写的不错,是不错,很好 ,可是有的地方写错了 ,我就不说出来了, 希望我进步 。
写作思路:要直接简化任务语言。在叙述中,我们要把直接叙述变成间接叙述,尽可能简化人物语言。这样,即使情节连贯,又使语句“简练”。
今天,我和爸爸坐地铁来到油坊桥去玩,从中我明白了一个道理。
我们先来到地铁,发现地铁有19站,每一站每一站要2分钟,中间停车的时间是1分30秒,这时爸爸给我出了一个难题:如果从经天路到油坊桥一共需要多少分钟?我想了一会儿:“19减去1等于18,18乘以2等于36,18乘以1分30秒等于1小时12分钟。
1小时12分钟加上36分钟等于1小时48分钟。”爸爸听后笑了笑说:“你的算法不太简便,先把19减去1等于18,这样就知道一共有18个停车时间,然后用2分钟加上1分30秒等于3分30秒,再用3分30秒乘以18个站就等于1小时12分钟了!你说这种方法是不是比你的方法简便?”
通过这次坐地铁我明白了生活中虽然有着许许多多的数学,但是有些数学题不简便,等着我们去简便的算它,以后我必须认真的学习数学解答更多的数学难题。
五年级数学小论文500字! 今天,我和妈妈在做数学题。妈妈问我:“阳阳,你会算组合图形的面积吗?”我自以为是地说:“当然会了,这么简单!”妈妈拿出8个完全相同小正方体,摆成一个正方形,问我:“总面积怎么算?”我用直尺量了量,一个正方形的一条边大约是3厘米,我说出算式:“一条边3厘米,那么一个正方形的一个面就是3×3=9(平方厘米),一个正方形有6个面,就是9×6=54(平方厘米),8个就是54×8=432(平方厘米)。”妈妈好像很沮丧,说:“你犯了一个致命的错误!既然是组合图形,有些面肯定会重合了!”我恍然大悟:“对哦。”我又重算了一下:重合了1、2、3、4、5……24个面,24×9=216(平方厘米),432-216=216(平方米)。现在对了吧? 过了一会,妈妈又摆出了另一种组合图形,这个图形上下8个,左右都是2个,前后都是4个,问我:“面积怎么算?”我说:“用 12×6=72(平方厘米)就是上面的面积,再用6×3=18(平方厘米)就是左边的面积,再用12×3=36(平方厘米)就是前面的面积,最后用(72+18+36)×2=252(平方厘米)。”妈妈说:“没有发现一些规律吗?”我看了看,真有嘞!“每个正方体它的上面是什么下面就是什么,左边是什么右边就是什么,前后也一样。”我有些感触。妈妈欣慰地笑了,说“我的女儿真聪明!” 哦,原来如此,组合图形的面积算好前面后面就不要算了,算好上面下面就不要算了,算好左边右边就不要算了。太好了,以后算组合图形的面积就很方便了,你们学会了吗
巧用平均数,同学们我们日常生活中都做过简单有趣的数学问题吧,今天我和大家来分享一题罢问题有¥6超重,鹅卵石他们的重量是8.5千克6千克4千克4千克3千克2千克要求他们分别放在三个背包里,最要求,最终的一个背包尽可能近一点,请写出最终的背包的石头是多少千克,请同学们动手开始吧,接下来我来解答8.5+ 6:00 +6+4+4+3+2 ( ÷3等于9.17千克,这时三个背包的平均数,所以最终的肯定要超过9.17千克,如果¥1中联部,不是整数体育课块平均数为整数,所以最小最重的背包重量只能是9.5 千克10千克在这六个重量中,正好有6+46+4单8.5千克与其余的¥5中做的另一块都不可能得到9.5千克的重量最重的背包的证明,不可能是9.5千克,那么悲观中就可能最小就是10千克,六个重量重正好有个是6+4等于10或4+4+4+2等于10 24+4+2等于10也就是说,可以取到10千克,剩下的石头中4+3+2等于9000客衣个背包中8.5千克,所以这样这道题的正确答案是10千克,同学们你们明白了吗了吗?
娱人娱己 该法规及附件一番热闹和刚才发的话说的明白过,是第八次,十八春,是不错的市场的水泥厂但是才半年市场
1、生活中的数学 数学究竟是什么呢?我们说,数学是研究现实世界空间形式和数量关系的一门科学.它在现代生活和现代生产中的应用非常广泛,是学习和研究现代科学技术必不可少的基本工具,而生活也是缺不了数学的。 现实生活中,我们会看到用正多边形拼成的各种图案,例如,平时在家里、在商店里、在中心广场、进入宾馆、饭店等等许多地方会看到瓷砖。他们通常都是有不同的形状和颜色。其实,这里面就有数学问题。 在用瓷砖铺成的地面或墙面上,相邻的地砖或瓷砖平整地贴合在一起,整个地面或墙面没有一点空隙。这些形状的地砖或瓷砖为什么能铺满地面而不留一点空隙呢? 例如,三角形。三角形是由三条不在同一条直线上的线段首尾顺次连结组成的平面图形。我们知道,三角形的内角和是180度,外角和是360度。用6个正三角形就可以铺满地面。 再看正四边形,它可以分成2个三角形,内角和是360度,一个内角的度数是90度,外角和是360度。用4个正四边形就可以铺满地面。 正五边形呢?它可以分成3个三角形,内角和是540度,一个内角的度数是108度,外角和是360度。它不能铺满地面。 …… 由此,我们得出了。n边形,可以分成(n-2)个三角形,内角和是(n-2)*180度,一个内角的度数是(n-2)*180÷2度,外角和是360度。若(n-2)*180÷2能整除360,那么就能用它来铺满地面,若不能,则不能用其铺满地面。 瓷砖,这样一种平常的东西里都存在了这么有趣的数学奥秘,更何况生活中的其它呢? 至于文艺、体育,也无一不用到数学.我们从中央电视台的文艺大奖赛节目中看到,给一位演员计分时,往往先“去掉一个最高分”,再“去掉一个最低分”.然后就剩下的分数计算平均分,作为这位演员的得分.从统计学来说,“最高分”、“最低分”的可信度最低,因此把它们去掉.这一切都包含着数学道理. 正如华罗庚先生所说的:近100年来,数学发展突飞猛进,我们可以毫不夸张地在用:宇宙之大、粒子之微、火箭之速、化工之巧、地球之变、生物之谜、日用之繁等各个方面,用“无处不有数学”来概括数学的广泛应用.可以预见,科学越进步,应用数学的范围也就越大.一切科学研究在原则上都可以用数学来解决有关的问题. 可以断言:只有现在还不会应用数学的部门,却绝对找不到原则上不能应用数学的领域
五年级数学小论文【一】
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,8684=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,89=72,末尾46=24,89的结果是积的百位和千位,46的结果是积的十位和个位。这题的积是7224。第二题,3452,属于第三种,可以将它乘法变加法,三步完成,第一步,24=8,个位相乘,积的末尾为8。第二步用45+32=26,交叉相乘加起来,写6进2。第三步,十位相乘35=15,15加进的2,等于17,这题的积是1768。第三题,6848,属于第二种,十位数相加等于10,个位数字相同。用64=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,88=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
五年级数学小论文【二】
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?
