首页

> 学术发表知识库

首页 学术发表知识库 问题

极限论文题目

发布时间:

极限论文题目

极限与哲学的高等思维

函数的导数表示函数在一点处(瞬时)随自变量变化快慢的程度。利用它,可以直接研究函数及其图像在一点处的变化性质(例如瞬时速度、切线斜率等)。为了应用导数研究函数在区间上的变化性质,先要熟悉微分学的中值定理。1. 中值定理微分学中有费马引理、罗尔定理和拉格朗日中值定理。拉格朗日定理 如果函数 满足:(ⅰ)在闭区间 , 上连续;(ⅱ)在开区间 , 内可导,则在 , 内至少存在一点 ,使或由图3容易理解,当函数 满足(ⅰ)、(ⅱ),即 是条连续曲线并且在 , 内的每点处有切线时,那么在曲线上(只要把弦AB平行移动)至少有一点P(在图中是 ),使得曲线在该点处的切线与弦AB平行,也就是说,P点处的切线斜率 和弦AB的斜率 相等。需要注意的是,拉格朗日定理并没有给出求 值的具体方法,它只是肯定了 值的存在,并且至少有一个。如图3中的函数 ,在 , 有 与 两个。拉格朗日定理的意义是:建立了函数 在区间 , 上的改变量 与函数在区间 , 内某一点 处的导数之间的关系,从而为用导数去研究函数在区间上的性质提供了理论基础。2. 用导数研究函数的性质为了使论述方便,我们将使用记号 和 ,它们分别表示开区间 , 和闭区间 , 。现在我们利用导数来研究函数的单调性。设函数 在 上连续,在 上可导。如果函数 在 上单调增加,那么,它的图形是一条沿 轴正向上升的曲线,如图(a)所示,这时曲线上各点的切线斜率大于等于零( );如果函数 在 上单调减少,那么,它的图形是一条沿 轴正向下降的曲线,如图(b)所示,这时曲线上各点的切线斜率小于等于零( )。由此可见,函数的单调性与其导数的符号有着密切的联系。反过来,我们是否可以有导数的符号来判定函数的单调性呢?一阶导数的符号在 上任取两点 、 ,其中 < ,在区间[ , ]上应用微分中值定理,得到( < < )有上式可见,若 , ,就有 ,于是 , , 在区间 上单调递增。同理可以说明 在区间 上单调递减。由此我们可以归纳出函数单调性的判别法。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数。(3) 如果函数 在区间 上满足 ,则函数 在区间 为常数。此外,导数的绝对值告诉我们变化率的大小。当 绝对值较大时,函数曲线就陡峭一些; 绝对值较小时,函数曲线就平坦一些。记住这些,你就可以从一个函数的导数情况判断出函数的一些性态。曲线的上下凹性设 在某一区间内可微,一阶导数告诉我们,如果在某一区间内 ,那么 在该区间式递增的;如果在某一区间内 ,那么 在该区间式递减的。如果 在某一区间内递增,则它的函数曲线向上弯曲或称为上凹,如果 在某一区间内递减,则它的函数曲线向下弯曲或称为下凹。当 向上弯曲时,曲线切线的斜率随着 增加而增加,如图所示;当 向下弯曲时,曲线切线的斜率随着 增加而减少, 点 为函数 的拐点,即函数曲线在区域内点 的左边向上凹,在点 的右边向下凹,它是曲线由向上凹变为向下凹的分界点。二阶导数的符号函数曲线的向上凹或向下凹、曲线的拐点可以用函数的二阶导数来确定。设 在区间 上连续且在区间 上可导,则(1) 如果函数 在区间 上满足 ,则函数 在区间 为递增函数,函数曲线上凹;(2) 如果函数 在区间 上满足 ,则函数 在区间 为递减函数,函数曲线下凹。局部极值性我们说 在点 达到极大值,指的是在 的领域内 为最大,如图所示。 在点 处达到极大值,虽然 = 在整个图像中不是最大,它只是在点 领域内为最大,另一个最大值是B= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最大值。同样, 在点 达到极小值,指的是在 的领域内 为最小,如图所示。 在点 处达到极小值,虽然 = 在整个图像中不是最小,它只是在点 领域内为最小,另一个最小值是A= ,它只是函数在区间[ , ]端点 的函数值,而 = 则是整个图像的最小值。函数的极大值和极小值概念是局部性的。如果 是函数 的一个极大值(或极小值),那只是就点 附近一个局部范围来说, 是函数 的一个极大值(或极小值),如果就函数 整个定义域来说, 不见得是函数 极大值(或极小值)。我们在微分中值定理一节曾经提到,如果函数 可导,并且点 是它的极值点,那么点 必定是它的驻点,但是函数的驻点未必是它的极值点。如函数 ,点 =0是它的驻点,但是在 内函数 是单调增加的,所以点 =0不是它的极值点,可见,函数的驻点只是可能的极值点。此外,函数在它不可导点处也可能取得极值,如函数 在点 =0处不可导,但是在该点取得极小值。最大值与最小值在前面讨论极值的基础上我们进一步讨论函数在一个区间上的最大值与最小值的求法。最大值与最小值的应用很广泛,人们做任何事情,小到日常用具的制作,大至生产科研和各类经营活动,都要讲究效率,考虑怎样以最小的投入得到最大的产出,这类问题在数学上往往可以归纳为求某一函数在某个区间内的最大与最小值的问题。现在设函数 在闭区间 , 上连续,在开区间 , 可导,根据闭区间上连续函数的性质可知,函数 在闭区间 , 的最大值、最小值必定存在;其次,如果最大值或最小值在开区间 , 内的某一点 取得,那么这个最大值或最小值 必定是函数 的一个极大值或极小值。于是,点 必定为函数 的驻点;最后,函数 的最大值或最小值也可能是在 或 处取得。我们通过一个例子来看一看最大值或最小值的求法过程。例5 求函数 在闭区间 , 上的最大值与最小值。

