、东一片广阔平原。杭州山水有湖光山色之盛,山、石、洞、泉之美,地貌类型多样。北东向延伸并向南西扬起的西湖复向斜构造,使杭州地势自南西向北东逐渐降低。区内总体可分为山地、平原两大地貌单元:西湖的西、西南大部分地区为低山丘陵区,外围北、东、南侧为平原区。低山丘陵区内又可进一步分为低山丘陵与山麓沟谷两个小区。平原区分为西湖及北侧菬溪流域的湖沼冲积平原小区和东南侧钱江流域的冲海积平原小区。

工程地质实践教学

工程地质实习是工程地质专业本科教学中十分重要的教学环节,是该专业4年教学中必不可少的实习。是学生在学完土质土力学、岩体力学、工程地质学基础、工程地质勘察等课程理论知识的基础上,按工程地质选址勘察、初步勘察阶段的技术要求,通过对工程地质条件的野外实地考察、测绘和有关勘察手段使用的现场参观和实践,使学生获得工程地质实践的感性知识并巩固和深化理论,促进理论与实际相结合,为今后从事工程地质选址勘察或勘察工作打下初步基础。

1.实习内容和要求。岩石、土的肉眼鉴定,地层剖面观察;褶皱和断裂构造的基本判识;岩体结构面类型、结构体形状识别,野外鉴别和判识不同岩体结构类型,岩体结构面测绘统计;土体结构类型识别;地下水类型及水文地质条件的了解;各种环境地质及不良地质现象(滑坡、溶洞、坍塌等)野外识别、调查、测绘,成因和对场地稳定性影响初步分析和评价;以掌握工程地质测绘工作方法为主,并参观了解静力触探、标贯、钻探编录和取样等工程地质勘探手段;在了解杭州市区区域地层、构造等基础上,以浙江大学附近区为主,通过工程地质测绘,资料收集,编制工程地质剖面图、平面图和选址勘察文字 报告 。

2.实习教学。实习分为四条路线,路线一为大桥地层剖面路线,六和塔→钱塘江大桥北铁路线→八卦田→玉皇山;路线二为钱塘江岸—南高峰不良地质现象调查路线;路线三为浙大—青芝坞—灵峰—玉皇山—玉泉;路线四为浙大—黄龙洞—蝙蝠洞。实习内容为系统识别杭州地区地层岩性及其分界标志层;进行岩性描述,对出露岩石的颜色、成分、结构、构造、化石和风化程度等进行观察和描述,掌握观察方法和描述要点并采集岩样标本;岩体结构类型野外判别方法;滑坡识别、形态测绘等;洞穴调查、测绘;落水洞、岩溶塌陷调查;岩体节理裂隙统计;判识地貌单元及确定分区界线等内容。

工程地质实践 教学方法 探讨

工程地质学是一门实践性很强的科学,很多的工程地质现象,仅通过书本上的概念、理论而不配合一定的实习,是收不到良好的教学效果的。正如俗话所说“实践出真知”,充分说明了实验实习教学的重要性。通过实习可以验证、巩固和学习与实验有关的理论知识,加深对学科知识的理解,培养学生符合辩证唯物主义的、实事求是的科学思维和严谨的工作作风,激发和培养学生的创造能力。

1.激发学生对工程地质的兴趣。杭州作为实习基地本身对学生即是很大的吸引力。在实习过程中循循诱导学生对工程地质专业的热爱。启发式教学具有多种功能,通过启发教学,能激励学生的兴趣和探索精神,调动学生的主动性和积极性,从而使学生切实地掌握知识和技能,促进学生智力因素、非智力因素以及思想品德的形成和发展。每一条实习路线,都要在实习前布置好任务;每爬一座山,都要每位同学抱着征服高山的勇气,去翻越它,研究它,并对工程地质现象了然于心。对率先完成任务的小组要给予奖励。在山上野餐时,表演节目活跃气氛。激发同学的实习热情。在实习过程中,老师应该对实习地的风土人情、历史地理有所了解,把地质现象与人文知识、风俗习惯、经济发展联系起来。比如某些特殊地形地貌在古代兵家战争中起过什么作用;一个地区的地层与该地的闻名土特产有什么关系;某些因地质作用形成的湖光山色在当地有哪些民间 传说 ,在旅游业中起到什么作用等。这些都会增强学生对大自然的兴趣,从而也增强对工程地质的兴趣。

2.培养学生的独立观察能力。科学研究是从观察开始的,工程地质学更是如此,有的人对丰富的地质现象熟视无睹,而有的人则善于观察并有所发现,二者的区别在于对观察的重视不够,观察能力不同。野外实习是培养学生观察能力最具体而有效的方式。做到勤于观察、善于观察。勤于观察是指学生能积极主动地进行独立观察。野外实习时,对欲让学生观察的现象,老师一般都作了预习,心中有数。切实而有效的方法是让学生自己去观察、去发现,老师可通过提示、点拨要观察内容。善于观察是指把看到的不同现象进行对比,找出其本质上的成因联系。实习时老师可给学生示范,抓住两至三个现象深入剖析,学生便可举一反三,掌握思路和方法在此过程中,老师应特别注意鼓励学生提出自己的看法和解释,即使错了也没关系。

3.培养学生的团队协作精神。任何工程都是一个系统工程,都需要团结协作、分工明确,在很多情况下,单靠个人能力已很难完全处理各种错综复杂的问题并采取切实高效的行动,所以团队合作精神的训练也是非常重要的。可以通过地层实测剖面和独立填图阶段训练学生团队合作精神,在进行工作前,需按掌图、记录、定点、测量产状和采集标本等任务分工,对最后成果的整理分析也要采用讨论式的方法上各小组的成员都发表意见,集思广益最终完成图件的绘制,杜绝单打独斗。

工程地质学论文相关 文章 :

1. 工程地质论文

2. 地质学毕业论文范文

3. 环境工程地质在城市规划中的作用分析

4. 工程地质勘探中的钻探技术应用论文

5. 采矿论文范文

6. 采矿工程硕士毕业论文

物理力学是力学的一个新分支,它从物质的微观结构及其运动规律出发,运用近代物理学、物理化学和量子化学等学科的成就,通过分析研究和数值计算,阐明介质和材料的宏观性质,并对介质和材料的宏观现象及其运动规律作出微观解释。主要包括静力学、动力学、流体力学、分析力学、运动学、固体力学、材料力学、复合材料力学、流变学、结构力学、弹性力学、塑性力学、爆炸力学、磁流体力学、空气动力学、理性力学、物理力学、天体力学、生物力学、计算力学 物理力学主要研究平衡现象,如气体、液体、固体的状态方程,各种热力学平衡性质和化学平衡的研究等。对于这类问题,物理力学主要借助统计力学的方法。 物理力学对非平衡现象的研究包括四个方面:一是趋向于平衡的过程,如各种化学反应和弛豫现象的研究;二是偏离平衡状态较小的、稳定的非平衡过程,如物质的扩散、热传导、粘性以及热辐射等的研究;三是远离于衡态的问题,如开放系统中所遇到的各种能量耗散过程的研究;四是平衡和非平衡状态下所发生的突变过程,如相变等。解决这些问题要借助于非平衡统计力学和不可逆过程热力学理论。 物理力学的研究工作,目前主要集中三个方面:高温气体性质,研究气体在高温下的热力学平衡性质(包括状态方程)、输运性质、辐射性质以及与各种动力学过程有关的弛豫现象;稠密流体性质,主要研究高压气体和各种液体的热力学平衡性质(包括状态方程)、输运性质以及相变行为等;固体材料性质,利用微观理论研究材料的弹性、塑性、强度以及本构关系等。 物质的性质及其随状态参量变化规律的知识,无论对科学研究还是工程应用都极为重要,力学本身的发展就一直离不开物性和对物性的研究。 近代工程技术和尖端科学技术迅猛发展,特别需要深入研究各种宏观状态下物体内部原子、分子所处的微观状态和相互作用过程,从而认识宏观状态参量扩大后物体的宏观性质和变化规律。因此,物理力学的建立和发展,不但可直接为工程技术提供所需介质和材科的物性,也将为力学和其他学科的发展创造条件。