我思索了一会儿,不慌不忙地说:可以这样算:
51=5305=150(小时)200小时150小时
还可以这样算:
51=52005=40(小时)30小时40小时
由这几步可得出结论,节能灯泡省钱。
妈妈又问我:很好。再想想看,还有没有别的办法来算?
我又想了一会儿,一个字一个字地说:可以用我这学期才学的百分数来算:
5/200100=0.025100=2.5
1/301000.033100=3.3
3.32.5
或者这样算:
200/5100=40100=4000
30/1100=30100=3000
40003000
因此,也是节能灯泡便宜。。
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:生活处处有数学这个道理。
五年级数学小论文【三】
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。
浅谈“如何提高三年级学生的计算能力” 【摘要】计算能力是一项基本的数学能力,包含了计算的准确率和正确率两方面的计算能力,是学习数学和其他学科的重要基础。其中三年级学习的整数乘除法,更是今后学习小数乘除法、分数乘除法的基础,因而整数乘除法的学习就显得格外重要了。令人遗憾的是,三年级学生在实际学习中计算方面所反映出来的情况却很令人担忧。计算时马虎、粗心,没有养成良好的学习习惯,计算的正确率低等等。本文将从计算教学的重要性,学生计算出错的原因以及提高计算能力的策略等方面,探讨如何提高三年级学生的计算能力。 【关键词】计算能力;提高;算法和算理;学习习惯 一、计算教学的重要性。 数与计算是人们在日常生活中应用最多的数学知识,它历来是小学数学教学的基本内容,培养小学生的数学计算能力也一直是小学数学教学的主要目的之一。数学计算能力是一项基本的数学能力,包含了计算的准确率和正确率两方面的计算能力,是学习数学和其他学科的重要基础。在小学数学教材中计算所占的比重很大,学生计算能力的高低直接影响着学生学习的质量。其中三年级学习的整数乘除法,更是今后学习小数乘除法、分数乘除法的基础,因而如何提高三年级学生的计算能力就显得格外重要了。 二、学生现状。 但是,我们三年级学生在实际学习中计算方面所反映出来的情况却很令人担忧,有些学生的计算兴趣不高,计算水平低下,而且由于计算错误,直接导致部分学生的数学成绩较差,丧失了学习数学的兴趣。 三、调查研究,分析错因。 1、算法和算理不明。 算理是运算正确的前提和依据。学生头脑中算理清楚,计算起来就有条不紊,所以,教学时一定要讲清楚算法和算理。对于新学的计算,可以让学生说说第一步算什么,接下来再算什么,在计算时要注意什么等等,通过做和说让学生明白算法和算理。 2、计算时马虎、大意,没养成良好的计算习惯。 学生计算中出现的错误,大多数是粗心大意、马虎、字迹潦草等不良习惯造成的。一般来说,学生在计算中犯的错误,主要有以下几种: (1)题目看错抄错,书写潦草。如:6与0,1和7写得模棱两可。 (2)列竖式时数位没对齐等。 (3)计算时不打草稿。 (4)两、三位数加、减计算错误导致整题错。 (5)做作业时思想不集中。(6)一部分学生审题不够认真,做数学题只读一遍就开始运算,做完也没认真检查。 因此,数学教学应当培养学生作业认真、仔细,书写整洁、格式符合规定,对计算结果自觉检查等学习习惯。因此教学中教师的板演,包括数字的书写、使用直尺画横线等,批改作业的字迹、符号,要做到规范、整洁,以便对学生起到潜移默化的示范作用。 3、对口算的重视程度不够。 在作业中常发现学生把口算题当成笔算来做,习惯于精确计算,不愿意进行口算。在计算进位乘法时,会加错进位上来的数字,这就说明学生的口算能力差,应当加强口算练习。 四、提高三年级学生计算能力的策略。 分析一下小学三年级阶段的数学试题,涉及计算内容的题目在一份试卷中均占80%以上。因此,提高计算的正确率是考试获得高分的一个非常重要条件。如何让学生“正确、迅速、灵活、合理”地进行计算呢?可以从以下几点做起: 1、加强学生对算法和算理的掌握。 要使学生会算,首先必须使学生明确怎样算,也就是加强法则及算理的理解。教学时,教师应以清晰的理论指导学生掌握计算方法,理清并熟练掌握计算方法、运算性质、运算定律以及计算公式的推导方法,培养学生的简算意识。如:教学一位数乘、除两三、位数的竖式计算,可以让学生说说第一步算什么,接下来算什么,在计算时要注意什么等等,通过做和说让学生明白算法和算理。2、加强学生对口算的训练。 小学口算的教学内容,大致可以分为基本口算和简捷速算。作为笔算基础的基本口算。 如:20以内的加减法、表内乘法及相应的除法等,要求学生作到准确熟练、脱口而出。简捷速算的内容主要是应用运算定律、性质及一些特殊的法则方法所进行的简捷速算。如:多做“A×B+C=?”(如,6×7+3=45)的口算练习,这种口算训练可以有效提高学生的乘法进位计算的速度和正确率,减少在进行进位乘法的计算中出现的“只乘忘加进位数字”的问题。 要提高小学生的口算能力,形成一定的口算技能,关键是要持之以恒坚持训练。教师每节课可根据教学内容课前可安排2-3分钟时间进行口算训练,或结合教学实际情况有机渗透口算训练,也可请家长配合此类口算训练。 3、加强对学生良好学习习惯的养成。 培养学生一丝不苟、认真负责的学习态度,养成良好的学习习惯,是防止计算错误、提高计算水平的主要途径和措施。 (1)、培养认真审题的习惯。