数列极限论文开题报告

你好啊,你的数列求和的方法探讨开题报告选题定了没?开题报告选题老师同意了吗?准备往哪个方向写?开题报告学校具体格式准备好了没?准备写多少字还有什么不懂不明白的可以问我,希望可以帮到你,祝开题报告选题顺利通过,毕业论文写作过程顺利。 先说下开题报告的内容1、课题的来源及选题的依据。主要是研究生对其研究方向的历史,现状和发展情况进行分析,着重说明所选课题的经过,该课题在国内外的研究动态,和对开展此课研究工作的设想,同时阐明所选课题的理论意义、实用价值和社会经济效益,以及准备在哪些方面有所进展或突破。2、对所确定的课题,在理论上和实际上的意义、价值及可能达到的水平,给予充分的阐述,同时要对自己的课题计划、确定的技术路线、实验方案、预期结果等做理论上和技术可行性的论证。3、课题研究过程,拟采用哪些方法和手段,目前仪器设备和其他各方面条件是否具备。4、阐述课题研究工作可能遇的困难和问题,以及解决的方法和措施。5、估算论文工作所需经费,说明经费来源。再谈下开题报告的要求1、开题时间:开题报告至迟应于第三学期末完成。凡未按时开题着,可酌情在论文成绩中减1至5分。2、研究生要进行系统的文献查阅和广泛的调查研究,写出详细的文献综述,并进行现场考察和初步的试验研究,然后写出5000字左右的书面开题报告,并制定出详细的论文工作计划,经导师审阅、修改后进行开题报告。开题前研究生应将有关的参考文献和已做过的作为开题依据的各种理论分析、试验数据,事先印发给参加会议的有关人员。3、开题报告必须在学院或教研室(研究室)中进行,组成3至5人的开题报告审查小组,并邀请本专业的教师、学生参加,听取多方面的意见。审查小组成员应事先审阅提交的开题报告及有关资料,为开会做好准备。会议应发扬学术民主,对研究生的开题报告进行严格审核和科学论证。对选题适当、论据充分、措施落实的,应批准论文开题;对尚有不足的,要限期修改补充,并重做开题报告。若再次开题不能通过。则取消研究生学籍,终止培养。4、开题通过后,应将开题报告与论文工作计划经导师、教研室主任和学院院长签字后交校学位办公室。研究生、导师、学院各存一份开题报告和论文工作计划的复印件,以便定期检查论文工作。5、开题通过后,一般不得改变研究课题。确有特殊情况需要更改课题者,由导师写出书面报告说明理由,经教研室主任、学院院长、研究生教育学院院长批准后,方可另做开题报告,改换研究课题,更改研究课题后仍不能进行下去的,则对研究生取消学籍,并取消指导教师指导研究生的资格。

极限分为 一般极限 , 还有个数列极限, (区别在于数列极限时发散的, 是一般极限的一种)2解决极限的方法如下:(我能列出来的全部列出来了!!!!!你还能有补充么???)1 等价无穷小的转化, (只能在乘除时候使用,但是不是说一定在加减时候不能用 但是前提是必须证明拆分后极限依然存在) e的X次方-1 或者 (1+x)的a次方-1等价于Ax 等等 。 全部熟记(x趋近无穷的时候还原成无穷小)2落笔他 法则 (大题目有时候会有暗示 要你使用这个方法)首先他的使用有严格的使用前提!!!!!!必须是 X趋近 而不是N趋近!!!!!!!(所以面对数列极限时候先要转化成求x趋近情况下的极限, 当然n趋近是x趋近的一种情况而已,是必要条件 (还有一点 数列极限的n当然是趋近于正无穷的 不可能是负无穷!)必须是 函数的导数要存在!!!!!!!!(假如告诉你g(x), 没告诉你是否可导, 直接用无疑于找死!!)必须是 0比0 无穷大比无穷大!!!!!!!!!当然还要注意分母不能为0 落笔他 法则分为3中情况1 0比0 无穷比无穷 时候 直接用 2 0乘以无穷 无穷减去无穷 ( 应为无穷大于无穷小成倒数的关系)所以 无穷大都写成了无穷小的倒数形式了。通项之后 这样就能变成1中的形式了3 0的0次方 1的无穷次方 无穷的0次方 对于(指数幂数)方程 方法主要是取指数还取对数的方法, 这样就能把幂上的函数移下来了, 就是写成0与无穷的形式了 , ( 这就是为什么只有3种形式的原因, LNx两端都趋近于无穷时候他的幂移下来趋近于0 当他的幂移下来趋近于无穷的时候 LNX趋近于0)3泰勒公式 (含有e的x次方的时候 ,尤其是含有正余旋 的加减的时候要 特变注意 !!!!)E的x展开 sina 展开 cos 展开 ln1+x展开 对题目简化有很好帮助4面对无穷大比上无穷大形式的解决办法取大头原则 最大项除分子分母!!!!!!!!!!!看上去复杂处理很简单 !!!!!!!!!!5无穷小于有界函数的处理办法面对复杂函数时候, 尤其是正余旋的复杂函数与其他函数相乘的时候,一定要注意这个方法。面对非常复杂的函数 可能只需要知道它的范围结果就出来了!!!6夹逼定理(主要对付的是数列极限!)这个主要是看见极限中的函数是方程相除的形式 ,放缩和扩大。7等比等差数列公式应用(对付数列极限) (q绝对值符号要小于1)8各项的拆分相加 (来消掉中间的大多数) (对付的还是数列极限)可以使用待定系数法来拆分化简函数9求左右求极限的方式(对付数列极限) 例如知道Xn与Xn+1的关系, 已知Xn的极限存在的情况下, xn的极限与xn+1的极限时一样的 ,应为极限去掉有限项目极限值不变化10 2 个重要极限的应用。 这两个很重要 !!!!!对第一个而言是X趋近0时候的sinx与x比值 。 地2个就如果x趋近无穷大 无穷小都有对有对应的形式(地2个实际上是 用于 函数是1的无穷的形式 )(当底数是1 的时候要特别注意可能是用地2 个重要极限)11 还有个方法 ,非常方便的方法就是当趋近于无穷大时候不同函数趋近于无穷的速度是不一样的!!!!!!!!!!!!!!!x的x次方 快于 x! 快于 指数函数 快于 幂数函数 快于 对数函数 (画图也能看出速率的快慢) !!!!!!当x趋近无穷的时候 他们的比值的极限一眼就能看出来了12 换元法 是一种技巧,不会对模一道题目而言就只需要换元, 但是换元会夹杂其中 13假如要算的话 四则运算法则也算一种方法 ,当然也是夹杂其中的14还有对付数列极限的一种方法, 就是当你面对题目实在是没有办法 走投无路的时候可以考虑 转化为定积分。 一般是从0到1的形式 。 15单调有界的性质对付递推数列时候使用 证明单调性!!!!!!16直接使用求导数的定义来求极限 ,(一般都是x趋近于0时候,在分子上f(x加减麽个值)加减f(x)的形式, 看见了有特别注意)(当题目中告诉你F(0)=0时候 f(0)导数=0的时候 就是暗示你一定要用导数定义!!!!),咱英语不好,lim为极限号,下面看清趋向于0还是无穷,根据以上方法即可。嘻嘻,努力哦,加油 资料来源:

毕业论文的开题报告一般会涉及到题目的研究背景及研究意义等。该公式一般适用于*/∞型数列极限和0/0型数列极限的计算和证明问题。

数学中,数列的教学思想是一座桥梁,能够将复杂的问题巧妙地转化成简单的解题方法,让教师在教学中和学生学习的过程中更清晰、更简洁。下面是我为你整理的高中数学数列论文,一起来看看吧。

【摘要】随着新课标在我国的全面实施,高中数学教学中心课改的理念如何体现,才能适应新课改的要求?成为高中数学教学实践的重点目标。高中数学数列方面的内容,是高中数学的基础内容,很多重要的数学问题通过数列都可得到圆满解决。因此教好数列、学好数列对提高学生未来解决数学问题的能力有重要的实践意义。从教师角度看,优良的数列教学课堂设计对教学目标和教学效果的实现举足轻重。

【关键词】高中数学;数列;课堂教学

高中数学中,数列占有很重要的教学地位,数列在数学领域隶属于离散函数的范畴,是解决现实中很多数学问题的重要工具。数列问题是高二年级数学教学的基础。数列问题学习可以培养学生对数学问题的思考、分析和归纳的能力。并对以后阶段的数学知识有启蒙作用。数学教师必须重视数列教学实践对学生的启发作用。

一、数列部分教学内容概述

数列这一部分主要介绍了数列的概念,并对数列根据其特点进行了分类。接着引出了数列通项的概念。高中二年级主要学习等差、等比数列的概念,通项公式,前n项和。并对数列在现实生活中的意义进行了介绍,主要有分期付款等储蓄问题。本章介绍的数学公式较多,主要涉及数列的通项公式和前n项和公式。教学中,对公式的推导过程和变形种类要重点讲解。以便让学生从数学原理的角度对数列的相关概念做深入理解。如何灵活的运用数列的性质来对综合性题目进行解答是本章的重点教学任务。数列的相关问题的认识,要贯穿函数的思想来向学生传递。

二、数列教学的有效性策略简析

数列的教学应该遵循有效性原则来进行。我们在教学中应该用先进的教学理念来指导教学。数学的思维模式主要是逻辑性思维为主,因此有效的方式方法一旦为学生所领会,那教学的过程会变得相当的容易。

1.对比数学问题,归纳共性特点,培养探究习惯和能力

在认识数列时,应该同时引入函数的动态认识数列的方法,利用对函数的研究方法来类比到数列问题中来。对于数列的表示法的讲解,可通过函数的表示方法引申过来。而对等差数列,等比数列的单调性性质,也可通过以往学过的函数的相关性质来类比讲解;在求和问题的最值研究中,可从抛物线等二次函数中的变量演化过程类比讲解求函数最值。等差数列和等比数列的概念、性质、通项等,我们可通过两个类型数列的异同点来进行研究。如:从数列的特点来说,前一项与后一项的之间的差异对等差数列来说,两项间是加减法的关系,每两项之间都相差一个固定的数值,而对等比数列来说,则是乘除法的关系,每相邻两项之间是倍数的关系。对中项的概念来说,等差中项概念与相邻项的关系同样的加减法的规则,而等比数列的中项则是插入一个固定比例的关系。而两个等差数列,仍然为等差数列。而两个等比数列的对应项的乘积也为等比数列。这种数列之间的项与项的数量关系的实质要为学生开解明白。

