首页

> 学术发表知识库

首页 学术发表知识库 问题

线性方程组求解的毕业论文

发布时间:

线性方程组求解的毕业论文

线性代数(Linear Algebra)是数学的一个分支,它的研究对象是向量,向量空间(或称线性空间),线性变换和有限维的线性方程组。向量空间是现代数学的一个重要课题;因而,线性代数被广泛地应用于抽象代数和泛函分析中;通过解析几何,线性代数得以被具体表示。线性代数的理论已被泛化为算子理论。由于科学研究中的非线性模型通常可以被近似为线性模型,使得线性代数被广泛地应用于自然科学和社会科学中。线性代数的主要内容是研究代数学中线性关系的经典理论。由于线性关系是变量之间比较简单的一种关系,而线性问题广泛存在于科学技术的各个领域,并且一些非线性问题在一定条件下 , 可以转化或近似转化为线性问题,因此线性代数所介绍的思想方法已成为从事科学研究和工程应用工作的必不可少的工具。尤其在计算机高速发展和日益普及的今天,线性代数作为高等学校工科本科各专业的一门重要的基础理论课,其地位和作用更显得重要。 线性代数主要研究了三种对象:矩阵、方程组和向量.这三种对象的理论是密切相关的,大部分问题在这三种理论中都有等价说法.因此,熟练地从一种理论的叙述转移到另一种去,是学习线性代数时应养成的一种重要习惯和素质.如果说与实际计算结合最多的是矩阵的观点,那么向量的观点则着眼于从整体性和结构性考虑问题,因而可以更深刻、更透彻地揭示线性代数中各种问题的内在联系和本质属性.由此可见,只要掌握矩阵、方程组和向量的内在联系,遇到问题就能左右逢源,举一反三,化难为易. 一、注重对基本概念的理解与把握,正确熟练运用基本方法及基本运算。线性代数的概念很多,重要的有: 代数余子式,伴随矩阵,逆矩阵,初等变换与初等矩阵,正交变换与正交矩阵,秩(矩阵、向量组、二次型),等价(矩阵、向量组),线性组合与线性表出,线性相关与线性无关,极大线性无关组,基础解系与通解,解的结构与解空间,特征值与特征向量,相似与相似对角化,二次型的标准形与规范形,正定,合同变换与合同矩阵。 我们不仅要准确把握住概念的内涵,也要注意相关概念之间的区别与联系。 线性代数中运算法则多,应整理清楚不要混淆,基本运算与基本方法要过关,重要的有: 行列式(数字型、字母型)的计算,求逆矩阵,求矩阵的秩,求方阵的幂,求向量组的秩与极大线性无关组,线性相关的判定或求参数,求基础解系,求非齐次线性方程组的通解,求特征值与特征向量(定义法,特征多项式基础解系法),判断与求相似对角矩阵,用正交变换化实对称矩阵为对角矩阵(亦即用正交变换化二次型为标准形)。 二、注重知识点的衔接与转换,知识要成网,努力提高综合分析能力。 线性代数从内容上看纵横交错,前后联系紧密,环环相扣,相互渗透,因此解题方法灵活多变,学习时应当常问自己做得对不对?再问做得好不好?只有不断地归纳总结,努力搞清内在联系,使所学知识融会贯通,接口与切入点多了,熟悉了,思路自然就开阔了。 例如:设A是m×n矩阵,B是n×s矩阵,且AB=0,那么用分块矩阵可知B的列向量都是齐次方程组Ax=0的解,再根据基础解系的理论以及矩阵的秩与向量组秩的关系,可以有 r(B)≤n-r(A)即r(A)+r(B)≤n 进而可求矩阵A或B中的一些参数上述例题说明,线性代数各知识点之间有着千丝万缕的联系,代数题的综合性与灵活性就较大,同学们整理时要注重串联、衔接与转换。 三、注重逻辑性与叙述表述 线性代数对于抽象性与逻辑性有较高的要求,通过证明题可以了解考生对数学主要原理、定理的理解与掌握程度,考查考生的抽象思维能力、逻辑推理能力。大家复习整理时,应当搞清公式、定理成立的条件,不能张冠李戴,同时还应注意语言的叙述表达应准确、简明。

1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录)3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文:(1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点;b.分析问题-论据和论证;c.解决问题-论证与步骤;d.结论。6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息所列参考文献的要求是:(1)所列参考文献应是正式出版物,以便读者考证。(2)所列举的参考文献要标明序号、著作或文章的标题、作者、出版物信息。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