要求学生对所抄写下来的题目都进行认真校对,细到数字、符号,做到不错不漏。我们经常发现,在学生的作业里,特别是低年级的学生,有漏抄或抄错的现象,审题时要求做到一看、二想、三算、四查。 “一看”就是看清题中的数字和运算符号。需要要做到三点:①抄好题后与原题核对;②竖式上数字与横式上的数字核对;③横式上的得数与竖式上的得数核对。“二想”就是想什么地方可用口算,什么地方要用笔算,是否可用简便计算等。 “三算”就是认真动笔记算。 “四查”就是认真检查。计算完,首先要检查计算方法是不是合理;其次,检查数字、符号会不会抄错,小数点会不会错写或漏写;再次,对计算中途得到的每一个得数和最后的结果都要进行检查和演算. (2)、培养认真计算的习惯。在四则运算中,要训练学生沉着、冷静的学习态度。碰到数字大、步骤多的计算试题时,要做到不急、不燥、冷静思考、耐心计算。即便是简单的计算题也要慎重,切勿草率行事。能口算的则口算,不能口算的应注意认真进行笔算。演算时,要求书写整洁,格式规范,方法合理。 (3)、培养细心检验的习惯。学生在计算时要做到绝对万无一失,不出差错是不可能的。教师要教育学生养成计算后认真检查演算的习惯,把检验当作计算题不可缺少的环节。检验时要做到耐心细致,逐步检查:一查题目中数字是否抄错,二查计算过程、计算结果是否有误,发现错误及时纠正。 4、练习引申。 练习是学生巩固知识、形成技能的重要途径。计算练习需要做到新旧结合,精讲巧练,应形式多样,持之以恒。学生计算水平的提高不可能一蹴而就,加强平时的训练是十分有必要的。为了提高学生的计算能力,可以安排“天天练”,即每天练3~5题的计算题,让学生做到“温故而知新”。总之,培养学生的数学计算能力是一个长期复杂的教学过程,提高学生的数学计算能力也不是一朝一夕的事。俗话说,要想练就一身过硬的本领,就必须得“拳不离手,曲不离口”,良好的计算能力培养也是如此。它是一个日积月累的过程, 只有教师和学生的共同努力才有可能见到成效。
和与差
一天,小明对一些小朋友说:“请你们随意说出2个数来,我会一下子算出它们的和减去它们的差的结果来!”
“真的吗?”小光惊奇地问。
“那当然,请出题吧!”小明自信地说。
于是,小光写出了两道题:
(348+256)-(348—256)
(7564+3125)-(7564-3125)
小光刚写完第2题,小明就立刻说出两题的得数分别是512、6250。大家一起算,得的结果跟小明的一样。
小兰想弄明白小明计算的奥秘,又说出下面4组数:47和23,400和278,120与80,16840与3020。结果小明总是很快就说出了答案。
这时,小明问小兰:“你找出规律了吗?”
“还没找到。不过,我觉得关键在两数中的较小数上。”小兰回答。
“对!你再研究一下得数跟较小数的关系就会明白!”
“我知道了,得数是较小数的2倍!”小光兴奋地说。
小明给大家解释:当我们从两个数的和中减去这两个数的差时,就是从两个数的和中减去了较大数比较小数多的一部分,得到的结果是两个较小数的和,也就是较小数的2倍。”
“原来是这样!”大家这才明白。
《数学课外读物》第八册
另外,这个网业还有更多
有许多人认为数学不但枯燥无味,而且没有实在意义,又难学又没用。
事实上,数学王国并不像人们想象的那样。他也有许多有趣的地方,只要感兴趣,就会觉得它是多么其乐无穷呀:1.三个男人在饭馆里吃饭,共花了250元,每人出100元,找回10元纸币3张和20元纸币一张。
三个人各拿了一张10元纸币,而留下20元纸币。这样,每人支出了90元。
也就是90*3=270(元),再加上没有找开的20元纸币,共290元。那么,那10元哪里去了呢?答:什么也没损失。
注:三个人拿出100元,找回10元,实际上付出90元。三个人支出合计为90*3=270(元)。
其中250元给了侍者,留下20元纸币。所以,把这20元纸币,再加入到270元中去,是不正确的。
2.有一位国王在庆祝太子诞生日时,颁布了大赦令。“对所有的犯人都减刑一半。”
大家听到这一消息后,都很高兴。只是国王的大臣,对终身监禁犯人的处理有所顾虑。
因为,不能知道他们还能活多少年。皇上降下圣旨,“不许有一个例外,所有犯人的刑期都要减刑一半”正在思索中,一个大臣喊道“有了!”那么,这个大臣到底想到了什么呢?答:终身监禁的犯人隔一天关进牢房一次。
注:不能被犯人能活多少年所困惑。3.两个行人想吃面包,一个人拿出4块,另一个人拿出3块。
接着又来了一个行人,就招呼他也来吃饭,每一块面包都切成3片,每一个行人都吃了7片。被招待的那位行人,为了报答,拿出7个金币。
那么,最初两个人,各自得多少金币?答:第一个行人得5个金币,第二个行人得2个金币。注:分得的金币不按出面包的个数(第一个行人3*4=12片,第二个行人3*3=9片)而是给第三个行人吃的面包个数(第一个行人3*4-7=5片,第二个行人3*3-7=2片)4.狗和猫赛跑。
狗每次跳三尺远,猫每次跳两尺远。但狗跳两次的时间内猫可以跳三次。
它们选了两棵相距100尺的树比赛,看谁跳一个来回的时间短,那么比赛结果会怎样呢?答:猫赢。注:猫与狗跳过六尺的时间虽然相同,但狗由于每次必跳出三尺,所以不可能跳到整一百尺,会超过两尺,相当于共跳204尺,比猫多跳四尺,所以狗比猫慢。
有的提看似简单,却实藏陷阱,需处处小心谨慎。看了这4道题一定会觉得妙趣横生,而且会有一定的收获,所以说,数学也是一个蛮有趣味的学科嘛。