2.与其他数学知识相综合,建立数学知识体系的网络化综合化

数学中任何一个概念都不了独立的,在整个的数学知识体系里面,每个知识点都与其他的结点有关联性,因此在数列教学中,要把数列、函数、不等式、解析几何等概念有机的结合起来进行讲解。数列其实是函数的特殊化,研究函数有普遍性的意义,而研究数列是研究函数的特殊化。因此在数列教学中建立函数的概念,有助于改变学生的静态思维。另外还有,数列与不等式,数列与导数,数列与算法等的综合运用,都要在数列教学中对学生加以讲解。

3.通过练习和小测试来巩固课堂教学的效果

传统教学模式中,有一项是“题海战术”,可见习题在数学教学中的作用是不容忽视的。尽管目前的教育模式不支持教师对学生施以题海战术,但选取具有代表性的习题,开拓学生的数学思想和知识点延伸,是有极大好处的。首先通过习题,可以巩固学生的基础知识结构,加强知识点之间的有机结合,从而提高学生对数学问题的分析能力。举个简单的例子,求数列an-n。通过前面的知识的学习,我们可以知道,这道题目,分为两部分数列的综合计算而成。前半部分是一个等比数列,而后半部分,我们可以看成负自然数的数列。等比数列的求和公式是形成的,而自然数的和在初中的高斯定理就已学过,通过这样的拆解,为学生解答综合性的问题提供了行之有效的途径。其次,同样一个题目如果能,应当鼓励学生用更多的方法来进行解答,这样可以培养学生的发散性思维,在考试中碰到的问题即使一时想不出来,至少学生能够想到很多种解题的方案,这其中说不定就有通往正确答案的途径。第三,公式的变形要加强练习,只有这样,学生才能够触类旁通,同一类问题的解决途径往往稍加变形,但其解法本质上是殊途同归的,通过这种锻炼,学生解题的能力得到了很大的提高,学到的知识体系也进一步得到巩固。第四,题目解决了,并不是学习的终结,要培养学生“回头看题”的习惯。这种习惯的养成有助于学生对题目的知识点进行全面把握。

三、高中数学数列部分课堂教学设计要点

课堂教学设计是高中教学中的重中之重,课堂教学设计的水平在某种意义上决定了课堂教学的效果和学生学习的成果。在课堂教学方案的设计中,笔者通过多年的教学经验和实践认为应该包括以下要素:

1.要细致了解学生在数列学习和解决数列问题中的切身体验

应该说,学生之间对数学问题的认知和理解能力确实存在着差异性。到了高中阶段,学生们都经历了近十年的数学学习经历,长期的学习中会对某一类知识点相当的敏感,而对另外的一些知识点却有盲点。有的学生在逻辑思维方面有特长,而另外的一些学生对计算情有独钟,对知识点掌握程度的不同会造成学生解题习惯和解题思路的差异。教师在课堂教学设计中也充分考虑大部分学生的群体差异。

2.要注重数列部分概念本质的强化记忆和理解,对基础知识的传授要夯实,避免短板

数学中,不仅仅是数列,其他的概念也如此,其描述的方式,往往通过文字性的描述来说明。这种方式比较抽象,我们在设计课堂教学时,对概念性的东西要注意辅以实例来讲解。以便激发学生的猎奇心理和探索问题的欲望。

3.重视数学史渗透和用数学工具解决实际问题的能力

数学的发展史源远流长,每种数学问题的提出和最后的解决都有其历史的背景。数列教学中穿插数学史知识的传授,有利于学生对知识的来龙去脉在熟稔中学习。另外数学问题的提出往往有其实践的背景,或者是人民集体智慧的结晶,或者是某一时期特殊问题的解决之道,教师在课堂教学的过程中要努力挖掘现实问题的应用。学以致用,当学生认识到自己学习的数列知识在现实生活中确实能解决很多问题的时候,学习的欲望和学习的效果自然而然就出来了。

4.重视数列学习中组合学习的魅力

人以群分,物以类聚。在数学学习的过程中,教师应该将不同层次的学生进行分组,这种分组的教学行为,可以让学生在相同的起点上进行学习。通过对班级内不同的学生的特点和能力进行分析,对其学习的目标,任务等精心设置,发挥团队学习的效用。

5.教师应该注重自我提高,从别人的课堂教学中汲取营养

老师在教学中不能固步自封,应该走出去,在同事中加强听课和学习。完善自我的课程教学缺陷,在不断的学习中,但课堂教学方案日趋完美。

四、结束语

高中数学中数列的教学内容虽然比较少,但其教学思想却在高中数学中占有很重要的地位,数学教学,应当立足于学生对数学知识的学习特点,以先进的教学理论为指导,对课堂教学方案设计精益求精,才能获得应有的教学效果。

摘要:数列是高中数学教学中重要的内容,其在高中数学中占据着重要的地位,同时在生活中也具有非常大的应用价值。本文介绍了高中数学学习数列的重要性及新时期如何提高高中数学数列教学质量和学习能力。

关键词:高中数学;数列;教学

一、引言

在高中数学的数列教学的过程中,教师不但要让学生懂得数列问题的知识点,还要让学生能够根据掌握的相关知识熟练地解决数学问题。困此教师要以生为本,以学定教,让学生在不同的数学环境巾积极思考,推进能力的提升,并让学生在各种数学数列问题的训练中学会自主学习数学的能力。

二、高中数学数列教学体会

1、以生为本,以学定教

1)以生为本,实时掌握在数学教学过程中学生的基本的数学能力在高中数学数列教学的过程中不但每一个班的综合数学能力不同,而且就是同一个班级中的学生的数学能力也不尽相同。在这种条件下,教师不论是在新接手班级还是在教学的过程中,都要通过各种有效的数学考查方式掌握学生的实际能力,确定学生的数学层次。在这个基础上教师将不同的数学层次的学生组合成组,方便学生进行合作交流的学习。