[1]叶金汉主编.岩石力学参数手册.北京:水利电力出版社,1991.425~501

[2]李华晔,黄志全,刘汉东等.岩基抗剪参数随机——模糊法和小浪底工程 C、 φ 值计算.岩石力学与工程学报,1997,16(2):155~161

[3]夏明诚.抗剪强度统计方法的现状与讨论.岩土力学,1998,19(1):90~93

[4]周维垣,杨若琼.岩石力学数学模拟的现状与发展.岩石力学与工程学报,1998,17(增):937~939

[5]尤明庆,华安增,李玉寿.缺陷岩样强度和变形特性的研究.岩土工程学报,1998,20(2):97~101

[6]尤明庆,华安增.岩石试样的强度准则及内摩擦系数.地质力学学报,2001,7(1):53~60

[7]尤明庆.岩样三轴压缩的破坏形式和Coulomb 强度准则.地质力学学报,2002,8(2):179~185

[8]尤明庆,李化敏.试验数据回归结果的评价方法.岩石力学与工程学报,2003,22(7):1191~1195

[9]尤明庆,苏承东,周英.不同煤块的强度特性及回归方法.岩石力学与工程学报,2003,22(12):2081~2085

[10]胡宣达.数理统计初步.南京:江苏人民出版社,1980.190~199

[11]黄国民,周廷振,顾士亮等.徐州矿山压力规律及控制技术.徐州:中国矿业大学出版社,1994.37~38

[12]尤明庆,苏承东.对砂岩试样室内试验结果的分析.见:中国岩石力学与工程学会第八次学术大会论文集,北京:科学出版社,2004.179~182

[13]Jaeger J C.Rock failure at lower confining pressure.Engineering,1960,189:283~284

[14]尤明庆,苏承东.具有沉积弱面试样的剪切拉伸破坏及强度分析.岩石力学与工程学报,2006,25(增2):3618~3622

[15]李银平,王元汉,肖四喜.岩石类材料中压剪裂纹的相互作用分析.岩石力学与工程学报,2003,22(4):552~555

[16]郭少华,孙宗颀,谢晓晴.压缩条件下岩石断裂模式与断裂判据的研究.岩土工程学报,2002,24(3):304~308

[17]李新平,刘金焕,彭元平,等.压应力作用下裂隙岩体的断裂模式与强度特性.岩石力学与工程学报,2002,21(增):1942~1945

[18]尤明庆.岩样三轴压缩的破坏形式和Coulomb 强度准则.地质力学学报,2002,8(2):179~185

[19]李东旭,周济元.地质力学导论.北京:地质出版社,1986.83~84

[20]钟嘉猷.实验构造地质学及其应用.北京:科学出版社,1998.54~59

[21]许江,鲜学福,王宏图.关于岩石基本力学参数关系的一些讨论.见:第六次全国岩石力学与工程学术大会论文集.北京:中国科学技术出版社,2000.145~146

[22]吴玉山,李记鼎.确定岩石强度包络线的新方法——单块法.岩土工程学报,1985,7(2):85~91

[23]苏承东,尤明庆.单一试样确定大理岩和砂岩强度参数的方法.岩石力学与工程学报,2004,23(18):3055~3058

[24]尤明庆.两种晶粒大理岩力学性质的研究.岩土力学,2005,26(1):91~96

[25]周国林,谭国焕,李启光等.剪切破坏模式下岩石的强度准则.岩石力学与工程学报,2001,20(6):753~762

[26]陈卫忠,李术才,朱维申等.考虑裂隙闭合和摩擦效应的节理岩体能量损伤理论与应用.岩石力学与工程学报,2000,19(2):131~135

[27]尤明庆.岩石非均匀变形破坏和承载能力的研究.徐州:中国矿业大学,1997.64~66

[28]尤明庆.复杂路径下岩样的强度、 变形特性.岩石力学与工程学报,2002,21(1):23~28

[29]蔡美峰.岩石力学与工程.北京:科学出版社,2002.229~230

[30]尤明庆,李化敏,纪多辙.试验数据回归结果的评价方法.岩石力学与工程学报,2003,22(7):1191~1195

[31]尤明庆,苏承东.大理岩试样的长度对三轴压缩试验的影响.见:中国岩石力学与工程学会第九次学术大会论文

集,北京:科学出版社,2006.333~337

[32]尤明庆.基于粘结和摩擦的岩石变形与破坏的研究.地质力学学报,2005,11(3):286~292

[33]刘允芳.水压致裂法三维地应力测量.见:夏熙伦编.工程岩石力学.武汉:武汉工业大学出版社,1998.199~207

[34]徐芝纶.弹性力学(上册).北京:人民教育出版社,1979.89~94

[35]蔡美峰.地应力测量原理和技术.北京:科学出版社,2000.38~46,234~244

[36]周维垣.高等岩石力学.北京:水利电力出版社,1990.97~99

[37]中华人民共和国水利部.水利水电工程岩石试验规程.北京:水利水电出版社,2001

[38]Haimson B C,Cornet F H.ISRM Suggested Methods for rock stress estimation—Part3:hydraulic fracturing(HF)and/or hydraulic testing of pre-existing fractures(HTPF).Inter.J.Rock Mech.Min.Sci.,2003,40(7/8):1011~1020

[39]Lee M Y,Haimson B C.Statistical evaluation of hydraulic fracturing stress measurement parameters.Inter.J.Rock Mech.Min.Sci.,1989,26(6):447~56

[40]Rutqvist J,Tsang Chin-Fu,Stephansson O.Uncertainty in the maximum principal stress estimated from hydraulic fracturing measurements due to the presence of the induced fracture.Inter.J.Rock Mech.Min.Sci.,2000,37:107~120

[41]Cappa F,Guglielmi F,Rutqvist J,Tsang Chin-Fu,Thoraval A.Hydromechanical modelling of pulse tests that measure fluid pressure and fracture normal displacement at the Coaraze Laboratory site,France.Inter.J.Rock Mech.Min.Sci.,2006,43:1062~1082

[42]陈群策,毛吉震,侯砚和.利用地应力实测数据讨论地形对地应力的影响.岩石力学与工程学报,2004,23(23):3990~3995

[43]谭成轩,石玲,孙炜锋等.构造应力面研究.岩石力学与工程学报,2004,23(23):3970~3978

[44]张彦山,梁国平,丁建民等.由井壁崩落估算水平主应力量值的研究.见:中国地震局地壳应力研究所编.地壳构造与地壳应力文集.北京:地震出版社,1999.134~139

[45]谢富仁,孟宪梁,祁英男.内昆线天星场至仙水段构造应力场分析.见:中国地震局地壳应力研究所编.地壳构造与地壳应力文集.北京:地震出版社,1999.64~69

[46]Pine R J,Tunbridge L W,Keakwa K.In-situ stress measurement in the Carmenellis granite-I.Overcoring test at South Crofty mine at a depth of 790 m.Inter.J.Rock Mech.Min.Sci.,1983,20(2):51~62

[47]Anderson C,Christianson R.Variability of hydraulic fracturing rock stress measurements and comparison of triaxial overcoring results made in the same borehole.In:Katsuhiko Sugawara et al.Rock Stress.Netherlands:A A Balkema,2003.315~320

[48]陈颙,黄庭芳.岩石物理学.北京:北京大学出版社,2001.134~137

[49]陈庆宣,王维襄,孙叶等.岩石力学与构造应力场分析.北京:地质出版社,1998.103~105

[50]Rummel F.断裂力学应用于水压致裂应力测量.见:阿特金森 B K 编.岩石断裂力学.尹祥础,修济刚等译.北京:地震出版社,1992.231~253

[51]范天佑,断裂理论基础.北京:科学出版社,2003.82~83

[52]尤明庆.水压致裂法测量地应力方法的研究.岩土工程学报,2005,27(3):350~353

[53]Amadei B,Stephansson O.Rock stress and its measurement.London:Chapman & Hall,1997.171~173

[54]刘允芳.在同一钻孔中水压致裂法地应力测量与套钻孔应力解除法测量成果的比较.见:夏熙伦.工程岩石力学.武汉:武汉工业大学出版社,1998.217~221

[55]尤明庆,周少统,苏承东.岩石试样在围压下直接拉伸试验.河南理工大学学报,2006,25(4):255~261

[56]郭启良,丁立丰.岩体力学参数的原地综合测试技术与应用研究.岩石力学与工程学报,2004,23(23):3928~3931

岩土力学和岩石力学与工程学报

《岩石力学与工程学报》和《岩土工程学报》均为EI收录期刊,但没有被SCI收录。Journal of Rock Mechanics and Geotechnical Engineering (JRMGE) 和《岩石力学与工程学报》、《岩土力学》为中科院武汉岩土所三大期刊,而且JRMGE于2019年2月已经被SCI收录。

全专业包括:

1、结构工程、防灾减灾及防护工程、现代结构理论学科

2、岩土工程学科

3、桥梁与隧道工程学科

4、土木工程建造与管理学科

《中华建设》

有《岩石力学学报》么?我只知道《岩石力学与工程学报》哦,它与《岩土工程学报》都为EI检索,且均不是SCI。。。。前者基本是关于岩的文章,后者岩、土皆有,侧重于岩

岩土力学编辑

可以,不过需要联系编辑,不行的话弃稿,过段时间另投

建筑业10项新技术(2005)1. 地基基础和地下空间工程技术 1.1桩基新技术 1.1.1灌注桩后注浆技术 1.1.2长螺旋水下灌注成桩技术1.2地基处理技术 1.2.1水泥粉煤灰碎石桩(CFG桩)复合地基成套技术 1.2.2夯实水泥土桩复合地基成套技术 1.2.3真空预压法加固软基技术 1.2.4强夯法处理大块石高填方地基 1.2.5爆破挤淤法技术 1.2.6土工合成材料应用技术1.3深基坑支护及边坡防护技术 1.3.1复合土钉墙支护技术 1.3.2预应力锚杆施工技术 1.3.3组合内支撑技术 1.3.4型钢水泥土复合搅拌桩支护结构技术 1.3.5冻结排桩法进行特大型深基坑施工技术 1.3.6高边坡防护技术 1.4地下空间施工技术 1.4.1暗挖法 1.4.2逆作法 1.4.3盾构法 1.4.4非开挖埋管技术2. 高性能混凝土技术2.1混凝土裂缝防治技术2.2自密实混凝土技术2.3混凝土耐久性技术2.4清水混凝土技术2.5超高泵送混凝土技术2.6改性沥青路面施工技术3. 高效钢筋与预应力技术 3.1高效钢筋应用技术 3.1.1HRB400级钢筋的应用技术3.2钢筋焊接网应用技术 3.2.1冷轧带肋钢筋焊接网 3.2.2HRB400钢筋焊接网 3.2.3焊接箍筋笼3.3粗直径钢筋直螺纹机械连接技术3.4预应力施工技术 3.4.1无粘结预应力成套技术 3.4.2有粘结预应力成套技术 3.4.3拉索施工技术4. 新型模板及脚手架应用技术4.1清水混凝土模板技术4.2早拆模板成套技术4.3液压自动爬模技术4.4新型脚手架应用技术 4.4.1碗扣式脚手架应用技术 4.4.2爬升脚手架应用技术 4.4.3市政桥梁脚手架施工技术 4.4.4外挂式脚手架和悬挑式脚手架应用技术5. 钢结构技术 5.1钢结构CAD设计与CAM制造技术5.2钢结构施工安装技术 5.2.1厚钢板焊接技术 5.2.2钢结构安装施工仿真技术 5.2.3大跨度空间结构与大型钢构件的滑移施工技术 5.2.4大跨度空间结构与大跨度钢结构的整体顶升与提升施工技术5.3钢与混凝土组合结构技术5.4预应力钢结构技术5.5住宅结构技术5.6高强度钢材的应用技术5.7钢结构的防火防腐技术6. 安装工程应用技术 6.1管道制作(通风、给水管道)连接与安装技术 6.1.1金属矩形风管薄钢板法兰连接技术 6.1.2给水管道卡压连接技术6.2管线布置综合平衡技术 6.3电缆安装成套技术 6.3.1电缆敷设与冷缩、热缩电缆头制作技术6.4建筑智能化系统调试技术 6.4.1通信网络系统 6.4.2计算机网络系统 6.4.3建筑设备监控系统 6.4.4火灾自动报警及联动系统 6.4.5安全防范系统 6.4.6综合布线系统 6.4.7智能化系统集成 6.4.8住宅(小区)智能化 6.4.9电源防雷与接地系统6.5大型设备整体安装技术(整体提升吊装技术) 6.5.1直立单桅杆整体提升桥式起重机技术 6.5.2直立双桅杆滑移法吊装大型设备技术 6.5.3龙门(A字)桅杆扳立大型设备(构件)技术 6.5.4无锚点推吊大型设备技术 6.5.5气顶升组装大型扁平罐顶盖技术 6.5.6液压顶升拱顶罐倒装法 6.5.7超高空斜承索吊运设备技术 6.5.8集群液压千斤顶整体提升(滑移)大型设备与构件技术6.6建筑智能化系统检测与评估 6.6.1系统检测 6.6.2系统评估7. 建筑节能和环保应用技术 7.1节能型围护结构应用技术 7.1.1新型墙体材料应用技术及施工技术 7.1.2节能型门窗应用技术 7.1 3节能型建筑检测与评估技术7.2新型空调和采暖技术 7.2.1地源热泵供暖空调技术 7.2.2供热采暖系统温控与热计量技术7.3预拌砂浆技术 8建筑防水新技术 8.1新型防水卷材应用技术 8.1.1高聚物改性沥青防水卷材应用技术 8.1.2自粘型橡胶沥青防水卷材 8.1.3合成高分子防水卷材:包括合成橡胶类防水卷材和合成树脂类防水片(卷)材8.2建筑防水涂料 8.3建筑密封材料8.4刚性防水砂浆8.5防渗堵漏技术9施工过程监测和控制技术 9.1施工过程测量技术 9.1.1施工控制网建立技术 9.1.2施工放样技术 9.1.3地下工程自动导向测量技术9.2特殊施工过程监测和控制技术 9.2.1深基坑工程监测和控制 9.2.2大体积混凝土温度监测和控制 9.2.3大跨度结构施工过程中受力与变形监测和控制10建筑企业管理信息化技术 10.1工具类技术 10.2管理信息化技术 10.3信息化标准技术