线性代数方程组的解法毕业论文

解:分享一种解法。用“丨a,b,c:β1;d,e,f:β2;g,h,i:β3丨”表示线性方程系数和值构成的广义行列式的各元素。广义行列式A=丨1,1,1:0;1,2,a:0;1,4,a^2:0丨。将第1行元素乘以(-1)分别加到第2、第3行上,A→丨1,1,1:0;0,1,a-1:0;0,3,a^2-1:0丨;再将第2行元素乘以(-3)分别加到第3行上,A→丨1,1,1:0;0,1,a-1:0;0,0,a^2-1-3(a-1):0丨。∴a^2-1-3(a-1)≠0,即a≠1、a≠2时,方程有唯一解,x1=x2=x3=0。此时,与方程x1+2x2+x3=a-1没有公共解。故,只有a=1或者a=2时,方可能有公共解。①a=1时,由原方程组,解得x2=0,x1=-x3,完全满足x1+2x2+x3=a-1=0,∴其公共解是x2=0,x1=-x3,其中x3为任意数。②a=2时,由原方程组,解得x1=0,x2=-x3,代入方程x1+2x2+x3=a-1=1,得x2=1、x3=-1。∴其公共解是x1=0,x2=1、x3=-1。供参考。

联立四个方程即可

代数学的一个分支,主要处理线性关系问题。线性关系意即数学对象之间的关系是以一次形式来表达的。例如,在解析几何里,平面上直线的方程是二元一次方程;空间平面的方程是三元一次方程,而空间直线视为两个平面相交,由两个三元一次方程所组成的方程组来表示。含有 n个未知量的一次方程称为线性方程。关于变量是一次的函数称为线性函数。线性关系问题简称线性问题。解线性方程组的问题是最简单的线性问题。 九章算术线性代数作为一个独立的分支在20世纪才形成,然而它的历史却非常久远。最古老的线性问题是线性方程组的解法,在中国古代的数学著作《九章算术·方程》章中,已经作了比较完整的叙述,其中所述方法实质上相当于现代的对方程组的增广矩阵的行施行初等变换,消去未知量的方法。随着研究线性方程组和变量的线性变换问题的深入,行列式和矩阵在18~19世纪期间先后产生,为处理线性问题提供了有力的工具,从而推动了线性代数的发展。向量概念的引入,形成了向量空间的概念。凡是线性问题都可以用向量空间的观点加以讨论。因此,向量空间及其线性变换,以及与此相联系的矩阵理论,构成了线性代数的中心内容。线性代数的含义随数学的发展而不断扩大。线性代数的理论和方法已经渗透到数学的许多分支,同时也是理论物理和理论化学所不可缺少的代数基础知识。

利用矩阵的行初等变换将方程组的增广矩阵化为行阶梯形,如果系数矩阵与增广矩阵有相同的秩,则方程组有解,否则无解。在有解的情况下,若增广矩阵的秩小于未知数的个数,则方程组有无数组解,否有唯一解。