2)以学定教,采用适合本班同学的数学教学方式进行有效教学

在高中数学数列教学的过程中,教师在选择教学方法以及教学策略的时候,要能根据本班同学的不同数学层次特点进行确定,教师要紧紧把握住学生旧知与新知的链接点,寻找能够激发学生主动思维的教学方式进行教学。同时教师还要善于选择学生喜欢的教学模式,引发学生主动探究、合作交流,并在教学的过程中要巧妙使用课堂生成,使教学能够在师生之间、生生之间的思维碰撞中引领学生对数学知识的掌握。

2、善用多媒体课件辅助教学,促使学生能够更好地理解数学知识

1)多媒体课件辅助教学具有传统的课堂教学所无法比拟的教学优势,在数列教学的过程中,很多数列问题如数列与不等式综合问题中的放缩问题、解决递推数列问题等数学问题,单凭教师一张嘴,一支粉笔并不容易将抽象的数学知识让学生透彻地理解。而在这个过程中随着信息时代的到来,计算机以及互联网络的使用让多媒体课件走入了高中数列教学的课堂。

2)多媒体课件辅助教学可以让学生更加直观地理解数学知识

教师巧妙利用多媒体课件进行教学,使原有的抽象的数学问题变得可观可感,能够最大限度地调动学生多种感官的有效参与,极大地提高了学生学习的积极性,使得学生能够在课堂上跟着教师的引导积极思维、主动探究。如:在人教版高中数学数列教学“等差数列的前n项和”的教学过程中,教师通过多媒体课件出尔:“有一堆钢管,最底下放了15根,上一层是14根,再上一层是13根,……最顶层是3根。这堆钢管共有多少根?”这个问题,同时教师出示钢管的图像,并在和学生讨论思考的过程中将讨论的结果逐步出示,或者将学生解决问题的不同方案通过多媒体课件有效地呈现出来,引发学生的积极思考,让学生能够更直观地看到不同的解题方法的过程,并在这个过程中获得数学能力的不断提升。如果教师只是采用传统的教学方式进行讲解的话,那么学生也许很难理解教师的教学思路。多媒体课件辅助教学大大提高了教师的教学效率,解决了学生对抽象的数学知识无法理解的难题,并促使学生能够在这个过程中,形成数学架构的时间的缩短。

3、高中数学数列教学的创新

数列、一般数列、等差数列、等比数列是高中数学数列教学的主要内容。其中,等差数列和等比数列是数列教学内容中的重点。主要包括对数列的定义、基本特点、通项公式、分类方法、具体应用等知识点的学习。传统的教学观念中,教学设计作为一种系统化过程,是用系统的教学方法将数列教学理论,同学习理论原理进行转换,使之成为教学活动和教学资料的具体计划。创新理念的数列教学设计解决了“教学成果”、“教学方法”、“教学目的”等问题,通过教学设计来解决教学问题,探究总结问题的解决方法和步骤,形成新的教学方案。并在新的教学方案实施以后及时的对教学效果进行分析,规划操作其过程程序,判断其实施的价值。这一过程也是教学优化的的过程,能够提高教学成果,创造出更加合理高效的教学方案。

(一)数列教学应注重问题情境的创设

为调动学生主动、合作、探索学习的积极性,实现师生互动,我们教师营造自主、合作、探索的学习环境显得很重要。在数列的教学中首先要注重数学问题情境的创设。我们创设问题情况可以考虑以下方面:学生的已有知识与生活经验及数学的趣味性、教学内容、新旧知识的衔接点以及自身的教学特色。

(二)创新理念下的“数学概念”

对数学对象本质属性进行反映的思维方式,是数列的数学概念。我们知道数列的概念是按一定次序排列的一列数称为数列。对一个数学概念的学习,应记住其名称、了解其涉及到的范围、简述其本质属性并运用其概念进行判断。数学概念包括等差数列、等比数列、通项公式和数列。

在对这些陈述性概念进行设计时,设计者应对上述概念体现的概念特点进行描述。并且在高中数学数列教学中,为了能够激发学生对数列学习的兴趣,体会数列实际应用的价值,则可以通过将生活中实际的问题引入到课程教学中,从而将抽象的数学知识转变为实际需要解决的问题,使学生学生对所要研究的内容有所认识。并且在数列学习中可以结合其他知识点进行学习。比如数列中蕴含的函数思想是研究数列的指导思想,应及早引导学生发现数列与函数的关系.在教学中强调数列的项是按一定顺序排列的,“次序”便是函数的自变量,相同的数组成的数列,次序不同则就是不同的数列,这样不仅能够引导学生通过多方面解决问题,而且对提高学生运用知识的能力也具有重要的意义。我们还以等差数列的定义教学为例,如:增加判断某数列是否成等差数列的题目来促进概念理解。再如:把一次函数和等差数列通项公式相联系,利用函数概念同化等差数列的概念,凸显函数思想;让学生自己列表、画图象,用“形”感受函数与数列之间联系;用方程与等差数列基本量的运算相结合来加深了对概念的理解和巩固。此外我们在教学中还要明理强化,实践探究,注重激励评价,引申探究。

极限研究论文选题依据

你为什么要写这个论文题目,是什么影响了你选该论题,这就是选题依据。选题依据=选题意义+选题背景。

步骤

1、首先要选择自己比较熟悉的领域。这有利于自己的论文撰写,也有利于自己顺利通过论文答辩。

2、其次,选择切口小的题目。切口小,才能论述透彻,容易把握。如果切口大,不好把握,不易论述清楚。

3、最后,选择新颖一点的题目。题目新颖,就是别人很少研究的领域,容易引起别人的兴趣,答辩时,容易获得加分。

扩展资料

选题建议

(1)联系工作实际

选题要结合我国行政管理实践(特别是自身工作实际),提倡选择应用性较强的课题,特别鼓励结合当前社会实践亟待解决的实际问题进行研究。建议立足于本地甚至是本单位的工作进行选题。