趣味数学故事1、蝴蝶效应 气象学家Lorenz提出一篇论文,名叫「一只蝴蝶拍一下翅膀会不会在Taxas州引起龙卷风?」论述某系统如果初期条件差一点点,结果会很不稳定,他把这种现象戏称做「蝴蝶效应」。
就像我们投掷骰子两次,无论我们如何刻意去投掷,两次的物理现象和投出的点数也不一定是相同的。Lorenz为何要写这篇论文呢? 这故事发生在1961年的某个冬天,他如往常一般在办公室操作气象电脑。
平时,他只需要将温度、湿度、压力等气象数据输入,电脑就会依据三个内建的微分方程式,计算出下一刻可能的气象数据,因此模拟出气象变化图。 这一天,Lorenz想更进一步了解某段纪录的后续变化,他把某时刻的气象数据重新输入电脑,让电脑计算出更多的后续结果。
当时,电脑处理数据资料的数度不快,在结果出来之前,足够他喝杯咖啡并和友人闲聊一阵。在一小时后,结果出来了,不过令他目瞪口呆。
结果和原资讯两相比较,初期数据还差不多,越到后期,数据差异就越大了,就像是不同的两笔资讯。而问题并不出在电脑,问题是他输入的数据差了0.000127,而这些微的差异却造成天壤之别。
所以长期的准确预测天气是不可能的。 参考资料:阿草的葫芦(下册)——远哲科学教育基金会2、动物中的数学“天才” 蜜蜂蜂房是严格的六角柱状体,它的一端是平整的六角形开口,另一端是封闭的六角菱锥形的底,由三个相同的菱形组成。
组成底盘的菱形的钝角为109度28分,所有的锐角为70度32分,这样既坚固又省料。蜂房的巢壁厚0.073毫米,误差极小。
丹顶鹤总是成群结队迁飞,而且排成“人”字形。“人”字形的角度是110度。
更精确地计算还表明“人”字形夹角的一半——即每边与鹤群前进方向的夹角为54度44分8秒!而金刚石结晶体的角度正好也是54度44分8秒!是巧合还是某种大自然的“默契”? 蜘蛛结的“八卦”形网,是既复杂又美丽的八角形几何图案,人们即使用直尺的圆规也很难画出像蜘蛛网那样匀称的图案。 冬天,猫睡觉时总是把身体抱成一个球形,这其间也有数学,因为球形使身体的表面积最小,从而散发的热量也最少。
真正的数学“天才”是珊瑚虫。珊瑚虫在自己的身上记下“日历”,它们每年在自己的体壁上“刻画”出365条斑纹,显然是一天“画”一条。
奇怪的是,古生物学家发现3亿5千万年前的珊瑚虫每年“画”出400幅“水彩画”。天文学家告诉我们,当时地球一天仅21.9小时,一年不是365天,而是400天。
(生活时报)3、麦比乌斯带 每一张纸均有两个面和封闭曲线状的棱(edge),如果有一张纸它有一条棱而且只有一个面,使得一只蚂蚁能够不越过棱就可从纸上的任何一点到达其他任何一点,这有可能吗?事实上是可能的只要把一条纸带半扭转,再把两头贴上就行了。这是德国数学家麦比乌斯(M?bius.A.F 1790-1868)在1858年发现的,自此以后那种带就以他的名字命名,称为麦比乌斯带。
有了这种玩具使得一支数学的分支拓朴学得以蓬勃发展。4、数学家的遗嘱 阿拉伯数学家花拉子密的遗嘱,当时他的妻子正怀着他们的第一胎小孩。
“如果我亲爱的妻子帮我生个儿子,我的儿子将继承三分之二的遗产,我的妻子将得三分之一;如果是生女的,我的妻子将继承三分之二 的遗产,我的女儿将得三分之一。”。
而不幸的是,在孩子出生前,这位数学家就去世了。之后,发生的事更困扰大家,他的妻子帮他生了一对龙凤胎,而问题就发生在他的遗嘱内容。
如何遵照数学家的遗嘱,将遗产分给他的妻子、儿子、女儿呢?5、火柴游戏 一个最普通的火柴游戏就是两人一起玩,先置若干支火柴於桌上,两人轮流取,每次所取的数目可先作一些限制,规定取走最后一根火柴者获胜。 规则一:若限制每次所取的火柴数目最少一根,最多三根,则如何玩才可致胜? 例如:桌面上有n=15根火柴,甲、乙两人轮流取,甲先取,则甲应如何取才能致胜? 为了要取得最后一根,甲必须最后留下零根火柴给乙,故在最后一步之前的轮取中,甲不能留下1根或2根或3根,否则乙就可以全部取走而获胜。
如果留下4根,则乙不能全取,则不管乙取几根(1或2或3),甲必能取得所有剩下的火柴而赢了游戏。同理,若桌上留有8根火柴让乙去取,则无论乙如何取,甲都可使这一次轮取后留下4根火柴,最后也一定是甲获胜。
由上之分析可知,甲只要使得桌面上的火柴数为4、8、12、16。等让乙去取,则甲必稳操胜券。
因此若原先桌面上的火柴数为15,则甲应取3根。(∵15-3=12)若原先桌面上的火柴数为18呢?则甲应先取2根(∵18-2=16)。
规则二:限制每次所取的火柴数目为1至4根,则又如何致胜? 原则:若甲先取,则甲每次取时,须留5的倍数的火柴给乙去取。 通则:有n支火柴,每次可取1至k支,则甲每次取后所留的火柴数目必须为k+1之倍数。
规则三:限制每次所取的火柴数目不是连续的数,而是一些不连续的数,如1、3、7,则又该如何玩法? 分析:1、3、7均为奇数,由於目标为0,而0为偶数,所以先取者甲,须使桌上的火柴数为偶数,因为乙在偶数的火柴数中,不可能再取去1、3、7根火柴后获得0,但假使如此。
数学,一个奇妙的字眼,其中蕴含了无限的哲理与数不尽的欢乐。
前几日,我碰到了一道有趣而充满生活情趣的数学题:星期天,明明来看爷爷做积木。只见爷爷拿出一个大正方体,先熟练地拿起刷子给这个大正方体涂满红色,接着又把这个正方体切成27块,最后又把这些小正方体放在阳台上晾晒。趁着这个空闲,爷爷考考明明,你知道三面涂红色的小正方体有几个?两面涂红色的小正方体有几个?一面涂红色的小正方体有几个?全没涂上红色的小正方体有几个?明明想了想,很快就得出了答案,你知道明明的答案吗?
