如果主列中都为负数,就不用再算了,答案为无界解。求解与非基变量前的系数正负没有关系,只与目标函数的形式有关,有Max,Min 两种,如是Max形式,则找检验数时,找最大的一个;如果是Min形式,其他都不用变,找最小的检验数。
先将原题转化为标准模式,令z=-f,添加松弛变量x3,x4max z = 2x1+3x2+0x3+0x4st. x1 + x2 + x3 = 2 4x1 +6x2 + x4 = 9建立初始单纯形表 cj 2 3 0 0 cB xB b x1 x2 x3 x4 θ 0 x3 2 1 1 1 0 0 x4 9 4 6 0 1 σj 2 3 0 0将x2作为入基变量,求得θ为2, 3/2写入上表 cj 2 3 0 0 cB xB b x1 x2 x3 x4 θ 0 x3 2 1 1 1 0 2 0 x4 9 4 6 0 1 3/2 σj 2 3 0 0将x4作为离基变量,重新计算单纯形表 cj 2 3 0 0 cB xB b x1 x2 x3 x4 θ 0 x3 1/2 1/3 0 0 -1/6 3 x4 3/2 2/3 1 0 1/6 σj 0 0 0 -1/2存在非基变量x1的检验数σj=0,因此该题有无穷多最优解其中一个最优解是x1=0,x2=3/2得到max z = 9/2得到min f = -9/2
如果主列中的数都是负数,那么就不存在这最优解了请你仔细看下书,应该是这样写的
一般来说没有可行解的情况是不存在的,因为一般情况下Xi给定都是大于0的,几个约束条件之间如果没有明显的系数都大,约束右端的数值却比较小的这种情况,那么就一定是有解的。你说的这种大概是多次迭代,可行基又返回到初始可行基的情况,这种属于循环,可以用bland方法,摄动法,和辞典序法来消除循环的影响。 06.30修改你说的那种情况还是循环的啊,把b变了,朗姆达又不符合了,变完了检验数,b又不符合了。这时候你试着用对偶做一下,如果依然循环(这种情况非常非常的少,至少我在题里没有见过),那就试试我说的那个方法吧,不过好像都是用计算机来进行运算的,很少有教材详细涉及了。
LINGO是Linearnteractive and General Optimizer的缩写,即“交互式的线性和通用优化求解器”,可以用于求解非线性规划,也可以用于一些线性和非线性方程组的求解等。其特色在于可以允许决策变量是整数(即整数规划,包括 0-1 整数规划),方便灵活,而且执行速度非常快。一般地,使用LINGO 求解运筹学问题可以分为以下两个步骤来完成:1)根据实际问题,建立数学模型,即使用数学建模的方法建立优化模型;2)根据优化模型,利用LINGO 来求解模型。主要是根据LINGO 软件,把数学模型转译成计算机语言,借助于计算机来求解。例题:在线性规划中的应用max Z =5 X1+3 X2+6X3,s.t. X1 +2 X2 + X3 ≤182 X1 + X2 +3 X3 =16X1 + X2 + X3 =10X1 ,X2 ≥0 , X3 为自由变量应用LINGO 来求解该模型,只需要在 lingo窗口中输入以下信息即可:max=5*x1 +3*x2 +6*x3 ;x1 + 2*x2 + x3 <=18 ;2*x1 + x2 + 3*x3 =16 ;x1 + x2 + x3 =10 ;@free( x3) ;然后按运行按钮,得到模型最优解,具体如下:Objective value: 46.00000Variable ValueReduced Costx1 14.00000 0.000000x2 0.000000 1.000000x3 -4 .000000 0.000000由此可知,当 x1 =14 , x2 =0 , x3 =-4 时,模型得到最优值,且最优值为 46。说明:在利用LINGO 求解线性规划时,如自变量都为非负的话,在LINGO 中输入的信息和模型基本相同;如自变量为自由变量,可以使用函数 @free来把系统默认的非负变量定义自由变量,如实例一中的 x3
这个很复杂 看你的约束和目标函数是不是线性或者二次规划 你这里没有说清楚目标函数有log那你也可以考虑是不是可以去掉log后变成线性的 另外你这个是0-1规划 而且规模很大 可能在时间上也会有问题 这个都不知道 需要具体的考虑
lingo常用于线性优化问题,结合运筹学中主要的优化问题类型,本系列将使用lingo求解常见的运筹学优化模型,主要包含:
一般来说,一个优化模型将由以下三部分组成: 1. 目标函数(Objective Function) :要达到的目标。 2. 决策变量(Decision variables) :每组决策变量的值代表一种方案。在优化模型中需要确定决策变量的最优值,优化的目标就是找到决策变量的最优值使得目标函数取得最优。 3. 约束条件(Constraints) :对于决策变量的一些约束,它限定决策变量可以取的值。 在写数学模型时,一般第一行是目标函数,接下来是约束条件,再接着是一些非负限制等。