选题时可以考虑选些与自己工作有关的论题,将理论与实践紧密结合起来,使自己的实践工作经验上升为理论,或者以自己通过大学学习所掌握到的理论去分析和解决一些引起实际工作问题。

(2)选题适当

所谓选题要适当,就是指如何掌握好论题的广度与深度。选题要适当包括有两层意思:

一是题目的大小要适当。题目的大小,也就是论题涉及内容的广度。确定题目的大小,要根据自己的写作能力而定。如果题目过大,为了论证好选题,需要组织的内容多,重点不易把握,论述难以深入,加上写作时间有限,最后会因力不胜任,难以完成,导致中途流产或者失败。

相反,题目太小了,轻而易举,不费功夫,这样又往往反映不出学员通过几年大学阶段学习所掌握的知识水平,也失去从中锻炼和提高写作能力的机会,同时由于题目较小,难以展开论述,在字数上很难达到规定字数要求。此外,论文题目过小也不利于论文写作,结果为了凑字数,结尾部分东拼西凑,结构十分混乱。

二题目的难易程度要适当。题目的难易程度,也就是论题涉及的深度。确定题目的难易,也要根据自己的写作能力而定,量力而为。题目难度过大,学员除了知识结构、时间和精力的限制外,资料搜集方面也有局限。

这样,就会带来一些意想不到的困难,致使论文写了一半就写不下去了,中途要求另选题目。所以,在这个问题上的正确态度应该是:既不要脱离实际,好高骛远,去选一些自己不可能写好的论题;又不能贪图轻便,降低要求,去写一些随手可得的论题。

(3)选题要新意

所谓要有新意,就是要从自己已经掌握的理论知识出发,在研究前人研究成果的基础上,善于发现新问题,敢于提出前人没有提出过的,或者虽已提出来,但尚未得到定论或者未完全解决的问题。

只要自己的论文观点正确鲜明,材料真实充分,论证深刻有力,也可能填补我国理论界对某些方面研究的空白,或者对以前有关学说的不足进行补充、深化和修正。这样,也就使论文具有新意,具有独创性。

参考资料来源:百度百科-毕业论文

参考资料来源:百度百科-选题

选题依据包括:选题的学科性质、理论意义及实践意义;国内研究现状的分析。研究方案包括:研究内容、研究中所要突破的难题、拟采取的研究方法,有何特色与创新之处以及与选题有关的参考文献等内容。详细的你自己添加吧!~

选题依据=选题意义+选题背景。

论文选题的依据通常情况是由以下几个因素确定:

1、你自己的兴趣爱好,知识背景;

2、(您所熟知领域)当前领域的研究热点问题;3、当前国内外的研究现状和已取得的成果;

3、本领域还有没有解决的问题,或者是否存在其他领域先进的方法可引入等;

4、请教身边的同学朋友。

通过以上几点我们就能掌握选题依据的内容:

现状:目前国内外研究现状已有的进展、还存在哪些问题(已解决的、半解决的、未解决的);

问题:你要为你所在领域解决什么样的问题;

方案:你所有的研究方向、思路,是找到了新方法,还是对旧的方法进行改进,又或者是从其他领域引入本领域未用过的方法,将有什么创新的地方;

意义:写这个题目的意义(理论意义及实践意义),你所要突破的难题,对本领域研究发现有什么积极作用?