没有交审稿费的话,一般不会给你送外审的,所以你直接联系编辑,跟她说有错误要重新投稿,这时主编可能会给你重新初审

土木工程百科名片土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中 ,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 土木工程 土木工程(代码:0814 )学科分类: 土木工程的基本属性 综合性 社会性 实践性土木工程历史上的三次飞跃 专业介绍 一、专业基本情况 二、专业综合介绍开设院校 拥有土木工程国家一级重点学科的高校 拥有土木工程国家二级重点学科的高校 拥有土木工程一级博学点的高校及研究所 拥有土木工程一级硕士点的高校及研究所 开设土木工程课程的高校 教育部学位中心学科评估高校排名结果就业方向分析 工程技术方向 设计、规划及预算方向 质量监督及工程监理方向 工程检修方向 公务员、教学及科研方向土木工程的前景分析土木工程 土木工程(代码:0814 )学科分类: 土木工程的基本属性 综合性 社会性 实践性土木工程历史上的三次飞跃 专业介绍 一、专业基本情况 二、专业综合介绍开设院校 拥有土木工程国家一级重点学科的高校 拥有土木工程国家二级重点学科的高校 拥有土木工程一级博学点的高校及研究所 拥有土木工程一级硕士点的高校及研究所 开设土木工程课程的高校 教育部学位中心学科评估高校排名结果就业方向分析 工程技术方向 设计、规划及预算方向 质量监督及工程监理方向 工程检修方向 公务员、教学及科研方向土木工程的前景分析[编辑本段]土木工程综合概述建造工程设施的物质基础是土地、建筑材料、建筑设备和施工机具。借助于这 土木工程课程些物质条件,经济而便捷地建成既能满足人们使用要求和审美要求,又能安全承受各种荷载的工程设施,是土木工程学科的出发点和归宿。 目前中国将土木工程分为: * 房屋工程 * 铁路工程 * 道路工程 * 机场工程 * 桥梁工程 * 隧道及地下工程 * 特种工程结构 * 给排水工程(现已是一门独立的学科) * 城市供热供燃气工程 * 交通工程(已经分化出来成为了独立的学科) * 环境工程 * 港口工程 * 水利工程(已经分化出来成为了独立的学科) * 土力工程 美国将土木工程分为: * 结构工程(Structural engineering) * 大地工程(Geotechnical engineering) * 交通工程(Transportation engineering) * 环境工程(Environmental engineering) * 水利工程(Hydraulic engineering) * 建设工程(Construction engineering) * 材料科学(Materials science) * 测量学(Surveying) * 城市工程(Urban engineering) [编辑本段]土木工程(代码:0814 )学科分类:081401 岩土工程 081402 结构工程 081403 市政工程 隧道工程081404 供热、供燃气、通风及空调工程 081405 防灾减灾工程及防护工程 081406 桥梁与隧道工程 [编辑本段]土木工程的基本属性土木工程有下述四个基本属性。 综合性建造一项工程设施一般要经过勘察、设计和施工三个阶段,需要运用工程地质勘察、 地质勘察水文地质勘察、工程测量、土力学、工程力学、工程设计、建筑材料、建筑设备、工程机械、建筑经济等学科和施工技术、施工组织等领域的知识以及电子计算机和力学测试等技术。因而土木工程是一门范围广阔的综合性学科。随着科学技术的进步和工程实践的发展,土木工程这个学科也已发展成为内涵广泛、门类众多、结构复杂的综合体系。例如,就土木工程所建造的工程设施所具有的使用功能而言,有的供生息居住之用,以至作为“入土为安”的坟墓;有的作为生产活动的场所;有的用于陆海空交通运输;有的用于水利事业;有的作为信息传输的工具;有的作为能源传输的手段等等。这就要求土木工程综合运用各种物质条件,以满足多种多样的需求。土木工程已发展出许多分支,如房屋工程、铁路工程、道路工程、飞机场工程、桥梁工程、隧道及地下工程、特种工程结构、给水和排水工程、城市供热供燃气工程、港口工程、水利工程等学科。其中有些分支,例如水利工程,由于自身工程对象的不断增多以及专门科学技术的发展,业已从土木工程中分化出来成为独立的学科体系,但是它们在很大程度上仍具有土木工程的共性。 社会性土木工程是伴随着人类社会的发展而发展起来的。它所建造的工程设施反映出各个历史时期社会经济、文化、科学、技术发展的面貌,因而土木工程也就成为社会历史发展的见证之一。远古时代,人们就开始修筑简陋的房舍、道路、桥梁和沟洫,以满足简单的生活和生产需要。后来,人们 罗马大斗兽场为了适应战争、生产和生活以及宗教传播的需要,兴建了城池、运河、宫殿、寺庙以及其他各种建筑物。许多著名的工程设施显示出人类在这个历史时期的创造力。例如,中国的长城、都江堰、大运河、赵州桥、应县木塔,埃及的金字塔,希腊的巴台农神庙,罗马的给水工程、科洛西姆圆形竞技场(罗马大斗兽场),以及其他许多著名的教堂、宫殿等。产业革命以后,特别是到了20世纪,一方面是社会向土木工程提出了新的需求;另一方面是社会各个领域为土木工程的前进创造了良好的条件。例如建筑材料(钢材、水泥)工业化生产的实现,机械和能源技术以及设计理论的进展,都为土木工程提供了材料和技术上的保证。因而这个时期的土木工程得到突飞猛进的发展。在世界各地出现了现代化规模宏大的工业厂房、摩天大厦、核电站、高速公路和铁路、大跨桥梁、大直径运输管道、长隧道、大运河、大堤坝、大飞机场、大海港以及海洋工程等等。现代土木工程不断地为人类社会创造崭新的物质环境,成为人类社会现代文明的重要组成部分。 实践性土木工程是具有很强的实践性的学科。在早期,土木工程是通过工程实践,总结成功的经验,尤其是吸取失败的教训发展起来的。从17世纪开始,以伽利略和牛顿为先导的近代力学同土木工程实践结合起来,逐渐形成材料力学、结构力学、流体力学、岩体力学,作为土木工程的基础理论的学科。这样土木工程才逐渐从经验发展成为科学。在土木工程的发展过程中,工程实践经验常先行于理论,工 结构力学程事故常显示出未能预见的新因素,触发新理论的研究和发展。至今不少工程问题的处理,在很大程度上仍然依靠实践经验。土木工程技术的发展之所以主要凭借工程实践而不是凭借科学试验和理论研究,有两个原因:一是有些客观情况过于复杂,难以如实地进行室内实验或现场测试和理论分析。例如,地基基础、隧道及地下工程的受力和变形的状态及其随时间的变化,至今还需要参考工程经验进行分析判断。二是只有进行新的工程实践,才能揭示新的问题。例如,建造了高层建筑、高耸塔桅和大跨桥梁等,工程的抗风和抗震问题突出了,才能发展出这方面的新理论和技术。技术上、经济上和建筑艺术上的统一性 人们力求最经济地建造一项工程设施,用以满足使用者的预定需要,其中包括审美要求。而一项工程的经济性又是和各项技术活动密切相关的。工程的经济性首先表现在工程选址、总体规划上,其次表现在设计和施工技术上。工程建设的总投资,工程建成后的经济效益和使用期间的维修费用等,都是衡量工程经济性的重要方面。这些技术问题联系密切,需要综合考虑。符合功能要求的土木工程设施作为一种空间艺术,首先是通过总体布局、本身的体形、各部分的尺寸比例、线条、色彩、明暗阴影与周围环境,包括它同自然景物的协调和谐表现出来的;其次是通过附加于工程设施的局部装饰反映出来的。工程设施的造型和装饰还能够表现出地方风格、民族风格以及时代风格。一个成功的、优美的工程设施,能够为周围的景物、城镇的容貌增美,给人以美的享受;反之,会使环境受到破坏。在土木工程的长期实践中,人们不仅对房屋建筑艺术给予很大注意,取得了卓越的成就;而且对其他工程设施,也通过选用不同的建筑材料,例如采用石料、钢材和钢筋混凝土,配合自然环境建造了许多在艺术上十分优美、功能上又十分良好的工程。古代中国的万里长城,现代世界上的许多电视塔和斜张桥,都是这方面的例子。土木工程是建造各类工程设施的科学技术的统称。它既指所应用的材料、设备和所进行的勘测、设计、施工、保养维修等技术活动;也指工程建设的对象,即建造在地上或地下、陆上或水中 ,直接或间接为人类生活、生产、军事、科研服务的各种工程设施,例如房屋、道路、铁路、运输管道、隧道、桥梁、运河、堤坝、港口、电站、飞机场、海洋平台、给水和排水以及防护工程等。 飞机场建造工程设施的物质基础是土地、建筑材料、建筑设备和施工机具。借助于这些物质条件,经济而便捷地建成既能满足人们使用要求和审美要求,又能安全承受各种荷载的工程设施,是土木工程学科的出发点和归宿。 [编辑本段]土木工程历史上的三次飞跃对土木工程的发展起关键作用的,首先是作为工程物质基础的土木建筑材料,其次是随之发展起来的设计理论和施工技术。每当出现新的优良的建筑材料时,土木工程就 会有飞跃式的发展。 人们在早期只能依靠泥土、木料及其它天然材料从事营造活动,后来出现了砖和瓦这种人工建筑材料,使人类第一次冲破了天然建筑材料的束缚。中国在公元前十一世纪 的西周初期制造出瓦。最早的砖出现在公元前五世纪至公元前三世纪战国时的墓室中。砖和瓦具有比土更优越的力学性能,可以就地取材,而又易于加工制作。 砖和瓦的出现使人们开始广泛地、大量地修建房屋和城防工程等。由此土木工程技术得到了飞速的发展。直至18~19世纪,在长达两千多年时间里,砖和瓦一直是土木工程的重要建筑材料,为人类文明作出了伟大的贡献,甚至在目前还被广泛采用。 钢材的大量应用是土木工程的第二次飞跃。 十七世纪70年代开始使用生铁、十九世纪初开始使用熟铁建造桥梁和房屋,这是钢结构出现的前奏。 从十九世纪中叶开始,冶金业冶炼并轧制出抗拉和抗压强度都很高、延性好、质量均匀的 建筑钢材建筑钢材,随后又生产出高强度钢丝、钢索 。于是适应发展需要的钢结构得到蓬勃发展。除应用原有的梁、拱结构外,新兴的桁架、框架、网架结构、悬索结构逐渐推广,出现了结构形式百花争艳的局面。 建筑物跨径从砖结构、石结构、木结构的几米、几十米发展到钢结构的百米、几百米,直到现代的千米以上。于是在大江、海峡上架起大桥,在地面上建造起摩天大楼和高耸铁塔,甚至在地面下铺设铁路,创造出前所未有的奇迹。 为适应钢结构工程发展的需要,在牛顿力学的基础上,材料力学、结构力学、工程结构设计理论等就应运而生。施工机械、施工技术和施工组织设计的理论也随之发展,土木工程从经验上升成为科学,在工程实践和基础理论方面都面貌一新,从而促成了土木工程更迅速的发展。 十九世纪20年代,波特兰水泥制成后,混凝土问世了。混凝土骨料可以就地取材,混凝土构件易于成型,但混凝土的抗拉强度很小,用途受到限制。 十九世纪中叶以后,钢铁产量激增,随之出现了钢筋混凝土这种新型的复合建筑材料,其中钢筋承担拉力,混凝土承担压力,发挥了各自的优点。 二十世纪初以来,钢筋混凝土广泛应用于土木工程的各个领域。 从三十年代开始,出现了预应力混凝土。预应力混凝土结构的抗裂性能、刚度和承载能力,大大高于钢筋混凝土结构,因而用途更为广阔。土木工程进入了钢筋混凝土和预应力混凝土占统治地位的历史时期。混凝土的出现给建筑物带来了新的经济、美观的工程结构形式,使土木工程产生了新的施工技术和工程结构设计理论。这是土木工程的又一次飞跃发展。 [编辑本段]专业介绍本专业学习工程力学、流体力学、岩土力学和市政工程学科的基本理论和基本知识。主要培养从事铁路、公路、机场等工程和房屋、桥梁、隧道、地下工程的规划、勘测、设计、施工、养护等技术工作和研究工作的高层次工程人才。毕业生可在高校、设计部门和科研单位教学、设计、研究工作, 岩土力学也可以在管理、运营、施工、房地产开发等部门从事技术工作。 一、专业基本情况1、培养目标本专业培养掌握工程力学、流体力学、岩土力学和市政工程学科的基本理论和基本知识,具备从事土木工程的项目规划、设计、研究开发、施工及管理的能力,能在房屋建筑、地下建筑、隧道、道路、桥梁、矿井等的设计、研究、施工、教育、管理、投资、开发部门从事技术或管理工作的高级工程技术人才。2、培养要求本专业培养掌握工程力学、流体力学、岩土力学和市政工程学科的基本理论和基本知识,具备从事土木工程的项目规划、设计、研究开发、施工及管理的能力,能在房屋建筑、地下建筑、隧道、道路、桥梁、矿井等的设计、研究、施工、教育、管理、投资、开发部门从事技术或管理工作的高级工程技术人才。本专业学生主要学习工程力学、流体力学、岩土力学和市政工程学科的基本理论,受到课程设计、试验仪器操作和现场实习等方面的基本训练,具有从事土木工程的规划、设计、研究、施工、管理的基本能力。毕业生应获得以下几方面的知识和能力:◆ 具有较扎实的自然科学基础,了解当代科学技术的主要方面和应用前景;◆ 掌握工程力学、流体力学、岩土力学的基本理论,掌握工程规划与选型、工程材料、结构分析与设计、地基处理方面的基本知识,掌握有关建筑机械、电工、工程测量与试验、施工技术与组织等方面的基本技术;◆ 具有工程制图、计算机应用、主要测试和试验仪器使用的基本能力,具有综合应用各种手段(包括外语工具)查询资料、获取信息的初步能力;◆ 了解土木工程主要法规;◆ 具有进行工程设计、试验、施工、管理和研究的初步能力。3、主干学科力学、土木工程、水利工程。4、主要课程材料力学、结构力学、流体力学、土力学、建筑材料、混凝土结构与钢结构、房屋结构、桥梁结构、地下结构、道路勘测设计与路基路面结构、施工技术与管理。5、实践教学包括认识实习、测量实习、工程地质实习、专业实习或生产实习、结构课程设计、毕业设计或毕业论文等。6、修业时间4年。7、学位情况工学学士。8、原专业名矿井建设、建筑工程、城镇建设(部分)、土木工程、交通土建工程、工业设备安装工程、饭店工程、涉外建筑工程。 二、专业综合介绍土木工程十分特殊而又具有系统性。因为几乎所有的土木工程师设计和建造的构筑物都是独一无二的,绝不可能出现两个完全相同的建筑物。有些建筑物虽然看似相同,但是建筑的场地条件(地基、风荷载、地震荷载等)都是不同的。像水坝、桥梁或隧道这样的大型建筑物每一个都完全不同。因此,土木工程师随时要准备应付新的复杂情况。同时工程要考虑的相关影响因素非常多,任何设计上的忽略都将导致一个失败的工程。另一方面,土木工程建设中的计算工作,随着计算机技术发展完善,变得越来越方便和快捷。所以,任何对工程感兴趣的理科类同学报考土木工程都没有问题,尤其适合那些考虑问题全面系统的同学,选择学习土木工程是能够发挥个人才干的。从市场的需求来说,目前中国的基础建设正在兴起,大跨结构、超高层的项目纷纷立项建设,在未来几十年内这种局面不会有太大变化。这就需要大量高素质的建设人才参与其中。同时我国目前的建设管理水平非常落伍,当前急需一批能够提高建设管理水平的人才。以房地产为例,当前房地产极为火热,但专业的人才培养才刚刚起步,这方面的高级人才还是市场的稀有人才。出国方面,与电子、计算机等相比还有距离。其实,当前国内建设事业的发展前途光明,考虑留在国内从事本行业还是相当不错、非常实际的选择。随着土木工程规模的扩大和由此产生的施工工具、设备、机械向多品种、自动化、大型化发展,施工日益走向机械化和自动化。同时组织管理开始应用系统工程的理论和方法,日益走向科学化;有些工程设施的建设继续趋向结构和构件标准化和生产工业化。这样,不仅可以降低造价、缩短工期、提高劳动生产率,而且可以解决特殊条件下的施工作业问题,以建造过去难以施工的工程。土木工程专业是一门运用数学、物理、化学、计算机信息科学等基础科学知识,力学、材料等技术科学知识以及相应的工程技术知识来研究、设计和建造工业与民用建筑、隧道与地下建筑、公路与城市道路以及桥梁等工程设施的学科。 培养目标:本专业培养具有较扎实的数学、物理、化学和计算机技术等自然科学基础知识,掌握工程力学、流体力学、岩土力学的基本理论和基本知识;掌握工程规划与选型、工程材料、工程测量、画法几何及工程制图、结构分析与设计、基础工程与地基处理、土木工程现代施工技术、工程检测与试验等方面的基本知识和基本方法;了解工程防灾与减灾的基本原理与方法以及建筑设备、土木工程机械等基本知识。具有综合应用各种手段查询资料、获取信息的能力;具有经济合理、安全可靠地进行土木工程勘测与设计的能力;具有解决施工技术问题、编制施工组织设计和进行工程项目管理、工程经济分析的初步能力;具有进行工程检测、工程质量可靠性评价的初步能力;具有应用计算机进行辅助设计与辅助管理的初步能力;具有在土木工程领域从事科学研究、技术革新与科技开发的初步能力。成为能在房屋建筑、隧道与地下建筑、公路与城市道路、桥梁等领域的设计、施工、管理、咨询、监理、研究、教育、投资和开发部门从事技术或管理工作的高级工程技术人才。 主要课程:工程数学、土木工程测量、土木工程材料、画法几何及工程制图、材料力学、结构力学、弹性力学、流体力学、土力学、混凝土结构设计原理、钢结构设计原理、桥梁工程、道路勘测设计、路基路面工程、土木工程施工与组织、土木工程专业英语等。 毕业去向:能在政府机关建设职能部门,机关及工矿企事业单位的基建管理部门,建筑、市政工程设计院,土木工程科研院所,建筑、公路、桥梁等施工企业,工程质量监督站,工程建设监理部门,各铁路局工务维修部门,房地产公司,工程造价咨询机构、银行及投资咨询机构等从事技术与管理工作;或可考取结构工程、防灾减灾及防护工程、道路与铁道工程、桥梁与隧道工程、岩土工程、工程力学等学科的硕士研究生;或按照国家相关规定考取注册结构工程师、注册建筑师、注册土木工程师、注册监理工程师和注册造价师等。