原则上任何优化问题都可求解,关键是(1)有没有解;(2)有解的话满意程度如何。lingo编程比较简单,但优化模型的建立有时比较有技巧,比如在建模书上广泛存在的参与面试的人员的面试顺序安排问题。
去看看这本(运筹与模糊学 )里的内容吧
财政和会计。根据查询运筹学论文相关信息得知,方向有财政和会计。运筹学就是以数学为主要手段、着重研究最优化问题解法的学科。运筹学可以用来很好的解决生活中的许多问题。运筹学有着广泛的应用,对现代化建设有重要作用。
现在和将来的角度,结合你所学 我可以写,比较多
去看看这本(运筹与模糊学 )里的内容吧
如果太忙没空写作需要原创代笔时可以找我 希望可以帮到你,论文要想写的特别好,拿到高分,最重要的是要把认真两字要记牢,认真收集资料,列好大纲,根据学校格式写,关于法学专业案例论文是我们特长,服务特点:支持支付宝交易,保证你的资金安全。3种服务方式,文章多重审核,保证文章质量。附送抄袭检测报告,让你用得放心。修改不限次数,再刁难的老师也能过。1、论文题目:要求准确、简练、醒目、新颖。2、目录:目录是论文中主要段落的简表。(短篇论文不必列目录) 3、提要:是文章主要内容的摘录,要求短、精、完整。字数少可几十字,多不超过三百字为宜。 4、关键词或主题词:关键词是从论文的题名、提要和正文中选取出来的,是对表述论文的中心内容 有实质意义的词汇。关键词是用作机系统标引论文内容特征的词语,便于信息系统汇集,以供读者检索。 每篇论文一般选取3-8个词汇作为关键词,另起一行,排在“提要”的左下方。 主题词是经过规范化的词,在确定主题词时,要对论文进行主题,依照标引和组配规则转换成主题词表中的规范词语。5、论文正文: (1)引言:引言又称前言、序言和导言,用在论文的开头。 引言一般要概括地写出作者意图,说明 选题的目的和意义, 并指出论文写作的范围。引言要短小精悍、紧扣主题。 〈2)论文正文:正文是论文的主体,正文应包括论点、论据、 论证过程和结论。主体部分包括以下内容:a.提出-论点; b.分析问题-论据和论证; c.解决问题-论证与步骤; d.结论。 6、一篇论文的参考文献是将论文在和写作中可参考或引证的主要文献资料,列于论文的末尾。参考 文献应另起一页,标注方式按《GB7714-87文后参考文献著录规则》进行。中文:标题--作者--出版物信息(版地、版者、版期):作者--标题--出版物信息 所列参考文献的要求是: (1)所列参考文献应是正式出版物,以便读者考证。 T a o,bao两钻信誉,诚信保过,需要详谈
假设法,如果有一个这样的点,则因为他的儿子至少有一个儿子,以此类推,最终到叶子点的时候,就至少有k+1个,矛盾
在中国战国时期,曾经有过一次流传后世的赛马比赛,相信大家都知道,这就是田忌赛马。田忌赛马的故事说明在已有的条件下,经过筹划,选择一个最好的方案,就会取得最好的效果。可见,筹划是十分重要的。现在普遍认为,运筹学是近代应用数学的一个分支,主要是将生产、管理等事件中出现的一些带有普遍性的运筹问题加以提炼,然后利用数学方法进行解决。前者提供模型,后者提供理论和方法。运筹学的思想在古代就已经产生了。敌我双方交战,要克敌制胜就要在了解双方情况的基础上,做出最优的对付敌人的方法,这就是“运筹帷幄之中,决胜千里之外”的说法。但是作为一门数学学科,用纯数学的方法来解决最优方法的选择安排,却是晚多了。也可以说,运筹学是在二十世纪四十年代才开始兴起的一门分支。运筹学主要研究经济活动和军事活动中能用数量来表达的有关策划、管理方面的问题。当然,随着客观实际的发展,运筹学的许多内容不但研究经济和军事活动,有些已经深入到日常生活当中去了。运筹学可以根据问题的要求,通过数学上的分析、运算,得出各种各样的结果,最后提出综合性的合理安排,已达到最好的效果。运筹学作为一门用来解决实际问题的学科,在处理千差万别的各种问题时,一般有以下几个步骤:确定目标、制定方案、建立模型、制定解法。虽然不大可能存在能处理及其广泛对象的运筹学,但是在运筹学的发展过程中还是形成了某些抽象模型,并能应用解决较广泛的实际问题。随着科学技术和生产的发展,运筹学已渗入很多领域里,发挥了越来越重要的作用。运筹学本身也在不断发展,现在已经是一个包括好几个分支的数学部门了。比如:数学规划(又包含线性规划;非线性规划;整数规划;组合规划等)、图论、网络流、决策分析、排队论、可靠性数学理论、库存论、对策论、搜索论、模拟等等。
图与网络的基本概念•在图论中图是由点和边构成可以反映一些对象之间的关系。
主要就是讲经济学中的最优问题。它是运用数学的方法对经济管理的问题进行统筹规划。我个人认为不太好学。东西比较抽象,而且需要有较好的数学功底。