非线性方程组研究毕业论文

1 引 言刚性微分方程存在于航空、航天、热核反应、自动控制、电子网络及化学动力学等许多重要科学技术领域及实际问题中[1,2],由于方程的解中既包含有衰减十分迅速的分量,又包含有相对来说变化缓慢的分量,两者的差别可以有好几个数量级,在选定计算方法时带来很大实质困难。实际研究证明,由于数值解稳定性限制,求解刚性微分方程主要采用隐式方法,如:隐式RK方法,BDF方法,IRK方法等。而采用隐式方法将刚性方程离散化以后,其变为线性或非线性方程(组)的求解问题。目前,对线性或非线性方程(组)的求解,多采用Newton-Raphson迭代求解。但对于某些非线性方程组,由于方程之间的非线性化程度相差较大,采用Newton-Raphson迭代方法数值求解的结果并不理想。本文利用Brown算法求解此类非线性刚性系统,具有较高精度和较快迭代速度的优点,数值试验结果表明了该方法的有效性。2 Brown算法考虑多个实变量的非线性方程组(2.1)的数值求解问题,非线性方程组可以用向量形式表示:,其中,。形如:的公式称为Newton-Raphson迭代公式。由于该方法是将,同时线性化,所以它并未考虑充分利用的具体结构。如果一个非线性的向量函数,其线性精度在各个分量,上的分布可能是不平衡的,有的分量是非线性函数,而有的分量是线性函数,同时非线性函数组中也有非线性程度高低的差别,在此情况下,利用Newton-Raphson迭代方法对所有分量采用完全相同的数值处理,不利于方法整体计算效率的提高。针对以上情况,Brown于1969年提出了按分量函数方程,来形成迭代过程[3],其基本思想是对各分量逐个线性化并用其中每一个线性方程消去余下非线性方程中的一个变量,最后整个方程组就简化为一个仅含单个变量的非线性方程,应用一次单步Newton-Raphson迭代并结合逐一回代,即完成一次迭代过程[4]期刊网。Brown算法的迭代步骤如下:第一步,设为方程组(2.1)解的第次近似,函数在处近似用线性函数替代,令,由此求出: 定义上式右端为。第二步,对函数定义一个新函数Brown算法,且记,其中。类似地,用线性函数来近似替代。令,解出,此时,为个变量的线性函数,并记此线性函数为。第步,由线性函数,可得,利用Newton-Raphson迭代,求得,并由出发,利用逐一回代,即 (2.2)从而可求出,至此完成了一次Brown迭代过程。3 数值试验考虑以下常微分方程组初值问题:问题1 其中:;。问题2其中:;。对于上述两问题,当时,可计算其右函数组的Jacobi矩阵的特征值,均有,其余特征值绝对值均不超过6,因此系统呈强刚性。此外,观察两问题中的右函数组,可以看出除最后一个函数是高度非线性化外,其余函数都是线性的。对于上述两问题,采用隐式Euler方法离散方程组,并分别用Newton-Raphson迭代法与Brown迭代法求解,取步长,及相对误差界(表示迭代次数)控制每步迭代,最后得到数值解的最大绝对误差界,方程真解为:问题1,,,;问题2,,,。计算结果对比分析如表1所示。表1 数值计算结果问题1 问题2Newton-Raphson迭代次数 迭代18次收敛 不收敛,Brown迭代次数 迭代7次收敛 迭代8次收敛数值解的绝对误差(Newton-Raphson迭代) 3.83e+001 溢出数值解的绝对误差(Brown迭代) 1.44e-002 3.82e-0024、结束语 对于实际问题中的刚性系统离散化后,如果非线性方程组的线性化程度不同,Brown迭代求解比Newton-Raphson迭代法具有较大的优势,另外需要指出的是在实际运算中,方程应预先进行排列,将线性方程放置在最前,再次为非线性化程度由低到高排列,可以有效的提高运算效率。