我看这题目,刷刷刷三两下就把题目做了出来,可一对答案,全错了,怎么回事?哦,我把它看成平面图形来计算了,难怪会错。可是,立体图形该如何计算呢?没办法,我只好找来一块正方体橡皮,四周涂成红色,用小刀将其按题目的条件小心地切开。我数了数,发现三面涂色的有8个,两面涂色的有12个,一面涂色的有6个,全没涂色的有1个。我仔细地数了两遍,总觉得其中有着隐隐的规律。我动手拼了拼,再一看,发现三面涂色的是:正方体的顶点数;两面涂色的是:[(一条棱上的个数-2)*12]个;一面涂色的是:[(一条棱上的个数-2)的平方*6]个,全没涂色的是:(总格数-以上的数)个,这难道是巧合吗?我急忙到文具店买了几块正方体橡皮,打算再做两次实验证明一下,我的推测是否正确。
买回橡皮后,我分别将其涂上蓝色和黄色,以便区分,再将它们切成4*4*4和5*5*5,切好后,我数了一下,发现它们三面涂色的都是8个;两面涂色的:蓝色为24个,即(4-2)*12=24、黄色为36个,即(5-2)*12=36;一面涂色的:蓝色为24,即(4-2)*(4-2)*6=24、黄色为54个,即(5-2)*(5-2)*6=54;全没涂色的:蓝色为8个,即64-8-24-24=8、黄色为27个,即125-8-36-54=27。这几个答案与我自己刚才的推算完全一致,我又用这个方法推算了另外几题,都与答案一致,我高兴地一蹦三尺高!
通过这道题,我懂得了数学不仅仅需要逻辑推理,还需要动手实践,这样才能把题目做得更好,更完善!
智斗猪八戒 话说唐僧师徒西天取经归来,来到郭家村,受到村民的热烈欢迎,大家都把他们当作除魔降妖的大英雄,不仅与他们合影留念,还拉他们到家里作客。
面对村民的盛情款待,师徒们觉得过意不去,一有机会就帮助他们收割庄稼,耕田耙地。开始几天猪八戒还挺卖力气,可过不了几天,好吃懒做的坏毛病又犯了。
他觉得这样干活太辛苦了,师傅多舒服,只管坐着讲经念佛就什么都有了。其实师傅也没什么了不起的,要不是猴哥凭着他的火眼金睛和一身的本领,师傅恐怕连西天都去不了,更别说取经了。
要是我也有这么一个徒弟,也能有一番作为,到那时,哈哈,我就可以享清福了。 于是八戒就开始张落起这件事来,没几天就召收了9个徒弟,他给他们取名:小一戒、小二戒…小九戒。
按理说,现在八戒应该潜心修炼,专心教导徒弟了。可是他仍然恶习不改,经常带着徒弟出去蹭吃蹭喝,吃得老百姓叫苦不迭。
老百姓想着他们曾经为大家做的好事,谁也不好意思到悟空那里告状。就这样,八戒们更是有恃无恐,大开吃戒,一顿要吃掉五、六百个馒头,老百姓被他们吃得快揭不开锅了。
邻村有个叫灵芝的姑娘,她聪明伶俐,为人善良,经常用自己的智慧巧斗恶人。她听了这件事后,决定惩治一下八戒们。
她来到郭家村,开了一个饭铺,八戒们闻讯赶来,灵芝姑娘假装惊喜地说:“悟能师傅,你能到我的饭铺,真是太荣幸了。以后你们就到我这儿来吃饭,不要到别的地方去了。”
她停了一下说:“这儿有张圆桌,专门为你们准备的,你们十位每次都按不同的次序入座,等你们把所有的次序都坐完了,我就免费提供你们饭菜。但在此之前,你们每吃一顿饭,都必须为村里的一户村民做一件好事,你们看怎么样?”八戒们一听这诱人的建议,兴奋得不得了,连声说好。
于是他们每次都按约定的条件来吃饭,并记下入座次序。这样过了几年,新的次序仍然层出不穷,八戒百思不得其解,只好去向悟空请教。
悟空听了不禁哈哈大笑起来,说:“你这呆子,这么简单的帐都算不过来,还想去沾便宜,你们是永远也吃不到这顿免费饭菜的。”“难道我们吃二、三十年,还吃不到吗?”悟空说:“那我就给你算算这笔帐吧。
我们先从简单的数算起。假设是三个人吃饭,我们先给他们编上1、2、3的序号,排列的次序就有6种,即123,132,213,231,312,321。
如果是四个人吃钣,第一个人坐着不动,其他三个人的座位就要变换六次,当四个人都轮流作为第一个人坐着不动时,总的排列次序就是6*4=24种。按就样的方法,可以推算出:五个人去吃饭,排列的次序就有24*5=120种……10个人去吃钣就会有3628800种不同的排列次序。
因为每天要吃3顿钣,用3628800÷3就可以算出要吃的天数:1209600天,也就是将近3320年。你们想想,你们能吃到这顿免费钣菜吗?” 经悟空这么一算,八戒顿时明白了灵芝姑娘的用意,不禁羞愧万分。