问题一:毕业论文的选题依据怎么写? 选题依据包括:选题的学科性质、理论意义及实践意义;国内研究现状的分析。研究方案包括:研究内容、研究中所要突破的难题、拟采取的研究方法,有何特色与创新之处以及与选题有关的参考文献等内容。 详细的你自己添加吧!~ 问题二:毕业论文选题依据要怎么写 选题依据是什么 选题依据首先要介绍存在的问题,也就是现状,比如说,质量不高啊,效益不好啊,这个问题被别人忽视了啊之类的 然后你要说明你研究这个问题的意义,解决办法等等 最后说你预期达到的目标,以及可行性等等 问题三:论文选题依据是什么意思?? 选题依据就是你论文依托的背景及显示意义,同时通过论文研究,解决问题 问题四:毕业论文选题依据要怎么写 选题依据是什么 选题依据包括:选题的学科性质、理论意义及实践意义;国内研究现状的分析。研究方案包括:研究内容、研究中所要突破的难题、拟采取的研究方法,有何特色与创新之处以及与选题有关的参考文献等内容。 详细的你自己添加吧!~ 问题五:求论文选题依据及意义 学术论文是某一学术课题在实验性、理论性或观测性上具有新的科学研究成果或创新见解和知识的科学记录;或是某种已知原理应用于实际中取得新进展的科学总结,用以提供学术会议上宣读、交流或讨论;或在学术刊物上发表;或作其他用途的书面文件。 学术论文应提供新的科技信息,其内容应有所发现、有所发明、有所创造、有所前进,而不是重复、模仿、抄袭前人的工作。 主要特点 科学性 学术论文的科学性,要求作者在立论上不得带有个人好恶的偏见,不得主观臆造,必须切实地从客观实际出发,从中引出符合实际的结论。在论据上,应尽可能多地占有资料,以最充分的、确凿有力的论据作为立论的依据。在论证时,必须经过周密的思考,进行严谨的论证。 创造性 科学研究是对新知识的探求。创造性是科学研究的生命。学术论文的创造性在于作者要有自己独到的见解,能提出新的观点、新的理论。这是因为科学的本性就是“革命的和非正统的”,“科学方法主要是发现新现象、制定新理论的一种手段,旧的科学理论就必然会不断地为新理论推翻。”(斯蒂芬・梅森)因此,没有创造性,学术论文就没有科学价值。 理论性 学术论文在形式上是属于议论文的,但它与一般议论文不同,它必须是有自己的理论系统的,不能只是材料的罗列,应对大量的事实、材料进行分析、研究,使感性认识上升到理性认识。一般来说,学术论文具有论证色彩,或具有论辩色彩。论文的内容必须符合历史唯物主义和唯物辩证法,符合“实事求是”、“有的放矢”、“既分析又综合” 的科学研究方法。 平易性 指的是要用通俗易懂的语言表述科学道理,不仅要做到文从字顺,而且要准确、鲜明、和谐、力求生动。 专业性 是区别不同类型论文的主要标志,也是论文分类的主要依据。 实践性 是论文价值的具体体现。 它还表现在内容上,旨在根据一定的岗位职责与目标要求培养能力。 问题六:毕业论文选题依据要怎么写 选题依据是什么 毕业论文的课题来源有三:一、来源于资料的阅读;通过大量文献的阅读,可以发现自己感兴趣的问题。二、源于生活;在生活中会遇见感兴趣的问题,平时要多注意观察。三、源于对别人研究的质疑 问题七:毕业论文选题依据要怎么写 选题依据是什么 与专业相关, 并熟悉这个论题,切记不要太大众化 俺给你出个提纲吧 问题八:毕业论文选题依据要怎么写 选题依据是什么 如何,,,发给你,,, 问题九:毕业论文选题依据是什么 与专业相关, 并熟悉这个论题,切记不要太大众化 俺给你出个提纲吧 问题十:毕业论文的选题依据理由及意义怎么写? 资料是构成论文写作的基础。在确定选题、进行设计以及必要的观察与实验之后,做好资料的搜集与处理工作,是为论文写作所做的进一步准备。 论文写作资料可分为第一手资料与第二手资料两类。前者也称为第一性资料或直接资料,是指作者亲自参与调查、研究或体察到的东西,如在实验或观察中所做的记录等,都属于这类资料;后者也称为第二性资料或间接资料,是指有关专业或专题文献资料,主要靠平时的学习积累。在获得足够资料的基础上,还要进行加工处理,使之系统化和条理化,便于应用。对于论文写作来说,这两类资料都是必不可少的,要恰当地将它们运用到论文写作中去,注意区别主次,特别对于文献资料要在充分消化吸收的基础上适当引用,不要喧宾夺主。对于第一手资料的运用也要做到真实、准确、无误。 五、论文写作提纲 拟写论文提纲也是论文写作过程中的重要一步,可以说从此进入正式的写作阶段。首先,要对学术论文的基本型(常用格式)有一概括了解,并根据自己掌握的资料考虑论文的构成形式。对于初学论文写作者可以参考杂志上发表的论文类型,做到心中有数;其次,要对掌握的资料做进一步的研究,通盘考虑众多材料的取舍和运用,做到论点突出,论据可靠,论证有力,各部分内容衔接得体。第三,要考虑论文提纲的详略程度。论文提纲可分为粗纲和细纲两种,前者只是提示各部分要点,不涉及材料和论文的展开。对于有经验的论文作者可以采用。但对初学论文写作者来说,最好拟一个比较详细的写作提纲,不但提出论文各部分要点、而且对其中所涉及的材料和材料的详略安排以及各部分之间的相互关系等都有所反映,写作时即可得心应手。 六、执笔写作 执笔写作标志着科研工作已进入表达成果的阶段。在有了好的选题、丰富的材料和详细的提纲基础上,执笔写作应该是顺利的,但也不可掉以轻心。一篇高质量的学术论文,内容当然要充实,但形式也不可不讲究,文字表达要精炼、确切,语法修辞要合乎规范,句子长短要适度。特别应注意的是,一定要采用医学科技语体,用陈述句表达,减少或避免感叹、抒情等语句以及俗言俚语,也不要在论文的开头或结尾无关联系党政领导及其言论或政治形势。 论文写作也和其他文体写作一样,存在着思维的连续性。因此,在写作时要尽量排除各种干扰,使思维活动连续下去,集中精力,力求一气呵成。对于篇幅较长的论文,也要部分一气呵成,中途不要停顿,这样写作效果较好。[2]

函数极限求解论文答辩题

3、原式极限=lim (1-0)^0=14、只要令f(0)=lim f(0)就行。lim f(0)=lim (m/x)*ln(1+kx)使用等价无穷小:f(0)=lim f(0)=m*(kx)/x=mk (x->0)

我理解是对于每个x0,fn(x0)的上下极限构成的新的函数。你那个学校的?