岩石力学学报官网

必须是核心期刊,而且EI检索

《岩土工程学报》是EI检索,但不属于SCI检索。两种学报各有所长,关键是根据自己需要。

有《岩石力学学报》么?我只知道《岩石力学与工程学报》哦,它与《岩土工程学报》都为EI检索,且均不是SCI。。。。前者基本是关于岩的文章,后者岩、土皆有,侧重于岩

本学报是中国岩石力学与工程学会主办的国内物理力学与工程类影响因子最高的国家矿业工程、建筑科学与水利工程类核心期刊;2001年为双月刊,2001年为月刊,国内外公开发行;以反映我国岩石力学与工程的新成就、新理论、新方法、新经验、新动向,促进我国岩石力学学科发展和岩石工程实践水平的迅速提高为宗旨。本刊也发表部分侧重于工程应用的土力学方面的文章。为尽快交流最新的学术信息,本刊还发表近期博士学位论文摘要、会议简讯、新书简介与相关的学术动态。

煤岩流体力学研究现状与趋势论文

1.1.1 煤岩动力灾害现象

煤岩动力灾害现象是煤岩体在外力作用下发生的具有动力效应和灾害后果的一种灾害现象。它具有范围广、形式多样的特点,如地震、火山爆发、隧道失稳、山体滑坡、煤与瓦斯突出、冲击矿压、顶板事故等均属于煤岩动力灾害现象。煤岩动力灾害现象危害巨大,对人们的生命和财产均会造成巨大的伤亡与损失。

面对飓风、旱灾、洪灾、地震、山体滑坡和雪崩等频发的自然灾害,印度建立了颇具特色的灾害管理体制。在国家、邦、县和区一级均有统一的灾害管理机构。印度还制定了一系列灾前备灾和部门发展计划,以及飓风地震等灾后重建计划[1]。

(1)地震[2~8]

众所周知,地球时时刻刻都处在运动变化之中。地球的运动变化会产生巨大的力,使地下的岩层发生变形。起初,变形很缓慢;但当受到的力太大,岩层不能承受时,就会突然破裂;岩层破裂所产生的振动传到地表就会引起地表的振动,这就是地震。一般情况下,变形区域越长、越宽,释放的能量就越多,构造地震的震级也将越大。如图1.1为一卫星图片,可以清晰地看到地震产生的断层,图1.2所示为1906年旧金山地震遗址照片,可以看到地震造成的破裂错断了一排原本连在一起的篱笆。

图1.1 地震断层卫星图片

图1.2 1906年旧金山地震遗址照片

地震灾害是群灾之首,它具有突发性和不可预测性,以及频度较高,并产生严重次生灾害,对社会也会产生很大影响等特点。强烈地震发生时会造成建筑物破坏,同时引起山崩、滑坡、泥石流、地裂、地裂缝、喷砂、冒水等地表的破坏和海啸。因地震的破坏而引起的一系列其他灾害,包括火灾、水灾和煤气、有毒气体泄漏,细菌、放射物扩散、瘟疫等对生命财产造成的灾害。