从此以后,八戒经常带着徙弟们帮村民们干活。他们又重新赢得了人们的喜欢。
取胜的对策 战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。
由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。但是田忌采纳了门客孙膑(著名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。
这是我国古代运用对策论思想解决问题的一个范例。 下面有一个两人做的游戏:轮流报数,报出的数不能超过8(也不能是0),把两面三刀个人报出的数连加起来,谁报数后使和为88,谁就获胜。
如果让你先报数,你第一次应该报几才能一定获胜? 分析:因为每人每次至少报1,最多报8,所以当某人报数之后,另一人必能找到一个数,使此数与某所报的数之和为9。依照规则,谁报数后使和为88,谁就获胜,于是可推知,谁报数后和为79(=88-9),谁就获胜。
88=9*9+7,依次类推,谁报数后使和为16,谁就获胜。进一步,谁先报7,谁就获胜。
于是得出先报者的取胜对策为:先报7,以后若对方报K(1≤K≤8),你就报(9-K)。这样,当你报第10个数的时候,就会取得胜利。
蜗牛何时爬上井? 一只蜗牛不小心掉进了一口枯井里。它趴在井底哭了起来。
一只癞( lai)蛤蟆爬过来,瓮声瓮气的对蜗牛说:“别哭了,小兄弟!哭也没用,这井壁太高了,掉到这里就只能在这生活了。我已经在这里过了多年了,很久没有看到过太阳,就更别提想吃天鹅肉了!”蜗牛望着又老又丑的癞蛤蟆,心里想:“井外的世界多美呀,我决不能像它那样生活在又黑又冷的井底里!”蜗牛对癞蛤蟆说:“癞大叔,我不能生活在这里,我一定要爬上去!请问这口井有多深?”“哈哈哈……,真是笑话!这井有10米深,你小小的年纪,又背负着这么重的壳,怎么能爬上去呢?”“我不怕苦、不怕累,每天爬一段,总能爬出去!”第二天,蜗牛吃得饱饱的,喝足了水,就开始顺着井壁往上爬了。
它不停的爬呀,到了傍晚终于爬了5米。蜗牛特别高兴,心想:“照这样的速度,明天傍晚我就能爬上去。”
数学是美丽的,数学知识是无穷无尽的。数学公式奇妙而神奇,应用题贴近生活,天文地理无所不包,而数学思考题则可以挖掘出你的智慧。“数学是科学的皇后 ”,她的美丽与神秘吸引着我不断去探索数学的奥妙。绕人的语文,杂乱的英语,而数学!像一阵清风吹进了我的心扉,像在喧闹的城市里,耳边蓦地响起的天籁之音,像在百花齐放的花丛中悄然绽放的百合,让人们在炙热的阳光下感受到一缕来自数学的清凉。它引领着我在数学的海洋里遨游,在科学长廊中徜徉。
那一个个奇妙的数字,那一个个有趣的符号,都帮助我开启科学大门的金钥匙。同时,它们又是细心和认真的考验,让我随时随地迎接挑战。奠定基础,才能让美丽的科学之花慢慢开放。口算、递等式、速算和巧算就像是地基,只有把它建牢固了,上面就可以盖上高楼 大厦了;反之,如果地基不牢,楼没盖多高,就会出事故。在做计算题时,要用细心加上做题的耐心,只有这样,才能得到百分之百的开心。相比之下,应用题就要更生动活泼一些了。
应用题,仿佛就是生活的一个缩影,在这里,可以看到不同的场景。利用所学过的数学知识去解决一个个生活中的问题,当然是快乐的。但是解决问题的前提,仍然是掌握好基础知识,然后再灵活运用。我的数学老师说过:数学来自于生活,又用于生活。这句话在这一道道应用题上,体现出来了。应用题巧妙地将生活与数学融为一体,也在以它独特的方式告诉人们生活里处处都有数学。从你早上睁开眼到晚上闭上眼进入梦乡的这段时间,无非是一个体验、探索数学的过程:从家到学校的路程,上课的时间等等。在应用题的基础上,思考题则更加具有挑战性。
思考题是一个放飞思维的平台,它擦出你智慧的火花,点燃那胜利的火炬。它像一个纸老虎,掌握技巧,你就可以轻松地征服它。我很喜欢思考题,它可以让我看到我的思维在跳跃,在飞翔……那一道道思考题,就像一道道关卡。集中精力,调动你的大脑,不断地去分析、推敲,直到得出了答案。这种成功感是只有数学才能带给我的。
科学的皇后是美丽的。让我们携手畅游在科学的海洋里,去揭开这位皇后神秘的面纱,共同探索数学的奥妙吧!