因为limf(x)/(x-1)存在。即说明x→1时,f(x)/(x-1)的极限存在,而分子x-1在x→1时,x-1=0那么,要保证原分式f(x)/(x-1)的极限存在只可能是当x→1时,f(x)=0x-1在x趋近于1的时候这是个0,那么分子f(x)呢必须也是趋近于0的数才能满足这个极限式子成立,所以我们就可以得到f(1)=0,

1. x²-x-6>0, x>3 or x<-22. A. f(x) = a+bx² 趋于0的极限是a, f(x) = sinbx\x 趋于0的极限是b, 连续则a=b

极限论文外国文献

参考文献要与文章相关就可以了

关于论文中参考文献的问题: 1】文末所写的参考文献均应在文中直接引用。正文中没有直接引用但研究过程中参考的不必写上并编号。2】所引用的参考文献最好是原话,也可转述及归纳。3】论文中所需要涉及的一些如欧几里得的《几何原本》、康托尔的“集合论”等一些原论文出处可以不标出,因为这些成果众所周知。

毕业论文不同于一般的小论文,特别是硕士毕业论文或者博士毕业论文。一般的小论文就四五页,而硕士论文动辄五六十页,有的甚至七八十页。所以有些东西如果要人工的去修改,将是一件非常痛苦的事情。痛苦的事情至少有两个:目录自动生成和编号、参考文献引用的上标。本文将从这两个方面说说小技巧,自动生成,非常方便。先说两种痛苦情况。设定好文章的目录结构后,突然发现中间要添加或者删除一个章节,添加删除容易,可是其后遗症就是后面的编号都要跟着变动。比如要删除第二章,那么原理的第三章就要改为第二章,后面的要跟着动,添加也一样,很麻烦。第二个情况就是参考文献的上标问题。硕士论文参考文献都有好几十个,一般论文会要求按照论文的引用顺序列出参考文献。如果需要添加新的参考文献,那么这些参考文献的上标号又会跟着变动。目录自动生成简单说下,将文档切换到大纲视图,然后设置你要设定成目录的文字的大纲级别。如果将大纲级别设定为1级,那么就是1级目录,一般我们会设置到3级,这样会生成1、2、3级目录。设定好后,在要插入目录的地方,点击“插入”-->“引用”-->“索引和目录”就可以了。格式在另外设置下就行了。首先都要设置成段落编号。将你要设定的一级目录设定成一级编号,二级目录设定成二级编号等等。参考文献一样,设置成段落编号。设定成段落编号有一个非常大的好处,就是插入或者删除其中的某个项目时,其后面的变好会跟着变动,所以这就解决了因添加删除中间的项目,而要同时修改后面的编号问题了。目录的更新,只需要在“大纲视图”下点击更新目录,或者在页面视图的目录上,点击右键,选择“更新域”即可。将参考文献设置成段落编号后,在需要插入参考文献引用的地方,点击“插入”-->“引用”-->“交叉引用”,找到相应参考文献的编号就可以了。然后再自己设置一下格式。还有几种方法,从网上摘录下来的。(一)采用书签、交叉引用方法:参考文献的编号和引用步骤如下:(1)在word文档末尾添加几个文献,如:[1] 杨秀章.Word 2000中文版使用速成.北京:清华大学出版社,2000[2] Peter Weverka. Diane Poremsky.中文Word 2002专家.北京:机械工业出版社,2002注意,输入时应采用word的自动编号。如果word没有自动编号,可自己插入(这个就不用细说了...)(2)给每个文献制作成书签。如,选择“杨秀章.Word 2000中文版使用速成”,插入——书签,输入书签名(杨秀章_Word 2000中文版使用速成),然后添加。注意书签名必须以字母开头,可包含数字但不能有空格,可以用下划线字符来分隔文字,否则可能无法插入。书签名最好与文献名一致,这样在它位置变化后,你仍能识别它。(图1)(3)在需要引用文献的位置,执行插入——引用——交叉引用,类型选择书签,选择需要引用的项目,内容选择“段落编号”。至此,引用完成!(图2)在全篇文档编完后,全选,右键选择“更新域”,编号就会改变成文献的最新位置还有一个通过插入脚注的方式引用参考文献。1. 光标移到要插入参考文献的地方,菜单中“插入”——“脚注和尾注”。(已搜索,无重复)2.对话框中选择“尾注”,编号方式选“自动编号”,所在位置建议选“节的结尾”(对论文而言)。3.如“自动编号”后不是阿拉伯数字,选右下角的“选项”,在编号格式中选中阿拉伯数字。4.确定后在该处就插入了一个上标“1”,而光标自动跳到文章最后,前面就是一个上标“1”,这就是输入第一个参考文献的地方。5.将文章最后的上标“1”的格式改成正常(记住是改格式,而不是将它删掉重新输入,否则参考文献以后就是移动的位置,这个序号也不会变),再在它后面输入所插入的参考文献(格式按杂志要求来慢慢输,好像没有什么办法简化)。6.对着参考文献前面的“1”双击,光标就回到了文章内容中插入参考文献的地方,可以继续写文章了。7.在下一个要插入参考文献的地方再次按以上方法插入尾注,就会出现一个“2”(Word已经自动为你排序了),继续输入所要插入的参考文献。8.所有文献都引用完后,你会发现在第一篇参考文献前面一条短横线(页面视图里才能看到),如果参考文献跨页了,在跨页的地方还有一条长横线,这些线无法选中,也无法删除。这是尾注的标志,但一般科技论文格式中都不能有这样的线,所以一定要把它们删除。9.切换到普通视图,菜单中“视图”——“脚注”,这时最下方出现了尾注的编辑栏。10.在尾注右边的下拉菜单中选择“尾注分隔符”,这时那条短横线出现了,选中它,删除。11.再在下拉菜单中选择“尾注延续分隔符”,这是那条长横线出现了,选中它,删除。12.切换回到页面视图,参考文献插入已经完成了。这时,无论文章如何改动,参考文献都会自动地排好序了。如果删除了,后面的参考文献也会自动消失,绝不出错。13.参考文献越多,这种方法的优势就体现的越大。在写毕业论文的时候,我就是用这个方法分节插入参考文献的,具爽!存在一个小问题:如果同一个参考文献两处被引用,只能在前一个引用的地方插入尾注,不能同时都插入。这样改动文章后,后插入的参考文献的编号不会自动改动。

相关百科

热门百科

首页
发表服务