《竹书纪年》是迄今世界上对地震进行文字记载的最早书籍,书中将地震称为“泰山震”,记录的是公元前1830年发生的一次地震现象。全球每年发生地震500多万次!但只有不足2%的地震能被人们感觉到,其中每年100多个破坏性地震,给人类造成了巨大经济损失和人员伤亡。根据美国地震调查局国家地震信息中心(USGS NEIC)的互联网数据,2001年全世界因为地震死亡人数达到2.1万多人,其中死亡人数最多的一次地震是1月26日发生在印度古吉拉特邦的里氏7.7级大地震,导致2万人死亡。强烈地震往往以其猝不及防的突发性和巨大的破坏力给社会经济发展、人类生存安全和社会稳定、社会功能带来严重的危害。在各种自然灾害造成的损失中,地震损失占52%,是名副其实的“群害之首”。

中国位于世界两大地震带——环太平洋地震带与欧亚地震带之间,受太平洋板块、印度板块和菲律宾海板块的挤压,地震断裂带十分发育,主要地震带有23条。在刚刚过去的20世纪里,中国共发生6级以上地震近800次,遍布除贵州、浙江两省和香港特别行政区以外所有的省、自治区、直辖市,是世界上蒙受地震灾害最为严重的国家之一。在当前全球城市化进程急剧发展,尤其是我国城市数量剧增的情况下,更为明显。就我国国内的各种自然灾害而言,在地震灾害、气象灾害、海洋灾害、地质灾害、农作物生物灾害、林业灾害等各大灾种中,据新中国成立以来50多年来的资料统计,以各种灾害所造成的经济损失比例来看,气象灾害为57%,居灾害之首,但就各种自然灾害的人口死亡的统计来看,地震灾害占54%,为群害之首。

世界上地震的频繁发生以及造成的巨大损失给地震预测预报提出了严峻的研究课题,但从世界范围来看,目前地震预报仍然处于探索阶段,主要是根据多年积累的地震观测资料进行经验性的预测预报,在地震孕育机理发生发展规律上尚未完全清楚。因此,当今的地震预测预报具有很大的局限性。地震学家们对不同区域进行地震危险性分析,并对该地区未来一定时间内发生地震的可能性进行预测,划分危险区,对发生地震后可能造成的损失进行预测。在地震孕育过程和前兆机理方面的研究,自20世纪70年代以来有了很大进展,如美国和前苏联提出了膨胀-扩张模式和雪崩-不稳定模式,我国提出过震源组合模式和膨胀蠕动模式等。吴立新等[6~7]以构造地震孕震机制之二即断层粘滑发震为模拟对象,利用双轴加载实验系统和红外热像仪,对4类断层组合条件下双剪粘滑过程中的红外辐射温度场的时空演变特征进行了模拟实验研究。研究表明:断层表面温度场的时空演变不仅与应力水平有关,还与组成摩擦面的两侧岩性及其粗糙度有关。具体表现在:①应力集中和摩擦作用强的区域,其红外辐射较强;而应力松弛和摩擦作用弱的区域其红外辐射较弱。②当两断层岩性及摩擦面条件对称时,红外热像呈双蝶翼形;当摩擦面粗糙,红外热像呈非对称、非均衡时空演变特征,如串珠状、针状、倒针状、条带状、单蝶翼形或其依次变化。卫星热红外遥感与差分干涉雷达(D-INSAR)技术相结合,并以活动断层预滑及其后续粘滑为监测重点,可望成为构造地震遥感监测和地震短临时-空-强预报的新途径。这些研究虽然在一定程度上解释了地震孕育和前兆机理,但是由于地震的极其复杂性,各种理论仍不能圆满解释各种前兆现象的特征。

在防震减灾的实践中,人们逐渐认识到防震减灾涉及社会经济生活的各个方面和广大民众的生活,是一项复杂的社会系统工程。要有效地减轻地震灾害,一方面必须在政府领导下,普及地震科学知识、提高全民的防震减灾意识,依靠法制、依靠科技,动员、组织各方面的力量进行协调一致的努力;另一方面科研工作者要致力于地震预测预报的机理研究和综合预报的研究,从经验性预报向物理性预报方法转变,提高地震预报的准确性。

(2)火山喷发[8~9]

地壳之下100~150 km处,有一个“液态区”,区内存在着高温、高压下含气体挥发分的熔融状硅酸盐物质,即岩浆。岩浆从地壳薄弱的地段冲出地表,就形成了火山。火山爆发是地球最具威力的自然现象之一,释放出的能量有时比核爆炸还要大数千倍。

在火山喷出的物质中,既有固体物质如碎的岩石块、碎屑和火山灰粉,也有液体物质如熔融岩流、水以及各种泥流等,还夹杂有水蒸气和C、H、N、F、S的氧化物等气态物质,有时能喷射出可见或不可见的光、电、磁、声和放射性物质等,因而会致人死亡、使得电器仪表失灵、导致飞机轮船失事等事故。在过去的500年里,大约有几百万人死于火山之灾。人类历史上伤亡最大的一次火山发生于公元前1470年欧洲爱琴海的希腊桑托林岛,该火山喷发时喷出多达625亿立方米的物质,毁灭了一个名叫米诺斯的人类文明。

火山喷发虽然是突发的,但是也有其内在规律性,前兆比地震还要明显,人们可以预先得知而加以逃避。为了更加及时、准确地预测预报火山爆发,科学家们对此进行了不懈的努力,并成功地预报了一些火山爆发。如1979年美国在圣海伦斯山周围设置了观测站,从而成功地对圣海伦斯山火山爆发进行了预报。

(3)山崩、滑坡[10~11]

山崩通常是指土石或岩石在重力作用或因水的润滑而发生的快速下滑移动或坠落,是一种典型的块体快速运动形式。山崩会造成边坡失稳,产生的落石常会摧毁道路两旁的建筑,掩埋房屋、阻塞交通等事故,严重时还会击中过往车辆造成人员伤亡。

滑坡则是仅仅次于地震和洪水的一种严重地质灾害,不仅其出现的频率和广度远远大于地震事件,而且造成的损失也很巨大,并且会危及人们的生命财产安全。如表1.1为部分国家和地区的年平均滑坡灾害死亡人数。

表1.1 滑坡造成的平均死亡人数及年概率(20世纪末)

在我国,由于70%的地方属于山区,因此,滑坡的发生密度大,频率高,从而成为世界上受滑坡危害最严重的国家之一。迄今为止,有滑坡灾害报道的省市包括:南京、西安、宝鸡、延安、重庆、兰州、台湾以及香港等,随着经济的迅速发展,由于不合理的开发利用土地资源,危及人类安全的滑坡问题将更加突出和严重。因此,尽量减少对地质环境的破坏,治理边坡,预防边坡滑坡事故,对减少滑坡灾害造成的人们生命财产损失具有非常重要的实际意义。

(4)煤与瓦斯突出[12]

煤与瓦斯突出是矿井含瓦斯煤岩体在压力作用下从煤岩体中向采掘空间急剧运动并伴随着大量瓦斯气体喷出的一种煤岩动力灾害现象。煤岩动力灾害现象也是本书要研究的主要对象。

按动力现象力学特征可分为突出、压出和倾出,其主要作用力包括:地应力、瓦斯压力和重力。

按照动力现象的强度分类:

1)小型突出:强度小于50 t/次(突出后,经过几十分钟后瓦斯浓度可以恢复正常);

2)中型突出:强度50~99 t/次(突出后,经过一个班后瓦斯浓度可以恢复正常);

3)次大型突出:强度100~499 t/次(突出后,经过一天以上瓦斯浓度逐步恢复正常);

4)大型突出:强度500~999 t/次(突出后,经过几天后瓦斯浓度可以恢复正常);

5)特大型突出:强度大于1000 t/次(突出后,经过长时间瓦斯浓度才恢复正常)。

这种强大的动力灾害现象,给煤矿安全特别是井下工作人员的生命财产造成了极其严重的威胁。世界上最大的突出发生在1969年7月13日苏联顿巴斯加加林矿井-710 m水平石门揭煤过程中,突出煤量为14000 t,突出瓦斯量大于250万m3。

我国的煤与瓦斯突出主要是煤与甲烷突出,有4处矿井也曾发生过30多次煤、岩与二氧化碳突出,并且不同地区突出现象具有不同的特点。发生在我国最大的突出是1975年8月8日在四川天府矿务局三汇坝一矿井主平硐在用震动性放炮揭穿6号煤层时发生的,共突出煤岩12780 t,瓦斯140万m3。

(5)冲击矿压[13~17]

和煤与瓦斯突出相类似,冲击矿压(又称冲击地压、岩爆或矿震),也是一种强烈的动力灾害现象,只是没有瓦斯气体参与,其发生通常是由于煤、岩体内部应力达到一定程度后,聚集在其中的能量以急速、猛烈的形式释放,造成煤、岩体的破坏以及支架、设备、井巷的破坏,严重时会造成人员伤亡事故发生。

有记载的冲击矿压发生在1738年的英国南史塔福煤田。其后,德国、波兰、加拿大、前苏联、日本、法国以及我国相继发生了多起冲击矿压事故。我国冲击矿压事故产生的灾害十分严重。目前,我国有近50对矿井累计发生过冲击矿压4000多次,造成数以百计的人员伤亡,巷道破坏达30多公里。