还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法

毕业论文同余方程的解法

同余方程是一个数学方程式。该方程式的内容为。

对于一组整数Z,Z里的每一个数都除以同一个数m,得到的余数可以为0,1,2,...m-1,共m种。

就以余数的大小作为标准将Z分为m类。每一类都有相同的余数。

设是整数,当时,成立,则称是同余方程的解。

凡对于模同余的解,被视为同一个解。

同余方程的解数是指它的关于模互不相余的所有解的个数,也即在模的一个完全剩余系中的解的个数。

数学是人类对事物的抽象结构与模式进行严格描述的一种通用手段,可以应用于现实世界的任何问题,所有的数学对象本质上都是人为定义的。

从这个意义上,数学属于形式科学,而不是自然科学。不同的数学家和哲学家对数学的确切范围和定义有一系列的看法。

我写个简例吧:AAA解法:解同余式组:x≡1(mod5) x≡2(mod11)解:中国剩余定理的等效解法令x=5a+11b +55t 亦即 x==5a+11b mod 5*11代入原同余式组得11b==1 mod 55a==2 mod 11解得b==1 mod 5, a=-4==7 mod 11取任意一组特解如b=1,a=7代入得x==5*7+11*1=46 mod 55 BBB解的数量之判定法:对于多个模并非两两互质的情况,可以先确立一组两两互质的分解基数集(质数集是一个常用的特例),将这些模用分解基数表示成为多个因数项,将其中相关于同一个分解基数的项进行归并。如果有矛盾,则无解。否则有解。例:同余式组x=2 mod 16x=3 mod 5x=6 mod 12取4, 3, 5作为分解基。变成x=2 mod 4^2x=3 mod 5x=6 mod 4x=6 mod 3其中相关于同一个分解基数的情况,仅有x=2 mod 16与x=6 mod 4是相关于分解基数"4"的,它们没有矛盾。取两相容解集的交集,即其中解集较小的那个:x=2 mod 16.再与x=3 mod 5及x=6==0 mod 3联立求解。另例:x=2 mod 18x=8 mod 12以3,2为分解基。相关于分解基数3的转化式有x=2 mod 3^2, x=2 mod 3, 取前者。相关于分解基数2的转化式有x=0 mod 2, x=0 mod 4, 取后者。 另例:同余式组x=3 mod 12x=2 mod 18以2,3为分解基集,于是原同余式组变成x==3 mod 2^2x==3 mod 3x==2 mod 3^2x==2 mod 2矛盾。故此同余式无解。如果是形如ax=b mod m形状的同余式联立的,则可能出现无解、一解、多解的情况。一个基本的例子如下:12x=18 mod 27 注:相当于12x=9+18k自然就等价于同余式4x=3 mod 9解得x=3 mod 9, 转化为模27的同余式,为x=3,12,21 mod 27 AAAAAA快速计算法例如同余式组(以下用==表示同余号)x==2 mod 5-2 mod 6-3 mod 7对中国剩余定理一个简单的改进可以是这样:令x=5*6*7*(a/5+b/6+c/7) mod 5*6*7即x=6*7*a+5*7*b+5*6* c+ 5*6*7 t代入原题即得6*7*a==2 mod 55*7*b==-2 mod 65*6*c==-3 mod 7求得a==1 mod 3, 或者说是形如-1+3u的任意整数。b=2 mod 5, ...c=2 mod 7剩下的就是如果计算出x来了。下面也给了简化方法。从下面这个式子上看x=5*6*7*(a/5+b/6+c/7) mod 5*6*7=5*6*7*(a/5+b/6+c/7 mod 1) 注意,这个式子极具有启发性!我们看到,我们需要的x的值,只要取以5*6*7作分母时的分数(a/5+b/6+c/7) 的分子就行了,如果我们将 a/5+b/6+c/7表示成带分数,即整数加真分数的形式。还可以发现,如果要取最小正整数解,就取这个真分数的分子就形子。。在计算过程中,任意加减一个整数,造成数的增大和变小,并不影响我们的结果。同时,任意交换加项,也不影响。下面我们来计算:1/5+2/6+2/7 mod 1=16/30+2/7=172/210 再例:这是我刚答的一道题,讲的较为明确精炼,请参考。一个数÷5余1,÷7余3,÷9余2,这个数最小是几?题目转化为同余式组x==1 mod 5x==3 mod 7x==2 mod 9解:令x==7*9*a+5*9*b+5*7*c mod 5*7*9即x=7*9*a+5*9*b+5*7*c+5*7*9*t即x==5*7*9*(a/5+b/7+c/9 mod 1)即x=5*7*9*(a/5+b/7+c/9+t)代入原同余式组得7*9*a==1 mod 5 , 于是a==2 mod 5, 取其特值2为代表。5*9*b ==3 mod 7,于是b==1 mod 7,取其特值1为代表。5*7*c==2 mod 9,于是c==-2 mod 9,取其特值-2为代表。再以x==5*7*9*(a/5+b/7+c/9 mod 1)为求值式,进行计算。先计算(a/5+b/7+c/9 mod 1)注意,计算过程中,任一个加项或整体值上可以加减任一个整数,不影响。同时,在计算时,可以充分运用加法的交换律与结合律,随意调整加法项的位置与加法过程的顺序。其中,mod 1这个提法一定要理解,这样可以为解同余式组带来极大的方便。mod 1表示两个对象相差一个整数值。如果mod用来表示求余,则表示求一个数的小数部分;如果N==0 mod 1,即说明N为整数。2/5+1/7-2/9 mod 1 ==2/5-2/9+1/7==8/45+1/7==101/45*7==101/315于是x==101 mod 315这个数最小为 101

向量组的线性相关性论文答辩稿

向量组的线性相关,是说这个向量组有“多余的”向量,它们可以用其他的向量 线性表示.去掉这些“多余的”向量.对于原来向量组张成的向量空间没有影响 向量组的线性无关.是说这个向量组没有“多余的”向量.它的每一个向量,都 不能够用其他的向量线性表示,去掉任何一个向量,就会使原来向量组张成的向 量空间变小.