数学趣味小故事 故事一: 动物城对称图形 有一天,一只蝴蝶在动物城的花丛里飞来飞去,一只小蜻蜓飞过来,说:"小蜻蜓,咱们一起玩吧。
"小蝴蝶说:"我是蝴蝶,你是蜻蜓,怎么能在一起玩呢?"小蜻蜓说:"在图形王国里,我们就是一家的,另外还有许多家庭成员呢?不信,我领你去看。
"一路上,蝴蝶看到了许多美丽的景色,还看见了许多动物:有美丽的孔雀,知了,七星瓢虫。
小朋友们,它们美吗?你觉得它们哪儿美呢? 故事二 : 张三的生死可能性 古时候,有一位糊涂的县官,因为听信他师爷的谗言,就把无辜的张三抓了起来,在审问时,他对张三说:"明天给你最后一次机会,到时我这里有两枚签,一枚签上写着'死'字,另一枚签上写着'生'字,你抽到哪一枚签,就判你什么。"小朋友,如果让张三抽的话,可能会怎样呢?" 可是,一心想害死张三的师爷却在两个签上都写了一个"死"字,小朋友,如果再让张三抽的话,结果会怎样呢?幸亏张三的一位朋友把这个消息告诉了他。
第二天,县官在开堂时,让张三抽签。张三抽了一枚签,连忙吞进肚子里。
县官只好打开另一枚签,发现上面写着"死"字,以为张三抽到的是"生"字签,就只好放了张三。
有趣的数学我觉得,在日常生活中,数学是在有趣不过的了。
比如一道有趣的应用题、一道有趣的算式、一个有意思的解法……这个月,我亲眼看到了数学的有趣。记得这个月的某一天,数学老师王老师在课堂上给我们讲了探索与发现(一)——有趣的算式。
在这节课中我们连闯4关,并且全部通过。第一关:奇妙的宝塔,里面就有一些有趣的算式:1*1=1 11*11=121 111*111=12321 1111*1111=? 11111*11111=?我刚开始想:举例的算式答案都是重1开始数一次多加一个结尾倒着数,答案应该是:1234321,123454321。
第二关:奇怪的142857。第三关:神奇的9。
第四关:寻找神秘的数。我都是按照同样的思路来计算,就这样,发现了数学的有趣。
这样的例子还有很多很多,因为数学是非常的有趣,所以,我会不断寻找数学的有趣,因为只有通过寻找数学的有趣,才能激发兴趣,只有坚持才能成功。
今天我从《小学生数学提高题》里看到一题:小高捉了只虫子,放在瓶高只有10厘米的没盖的瓶子里,如果小虫每次只能跳2厘米,问跳几次才会出来?这是一道趣味题,初想:只要用瓶高除以小虫跳的高度也就是10÷2=5,是这样吗?这是绝对不对的。
小虫跳一次后会落在原地,它不会悬在2厘米的空中跳得起来,也就是说它跳10次或者无数次只能跳的2厘米的高度,连3厘米也跳不到,何况是10厘米的高度了。知道这点答案就有了:它无论多少次都跳不出来,设想一下如果瓶子是倒下放的,它跳会不会跳出来?可能不会,因为跳的方向只能朝上。
但是,假如它只要沿瓶壁方向向上跳五次也许可能成功。因此,考虑问题一定从实际出发,不要被表面现象迷倒,具体问题具体解决,分析题内联系,抓住关键词语,认真审题,积极思考,相信再复杂的问题都能简单化、简单的容易化。
同学们,多做些趣味题,提高对数学的兴趣和爱好。不断探索,不懈追求,灵感会不断涌现出来。
哈哈!四季真是太有趣了,一会儿大地复苏,一会儿烈日炎炎,一会儿秋高气爽,一会儿寒风刺骨.让我们一起走进千变万化的四季吧!go!出发喽!
首先来到春天,春天万物复苏,冰雪融化,瞧!春姑娘正迈着轻快的脚步走来.春姑娘来了,大地也就从冬寒中苏醒过来了,被人们砍伐的草木又重新从土里茁壮地长出嫩芽.几阵春雨过后,她留下的是一片经过精心滋润的万物.小草更加嫩绿,毛茸茸的惹人喜爱,一排排高大的钻天杨上,新绿的叶子显得十分水灵、饱满.这就是真正的春天.
接着来到夏天,夏天骄阳似火,热风扑面,让人难以忍受.夏大哥气喘吁吁的跑来了,在一望无际的绿草中,隐隐约约可以看见一只只彩蝶在草丛中翩翩起舞,这时蜻蜓也来凑热闹,蜻蜓落在草尖上,随着微风摇来摇去.这就是真正的夏天.
然后我们来到秋天.秋天是金色的海洋.秋风萧瑟,层林尽染;在阳光的照耀下,闪闪发光.枯黄的树叶从树上飘落,像一只只蝴蝶在空中飞舞.这就是真正的秋天.
最后我们来到冬天,这是一个十分寒冷的季节.北风呼啸,雪花纷纷.雪,潇潇洒洒,宛如天鹅弹落的华衣;依依袅袅,犹如仙女剪碎的祥云;密密麻麻,恰似玉人摇落的梨花······这就是真正的冬天.
你看,四季的变化多么大呀!四季真是太有趣了!
三年级数学小论文写法要点如下:1、科学选择题目:写作小论文的第一步,就是要确定研究的对象,考虑研究什么问题,选择好题目就等于完成小论文的一半,可见小论文选题的重要性;2、全面搜集材料:搜集材料有多种途径,可到图书馆查阅资料,或搞实地调查,采访,或上网搜寻所需材料,应注意材料的准确性;3、准确提炼观点:提炼观点就是对材料进行分析,比较,概括后提出自己的看法;4、理安排结构:安排结构应当针对不同类型的专题小论文灵活掌握;5、精心起草修改:起草修改,按照提纲写出初稿并修改,不仅是细致的语言表达工作,而且是研究深入化和思维周密化的过程,要力求准确和严密。
(1) 写什么 写小论文的关键,首先就是选题,大家的选题要从自己最熟悉的、最想写的内容入手。 下面我结合我校同学部分获奖论文的选题,进行一点简单的选题分析。 论文按内容分类,大概有以下几种: ①勤于实践,学以致用,对实际问题建立数学模型,再利用模型对问题进行分析、预测; 如:探究大桥的热胀冷缩度 ②对生活中普遍存在而又扰人心烦的小事,提出了巧妙的数学方法来解决它; 如: 一台饮水机创造的意想不到的实惠 ③对数学问题本身进行研究,探索规律,得出了解决问题的一般方法 如: 分式“家族”中的亲缘探究 如: 纸飞机里的数学 ④对自己数学学习的某个章节、或某个内容的体会与反思 如: “没有条件”的推理 如: 小议“黄金分割” 如: 奇妙的正五角星 (2) 怎样写 ① 课题要小而集中,要有针对性; ② 见解要真实、独特,有感而发,富有新意; ③ 要用自己的语言表述自己要表达的内容 (四) 评价数学小论文的标准
小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种……当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,86×84=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,8×9=72,末尾4×6=24,8×9的结果是积的百位和千位,4×6的结果是积的十位和个位。这题的积是7224。第二题,34×52,属于第三种,可以将它乘法变加法,三步完成,第一步,2×4=8,个位相乘,积的末尾为8。第二步用4×5+3×2=26,交叉相乘加起来,写6进2。第三步,十位相乘3×5=15,15加进的2,等于17,这题的积是1768。第三题,68×48,属于第二种,十位数相加等于10,个位数字相同。用6×4=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,8×8=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5÷1=5 30×5=150(小时) 200小时>150小时