冲击矿压具有突发性、瞬时震动性以及巨大的破坏性等三个明显的显现特征。根据煤岩体内部的应力状态不同,冲击矿压可以分为:重力型冲击矿压、构造应力型冲击矿压以及中间型或重力-构造型冲击矿压。根据冲击强度,冲击矿压可以分为:弹射、矿震、弱冲击和强冲击。根据震级的强度和煤岩体内部抛出的煤岩量,冲击矿压可以分为三级:轻微冲击(1级,指抛出煤岩量在10吨以下,震级也在1级以下)、中等冲击(2级,指抛出煤岩量在10~50 t,震级也在1~2级)、强烈冲击(3级,指抛出煤岩量在50 t以上,震级也在2级以上)冲击矿压。若根据冲击矿压发生的地点和位置又可以分为煤体冲击和围岩冲击两种。

冲击矿压的产生机理非常复杂,国内外学者基于现场实际调查和实验室研究结果,从不同角度对此进行了研究,提出了以下理论来解释冲击矿压产生的机理:强度理论、刚度理论、能量理论、冲击倾向理论、三准则理论和变形系统理论等。

1.1.2 煤岩动力灾害产生机理

煤岩动力灾害现象的机理非常复杂,众多学者对其产生机理与预测预报进行了诸多工作。因本书主要是对煤与瓦斯突出、冲击矿压等煤岩动力灾害过程力电耦合进行研究,因此,下面主要对煤与瓦斯突出、冲击矿压的产生机理进行阐述。

(1)煤与瓦斯突出机理[18~24]

煤与瓦斯突出是一种极其复杂的含瓦斯煤岩动力灾害现象,是矿井生产中重大自然灾害之一。对于煤与瓦斯突出等煤岩动力灾害现象,各国的研究者为认识突出机理付出了艰辛的努力,取得了很大的进步。然而突出的不断发生说明,人类对突出的认识远没有达到尽善尽美的地步。在前苏联学者斯柯钦斯基和霍多特提出典型的突出综合假说之前,已有100余种突出假说,但概括起来主要有以瓦斯为主的假说、以地压为主的假说和化学本质假说等单因素假说。到目前为止,化学本质假说在现场观察和实验室实验两个方面都没有得到支持,已为绝大多数研究者所抛弃。而以瓦斯为主和以地压为主的突出假说只是从一个侧面来说明突出的内在机制,还有许多不能解释的现象。

要在单因素假说阶段与综合假说之间划出一条时间界线是很困难的。苏联学者聂克拉索夫在20世纪50年代提出地压和瓦斯综合作用假说的前后,又有各式各样的单因素假说出现,而且聂克拉索夫的综合假说也不是经典的综合假说。实际上,综合假说应以20 世纪50年代中期苏联学者斯柯钦斯基根据突出煤层的经验和当时的科研成果提出的综合假说为标志。该假说认为,突出是地压、包含在煤体中的瓦斯、煤的物理力学性质、煤的微观结构、宏观结构、煤层构造及煤的自重力等因素综合作用的结果。此后,著名学者霍多特提出了综合假说的能量假说,使突出的综合假说更加完善。前苏联斯柯钦斯基矿业研究所的霍多特等人在实验室中对煤的孔隙结构、吸附性能、渗透性能和力学性质进行了大量的测定研究,并且在压力实验机上做了煤与瓦斯突出的模拟实验。在此基础上,阐述了煤与瓦斯突出的能量来源,从能量的观点出发,用数学方法计算了煤层的变形潜能、围岩的动能、瓦斯的膨胀功和造成突出所需的功,提出了能量假说。能量假说自问世以来对突出研究起了很大的促进作用,其中的大部分观点至今仍有指导意义。然而以霍多特为代表的综合作用假说的主要缺点是:没有说明含瓦斯煤的详细破坏过程及破坏条件,没有考虑时间因素在突出中所起的作用,因而也就无法解释石门的自行揭开和延期突出等现象。虽然在能量假说的前后提出了各式各样的综合假说,如前苏联马凯耶夫安全研究所的包布罗夫的应力分布不均匀假说,英国学者Pooley[19]和Farmer[20]等提出的动力效应假说,但都大同小异,且其共同点是承认突出是瓦斯、地应力和煤的物理力学性质三个因素综合作用的结果,其分歧点是哪种因素起主要作用。和霍多特的综合假说一样,他们都无一例外地忽略了时间因素对突出的影响,没有说明含瓦斯煤体的破坏过程和具体条件。他们也无法解释石门的自行揭开和延时突出等自然突出的现象。中国矿业大学的蒋承林等[21]对石门揭煤时的煤与瓦斯突出进行了实验研究,提出了煤与瓦斯突出机理的球壳失稳假说。张许良[22]研究了利用三维地震探测瓦斯突出危险带的技术,并在淮南潘三矿进行了应用和验证。研究结果表明:高分辨率三维地震可以探测落差大于3 m的小断层和相应幅度的小褶皱,断层和褶皱可以造成构造应力集中、煤体破坏、瓦斯聚集和突出,通过对断层破坏和褶皱变形程度的定量评定可以划分瓦斯突出危险带。应用三维地震技术探测瓦斯突出危险带具有广泛的应用前景。

在煤与瓦斯突出过程及其机理的研究过程中,采取了各种各样的方法,但归纳起来主要有观察统计法、逻辑演绎法、实验法、数值分析法和数值模拟法。早期对突出机理的认识主要是建立在观察统计的基础上,辅之以逻辑演绎,或这些方法的综合。对突出机理的认识程度取决于观察的深度和广度。突出的复杂性和不可重复性使观察统计十分困难,因此,基于个人观察统计基础上的突出机理不免带有某种片面性。随着观察统计数据的积累,实验室实验的开展,人们逐渐弄清了突出的大致轮廓。再加之相关学科(如岩石力学、岩石断裂力学、流变力学)的进展和高新技术(如SEM,计算机技术等)的应用,研究者在前人大量突出实例观察和实验基础上,综合数值模拟技术,加上新的实验室成果,提出了更为完善的突出机理,突出流变机理就是其中之一。

但是,上述假说大多数是以力学为基础从宏观方面建立的,很少考虑含瓦斯煤岩材料的详细变形及破裂过程,这是目前煤与瓦斯突出研究无法取得进一步发展的主要原因。含瓦斯煤岩是一种由空间分布不均匀的煤岩颗粒组成的多孔固体骨架-孔隙中的自由瓦斯气体-孔隙表面的准液态吸附层组成的典型的非均匀多相介质。这种介质的性态和行为不能用任何单一的理论来进行较全面和符合实际的描述。例如,固体力学或岩石力学一般是用纯力学理论来研究煤岩等固体孔隙介质的性态和行为,在考虑孔隙流体的作用时主要采用纯力学作用的有效应力原理;流体力学或渗流力学主要研究流体在管孔或裂隙中的运移规律,而对固体的作用没有加以考虑。

大量的实际现象和实验结果已经表明,含瓦斯煤岩这种特殊三相介质的性态变化和运动过程是力学(岩石力学和岩石断裂力学)、物理学、表面物理化学、电动力学、声学、热力学与传热学和渗流力学等的综合作用,它与单相或两相介质的性态变化和运动过程有本质上的不同。因此,必须采用宏观和微观相结合,将上述学科或理论相交叉的观点及方法,来描述和揭示含瓦斯煤岩这种特殊介质的性态及其动力灾害过程。

从普遍意义的角度来说,自然条件下的煤岩及各种混凝土建筑物都属于含孔隙流体的介质,只是在通常的条件下人们忽略了孔隙流体的作用,而将其简化为单相或两相介质。而且,这种简化是允许的,且偏差不大。但是,这种简化后的物质与实际情况是有偏差的,特别是在孔隙流体的性质比较活泼,压力较高的情况下,简化处理会导致错误的认识结果。因此,研究含瓦斯煤岩动力灾害过程不但对人们认识煤(岩)和瓦斯突出灾害机理、冲击矿压发生机理等有重要作用,而且对认识和揭示地震、滑坡机理、对大型混凝土坝基和高层建筑物的稳定性与寿命评价等具有重要的指导意义。

防治突出灾害的理论基础是突出机理,煤与瓦斯突出的综合假说得到了广泛的承认,该假说认为突出是地应力、瓦斯和煤的物理力学性质综合作用的结果。但是,由于突出的复杂性以及研究方法和研究手段的限制,突出的实验室模拟和现场实际观测都存在着无法克服的困难,我们尚未完全弄清其机理,还无法准确地预测和监测突出,也无法从根本上阐述突出所带来的危害。因此,迫切需要采用新的方法和手段研究煤与瓦斯突出等动力灾害现象。

(2)冲击矿压产生机理[25]

长期以来,冲击矿压作为岩石力学的重大难题之一,一直是国内外学术界和工程界所关注的问题。冲击矿压的发生机理也十分复杂,国内外学者在现场实际调查和实验室研究的基础上对此进行了一系列的研究。其产生机理可以归纳为以下几个理论。