线性代数教学中线性相关性的一种解释和理解[摘要]线性相关性的内容是线性代数课程中的重点和难点,特别是被表示向量组的线性相关性与被表示向量组中向量的个数以及表示向量组中向量的个数之间的关系的有关结论,对学生来说是很难理解的,在教学中,我们把线性相关解释为“多余”,线性无关解释为“没有多余”,在教学上可收到较好的效果。[关键词]线性相关线性无关多余没有多余线性相关性在线性代数课程中是一个重要内容,对学生来说是非常困难的内容,许多学生学完线性代数后还没有弄懂,有的学生学到这一内容时觉得很难学,就丧失信心。认为整个线性代数都很难学,甚至放弃学习。线性相关性是线性代数课程中教学的难点,它与后面线性方程组的解的理论有密切的联系,对于这一难点的处理是非常重要的。根据不同层次的学生采用不同的教学要求。使得学生正确的理解线性相关性的定义,定理。大多数经济类的本科线性代数课程的教材在叙述向量组的极大无关组和向量组的秩的理论时,由于这一章节的理论性比较强,一般都是从定理到定理,从证明到证明,例子较少。在教学中,在讲完线性相关的定义和有关定理后,在介绍向量的极大无关组之前,用”多余”来解释线性相关性,可使后面的问题简单化,直观化。我们以龚德恩等主编的《经济数学基础》的第二分册线性代数的教材为例进行说明。首先来看线性组合的概念。对于向量组α1,α2,…,αs和向量β,如果存在s个数k1,k2,…,ks使得β=k1α1+k2α2+…+ksαs则称向量β是向量组α1,α2,…,αs的线性组合。换句话说向量β相对于向量组α1,α2,…,αs是“多余”的向量。关于线性相关概念,对于向量组α1,α2,…,αs,如果存在不全为零的数k1,k2,…,ks使得k1α1+k2α2+…+ksαs=0称向量组α1,α2,…,αs线性相关。因k1,k2,…,ks不全为零,不妨假设α1≠0则α1=-k2k1α2-…-ksk1αs。因此向量组α1,α2,…,αs线性相关,看成是向量组α1,α2,…,αs中至少有一个“多余”的向量。关于线性无关概念,对于向量组α1,α2,…,αs,如果仅当k1,k2,…,ks都等于零时,才能使得k1α1+k2α2+…+ksαs=0成立。称向量组α1,α2,…,αs线性无关。由于α1,α2,…,αs线性无关等价于其中任何一个向量不能由其余向量线性表示,因此向量组α1,α2,…,αs线性无关看成是α1,α2,…,αs中“没有多余”的向量。一些结论也可作相应的理解和解释。如:“如果一个向量组中的部分组线性相关,则整个向量组也线性相关”,解释为如果一个向量组中的部分组有多余的向量,则整个向量组也有多余的向量。“如果一个向量组线性无关,则它的任意一个部分组也线性无关”,解释为如果一个向量组中没有多余的向量,则该向量组去掉一些向量后也没有多余的向量。下面两个定理是学生们在学习向量组的线性相关性的过程中感到最难理解和掌握的。定理1设向量组(Ⅰ)α1,α2,…,αs可由向量组(Ⅱ)β1,β2,…,βt线性表示,且s>t,则α1,α2,…,αs线性相关。在课堂教学中我们是作如下解释的,向量组(Ⅰ)α1,α2,…,αs称为“被表示向量组”,向量组(Ⅱ)β1,β2,…,βt称为“表示向量组”。条件s>t,看成是有”多余”的向量。即“被表示向量组(Ⅰ)α1,α2,…,αs相对于表示向量组(Ⅱ)β1,β2,…,βt有多余的向量,则α1,α2,…,αs线性相关,这样解释便于学生理解和记忆。推论1如果一个向量组α1,α2,…,αs线性无关,并且可由向量组β1,β2,…,βt线性表示。则s≤t。推论1可解释为:如果“被表示向量组α1,α2,…,αs线性无关,则被表示的向量组α1,α2,…,αs相对于表示向量组β1,β2,…,βt没有多余的向量,即s≤t。推论2两个等价的线性无关向量组所含的向量的个数相同。两个向量组都线性无关,且彼此可相互线性表示,两个向量组彼此相对于另一个向量组都没有多余的向量,得两个向量组所含的向量的个数相同。下面再举一些例子进行说明。例1设向量组α1,α2,…,αs线性无关,且可由向量组β1,β2,…,βt线性表示,则必有()。

相关百科

热门百科

首页
发表服务