还可以这样算:
5÷1=5 200÷5=40(小时) 30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的"百分数″来算:
5/200×100=0.025×100=2.5
1/30×100≈0.033×100=3.3
3.3>2.5
或者这样算:
200/5×100=40×100=4000
30/1×100=30×100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。
0是一个神秘的数字,它像宇宙中的奥秘一样,让人捉摸不透。0也是一个重要的数字,如果你一不小心,多添了一个0或少加了一个0的话,那后果真是不堪设想。这次的数学考试,让我真正领略了0的重要性。当考卷发下来的时候,99分!我立即寻找错误点。结果令我目瞪口呆。原来是4500÷90这道题。“怎么可能这么简单的题我也会出错?”我心里嘀咕道。想起当时在口算45000÷90这道题时,我轻而易举地写下50,还十分自信,可到头来一计算原来得500,差了一个0。这是多少不应该的呀!不该错的也错了,想必0是多么重要呀!如果我以后当了公司的财务总经理,别人来提钱,本来要提10000元,我却多加了一个0--100000,在帐单上仍然记了10000元。那这90000元我向谁来要呀!这一切后果都得我承担啊。通过这件事,我明白了在工作上、学习上都要一丝不苟,要不然后果非常严重。
现在小学五年级就已经要求写数学论文了吗,不知道小学五年级的数学论文要写到哪种程度和深度
小学数学论文写法如下:1.科学性教学论文是教学经验的科学总结,首先要立论正确,论据严谨,符合教学规律。2.实用性教学论文是教学经验的升华,既来源于教学又服务于教学。因此,所引用的材料应该翔实可信,所介绍的方法应该切实可行,能够为同行所借鉴,有一定的推广价值。3.独创性教学论文必须具有论文的共性,即应该要么在理论上有创见,或者至少有新的认识,要么在方法上有创新,或者至少有新的体会,这样才能对教学和教学研究起到推动作用。4.可读性教学论文必须具有文章的共性,即要有章法,要有风采,要有吸引力。遣词造句要符合人们的阅读习惯,容易让人理解。
我对两位数乘两位数有一定的看法。其中,并非都需要列竖式计算,两位数乘两位数有许多种,我先说出其中的五种。第一种,个位相加等于10,十位数字相同。第二种,十位数相加等于10,个位数字相同。第三种,十位、个位相加既不不等于10既,也不相同,没有任何规律。第四种,个位相加等于10,但是十位数字不相同。第五种,十位相加等于10,但是个位数字不相同。第六种……当然,我并非知道所有种类,但是也略知皮毛,至少是可以写出前三中的简便方法来的。
我列几题来看:第一题,86×84=多少。86和84个位相加等于10,十位数字相同,是第一种情况。可以这样计算:8+1=9,8×9=72,末尾4×6=24,8×9的结果是积的百位和千位,4×6的结果是积的十位和个位。这题的积是7224。第二题,34×52,属于第三种,可以将它乘法变加法,三步完成,第一步,2×4=8,个位相乘,积的末尾为8。第二步用4×5+3×2=26,交叉相乘加起来,写6进2。第三步,十位相乘3×5=15,15加进的2,等于17,这题的积是1768。第三题,68×48,属于第二种,十位数相加等于10,个位数字相同。用6×4=24,24+8=32,积的千位和百位是3和2。最后末尾相乘,8×8=64,十位和个位是6和4,这题的积是3264。
当然还有一种指算法。我就不多说了,我就不一一介绍了。看了我的方法,你们觉得是我的好,还是数学报上老土的方法好。
今天,妈妈要去买灯泡。到了超市,发现超市里有两种灯泡:一种是节能灯泡,一种是普通灯泡。节能灯泡虽然开200小时只需要用一度电,比普通灯泡一度电多用170个小时,但是它一个要5元,;普通灯泡一个只要1元,比节能灯泡便宜4元,但是它30个小时就要用一度电。
妈妈问我:“考考你,如果我要买一个灯泡回家,买哪种的灯泡最划算?”
我思索了一会儿,不慌不忙地说:“可以这样算:
5÷1=5 30×5=150(小时) 200小时>150小时
还可以这样算:
5÷1=5 200÷5=40(小时) 30小时<40小时
由这几步可得出结论,节能灯泡省钱。”
妈妈又问我:“很好。再想想看,还有没有别的办法来算?”
我又想了一会儿,一个字一个字地说:“可以用我这学期才学的"百分数″来算:
5/200×100=0.025×100=2.5
1/30×100≈0.033×100=3.3
3.3>2.5
或者这样算:
200/5×100=40×100=4000
30/1×100=30×100=3000
4000>3000
因此,也是节能灯泡便宜。。”
我和妈妈买了比较划算的节能灯泡回去了。
经过这件事,我明白了:“生活处处有数学”这个道理。
生活处处有数学,今天我来到超市,验证了这一真理。通过比较,我还发现有的东西套装卖比单个买更贵一点。
我来到有火腿肠的架子上,货架上摆着一包一包的火腿肠,同样品牌,同样重量,里面有10根,每包4.30元。到底买一包一包的呢,还是买一根一根的?我犹豫了。突然,我的脑子一转,有了,只要比较一下,哪一种合算就买哪一种。于是我开始算起来:零卖的如果买10根,每根4角,共是4元,而整包的要4.30元,多了3毛钱,所以套装比散装更贵。
我来到饮料货台,一瓶250ml的凉茶1.75元,但是货柜上整箱16瓶装的却标价30.4元,如果按1.75元的单价买16瓶,只需28元,显然单瓶购买比整箱购买少用2.4元。310ml王老吉罐装饮料一瓶3.4元,整箱12瓶装的标价42元,如果以3.4元的单价买12瓶则只需40.8元,比整箱购买便宜了1.2元;而同样的该品种,24瓶装一箱标价90.7元,如按3.4元的零售价买24瓶才81.6元,比整箱购买整整少了9.1元。旁边的啤酒每罐单价2.9元,24瓶应收69.6元,但是超市收款76.8元。整整多出7.2元,都可以多买2罐啤酒了。
同学们,数学是很奥妙的,也是很灵活的,除了我刚才提到的以外,生活中的数学还有很多种呢!所以学数学就是为了能在实际生活中应用,来解决实际问题的,数学问题就产生在生活中。希望同学们到生活中学数学,在生活中用数学,数学与生活密不可分,学深了,学透了,自然会发现,其实数学很有用处。