强度理论

强度理论认为:当采场周围产生应力集中且应力达到煤(岩)强度的极限时,煤(岩)体突然破坏,从而形成冲击矿压。如20世纪30年代末被提出的拱顶理论和悬臂梁理论等近代强度理论均以“矿体-围岩”系统为研究对象,认为煤(岩)体的承载能力应是“煤体-围岩”系统的强度,导致煤(岩)体破坏的决定因素是:①应力值大小;②它与岩体强度的比值。70年代Brauner提出了煤(岩)体夹持理论,并导出煤体极限压应力的计算公式。

能量理论

能量理论是从能量转化的角度来对冲击矿压的产生机理进行解释。该理论认为“矿体-围岩”系统在其力学平衡状态遭破坏时释放能量大于消耗能量就发生冲击矿压。各国学者对此进行了不懈的努力,下面对一些主要成果进行介绍。

从能量的来源角度分析,Petukhov认为冲击矿压产生的能量由被破坏的煤(岩)积聚能与和邻接于煤柱或煤(岩)层边缘部分的弹性变形能组成。剩余能量理论于20世纪70年代有美国人提出,该理论认为剩余能量的存在是围岩动力失稳的力学原因。

从能量的判据角度分析,20世纪70年代Brauner提出了冲击矿压的能量判据,该判据考虑了冲击矿压发生时能量释放与时间的相关性,但没有考虑能量释放的空间效应。

尽管如此,对于能量理论的研究,还需要开展进一步的研究工作。

刚度理论

刚度理论最初由Cook等人根据刚性压力机理论得到。该理论认为:矿山结构的刚度大于矿山负载系统的刚度是发生冲击矿压的必要条件。近年来Petukhov则进一步将矿山结构的刚度明确为:达到峰值强度后其应力-应变曲线下降的刚度。

冲击倾向性理论

冲击倾向理论是由波兰和前苏联学者提出。冲击倾向性是指煤岩产生冲击破坏的固有属性,是产生冲击矿压的必要条件。我国学者对此通过大量研究,提出了用弹性能量指数、冲击能量指数以及煤岩动态破坏时间等三项指标来综合判断煤岩冲击倾向性的实验方法。反映冲击倾向性理论的还有顶板冲击倾向性的研究,包括顶板弯曲能指标和长壁开采方式下顶板断裂引起的煤层冲击等方面的研究。

此外,在试验方法、数据处理及综合评判等研究方面也取得了一定的进展。

稳定性理论

20世纪60年代中期NevilleCook首先应用稳定性理论来研究煤岩冲击矿压。其后,Lippmann提出了“初等理论”,章梦涛提出冲击矿压的失稳理论,并在实际中得到了初步的应用。

Bazant等分析了近壁裂纹扩展引起的能量耗散及尺度效应,使对冲击矿压的能量估算成为可能。张晓春等探讨了煤矿巷道附近围岩层裂区的形成和破坏机理,通过理论分析和试验模拟,建立了煤矿片帮型冲击矿压发生的层裂板结构失稳模型。

此外,材料破坏的分叉理论与近年来发展很快的突变理论均在冲击矿压发生机理研究中取得了一定的进展。

总的来说,冲击矿压是裂纹扩展及变形局部化导致的失稳现象,与具有裂纹的各向异性煤岩介质的力学性质和围岩在载荷作用下应力场和应变场的演化和失稳有密切的关系。

岩石作为自然界的一种天然材料,对其变形、强度和破坏特性的研究也是沿着材料力学、弹性力学、塑性力学、断裂力学和损伤力学逐步展开的。由于水库大坝、铁路隧道、跨江桥梁等重大工程项目的兴建,以及地下采矿业和人防工程的巨大发展,刺激了对岩石力学性质的研究,岩石材料的天然复杂性也越来越为人们所认识。1956年4月,在美国Corolado矿业学院举办的岩石力学讨论会上,提出了“岩石力学(rock mechanics)”这个名称[28],从而成为一个独立于一般固体力学的新学科。公认的岩石力学定义是美国岩石力学学会(The US National Committee on Rock Mechanics)在1964年首先提出的,随后于1974年修改为[29]:岩石力学是研究岩石和岩体力学性能的理论和应用的学科,是探讨岩石和岩体对其周围物理环境力场的反应的力学分支。

40年来,人类活动领域的扩大、实验手段的提高、数学方法的发展,使得岩石力学自身又迅速分化为许多学科:岩土塑性力学、岩石断裂力学、岩石损伤力学、分形岩石力学、节理岩石力学、岩石流体力学、岩石流变学、岩石破碎学、矿山岩石力学、软岩力学……[30~39]。如果以研究的手段和目标来看,则可以将岩石力学研究的内容分成如下两类:

一是利用实验室的岩样参数,结合原位试验和工程实际,给出各种经验公式,以利用有限元等数值计算方法;数值分析结果通常还要经过适当的模型或现场试验来证实。这一方法具有很高的实用价值,但其结果具有局限性,只是在一定的范围内是准确的。与之相应的数值计算、反分析方法、智能预测方法等也得到了充分发展[40~43]。

另一是从细观上研究岩石材料内部的破坏过程,以期确切地理解岩石变形破坏的物理特征,并寻求实验室岩样结果的验证。但这些理论工作赖以建立的基础与岩石材料的真实情况并不完全相符。最为重要的是,岩石在细观上或者说在微分角度上是不均匀的。

上述两个方面都牵涉到一个基本问题,即实验室有关试验结果只是具体岩样的宏观力学性质,它随岩样而变化,并不完全等同于岩石材料的力学性质。岩石的变形性质不具备尺度的相似性。这固然是众所周知的事实,但在讨论强度准则、失稳破坏等问题时,经常不能予以明确区分。仅举一例予以说明。

基于单个裂纹的扩展或多个裂纹的贯通得到的各种Griffith强度准则,可以用来讨论岩石的抗拉强度和抗压强度的比值,进而利用实际岩样的试验数据来评价、判断这些强度准则的合理性[44~47]。这就隐含了一个假设:岩样受拉和受压达到极限应力时,标志着裂纹的扩展。

然而这样的假设无论如何是难以成立的。因而,不可能希望岩样的试验结果来证实基于分析局部材料变形特性得到的理论强度准则。就此而论,关于强度准则形式的若干讨论[48~50],如果不能明确其建立的基础和应用的范围或方式,是很难得到统一意见的。

煤炭行业主要上市公司:目前国内煤炭行业的上市公司主要有兖矿能源(600188)、中国神华(601088)、晋控煤业(601001)、陕西煤业(601225)、山西焦煤(000983)、中煤能源(601898)、华阳股份(600348)、山煤国际(600546)等。

本文核心数据:文献数量、智能化采掘工作面数量

我国煤矿智能化政策引导明确

从国家政策规划来看,2020年2月25日,国家发改委、能源局等8部分联合印发《关于加快煤矿智能化发展的指导意见》,针对我国一些煤矿正在开展智能化建设工作中存在的基础理论研发滞后、技术标准与规范不健全、平台支撑作用不够、技术装备保障不足、高端人才匮乏等问题提出相关意见及保障措施。几大核心任务如下:

另外,我国主要省份也提出了煤炭行业智能化发展的目标。内蒙古自治区明确提出到到2025年,117处井工矿实现全部固定岗位机器人作业,38处露天矿实现智能连续运输。其他省市地区如山西、陕西、新疆、贵州等均提出了煤炭行业智能化发展的目标或规划:

煤矿智能化理论基础逐渐加强

我国政策明确大力发展煤矿智能化以来,“智能化”主题成为各大煤业研究所和院校的主要研究方向。2018年,煤矿智能化主题发表论文数量为373篇,占两化融合论文总量的14.6%;2020年,煤矿智能化主题发表论文数量快速增长到1080篇,占两化融合论文总量的比重超过1/3,达到35.7%;两年间,煤矿智能化主题论文发表数量增长了1.9倍,论文占比提升了21.1个百分点。

另外,2020年,行业两化融合领域发表论文排名前20位的关键词中,煤矿智能化相关关键词占5个,分别是:智能(化)开采、智慧矿山、智能化建设、智能矿山、煤矿智能化。其中,智能(化)开采以1669个高居首位。排名前十位的关键词分别是:智能(化)开采、监控系统、大数据、数值模拟、智慧矿山、传感器、PLC、矿压监测、智能化建设、智能矿山。

大型企业积极部署

目前,我国各大型煤炭企业在煤矿智能化部署方面均取得一定成效。中国神华(601088)在2021年上半年已累计完成了智能采煤工作面25个,智能掘进工作面4个,智能选煤厂6个,起到良好的示范作用。

整体来看,国家积极推进煤矿智能化发展,从政策引导规划,落地到企业示范工程,自上而下的智能化路径明确,为煤炭行业的转型升级指引正确方向。

以上数据参考前瞻产业研究院《中国煤炭行业发展前景与投资战略规划分析报告》。

相关百科

热门百科

首页
发表服务