首页

> 学术发表知识库

首页 学术发表知识库 问题

移动机器人路径规划研究论文

发布时间:

移动机器人路径规划研究论文

本文仅供学习使用,并非商业用途,全文是针对哈尔滨工业大学刘文之的论文《移动机器人的路径规划与定位技术研究》进行提炼与学习。论文来源中国知网,引用格式如下: [1]刘文之. 基于激光雷达的SLAM和路径规划算法研究与实现[D].哈尔滨工业大学,2018.

相关坐标系转换原理已经在前一篇文章写完了,直接上转换方程。

这里他的运动模型选择的是基于里程计的运动模型,还有一种基于速度的运动模型,其实都差不多,整体思想都一样。里程计是通过计算一定时间内光电编码器输出脉冲数来估计机器人运动位移的装置,主要是使用光电码盘。根据光电码盘计算出此时轮子的速度,然后通过已知的轮子半径来获得单位时间 每个轮子 的位移增量。

高等数学可知单位时间位移增量就是速度,对速度在一定时间上进行积分就得到这一段时间所走过的路程。

根据上图,我们可以求出来机器人航向角角速度、圆弧运动半径和机器人角度变化量,由此可以解的机器人在当前时刻的位姿。

实际上也是有误差,所以单独依靠里程计会与实际结果产生较大误差,所以必须引入其他的外部传感器对外部环境的观测来修正这些误差,从而提高定位精度。

首先肯定需要将激光雷达所测得的端点坐标从极坐标、机器人坐标中转换到世界坐标中。

这张略过,暂时不需要看这个

路径规划算法介绍:

因为该算法会产生大量的无用临时途径,简单说就是很慢,所以有了其他算法。

了解两种代价之后,对于每一个方块我们采用预估代价与当前路径代价相加的方法,这样可以表示每一个路径点距离终点的距离。在BFS搜索过程的基础上,优先挑选总代价最低的那个路径进行搜索,就可以少走不少弯路。(算法讲解 )

在局部路径规划算法之中,我们选用DWA算法(dynamic window approach),又叫动态窗口法。动态窗口法主要是在速度(v, w)空间中采样多组速度,并模拟机器人在这些速度下一定时间内的轨迹。在得到多组轨迹后,对这些轨迹进行评价,选取最优的轨迹所对应的速度来驱动机器人运动。 state sampling就是按照之前给出的全局路径规划,无论是Dijkstra还是A* 都可以方便的得到state sampling,DWA算法所需要提前建立的action sampling有两种:

但是无论是什么情况,上述所做的工作就是把机器人的位移转化到世界坐标中来,而不是机器人坐标系。速度采样结束之后,只需要对小车的轨迹进行评判,就可以得到最优解了。下面介绍速度采样的办法。

对速度进行采样一般有以下三个限制:

当确定了速度范围之后,就需要根据速度分辨率来对小车速度离散化,在每一时刻将小车在不同直线速度角速度组合下所即将要行驶的距离都可视化出来。

其中每一条轨迹都是很多小直线连接起来的。

需要用评价函数来对上述轨迹进行选择,选择最适合的轨迹

最后为了让三个参数在评价函数里所发挥的作用均等,我们使用归一化处理来计算权重。

算法流程整体如下:

随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 4.1 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 4.2 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 4.3 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为8KG.CM,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为1.5A,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 4.1精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 4.2视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 4.3人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 1.1 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 1.2 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 2.1 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 2.2 igm焊接机器人常见故障处理 2.2.1 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 2.2.2 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为9.7Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф1.2)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф1.2规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 2.2.3 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为8.9V,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 2.3 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文

自主移动机器人的案例研究论文

随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 4.1 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 4.2 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 4.3 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为8KG.CM,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为1.5A,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 4.1精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 4.2视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 4.3人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 1.1 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 1.2 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 2.1 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 2.2 igm焊接机器人常见故障处理 2.2.1 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 2.2.2 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为9.7Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф1.2)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф1.2规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 2.2.3 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为8.9V,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 2.3 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文

目前,国内AMR在工业物流领域的应用并不多,产业规模较小。但应用端对于AMR的认可度正在逐步提高,有利于后续市场规模的快速扩展。随着产业升级对国内制造及物流场景的快速应变能力的要求不断提高,AMR这种高度自动化的柔性搬运设备,将会是未来产业升级自动化的大方向。

传统工业移动机器人即AGV(Automated Guided Vehicle.即自动导引运输车),其概念源自工业应用。自1953年第一台AGV问世以来,AGV就被定义为在工业物流领域解决无人搬运运输问题的车辆。

但由于20世纪移动机器人技术不发达,AGV行业经历了40多年发展,市面上的AGV都还是在导引技术里面迭代升级,发展了电磁感应引导、磁导条引导、二维码引导等技术AGV属于自动设备,需要沿着预设轨道、依照预设指令执行任务,不能够灵活应对现场变化。导引线上出现障碍物时只能停等、多机作业时容易在导引线上阻塞,影响效率。在大量的要求搬运柔性化的场景中,这类AGV并不能满足应用端的需求。

随着传感器和人工智能技术的发展,人们开始为轮式移动设备引入越来越多的传感器和智能算法,不断增强其环境感知和灵活运动的能力,逐渐发展出新一代自主移动机器人AMR(Autonomous Moblile Robot)。AMR是在传统AGV之后发展起来的新一代具有智能感知、自主移动能力的机器人技术。

全球市场分析

几十年来,更多的自动化解决方案取代了工作岗位。自动化早已被应用于制造业、汽车工业是其先驱。制造业之外,人工智能和自动化的使用继续威胁着几乎所有可以想象的领域的工作岗位。物流和制造业中,两个非常明显的原因让机器人取代了人工人。

首先,企业需要应对不断上升的人力成本,以便降低总体运营成本。当然,更重要的是,制造工厂和物流中心的空缺岗位缺乏可用的工人。

2018-2020年,全球工业移动机器人销售数量和金额逐年增长,到2020年工业移动机器人出货量为70602台,销售额为23.588亿美元,分别同比增长42%和25%;从平均销售收入来看,2018-2020年呈现逐年递减的态势,随着市场和技术日益完善,产品单价逐渐下降。

注:以上数据为AGV和AMR的合计。

从销售产品结构来看,2020年AGV销售额为12.684亿美元,占比53.8%,AMR销售额为10.903亿美元,占比46.2%;从占比变化趋势来看,AMR销售规模增长较快,市场份额从2018年的29.9%增长到2020年的46.2%。

随着深度学习算法的成熟商业化,AMR还有进一步的增长空间。根据Interact Analysis预测,对制造业柔性的需求、产品周期缩短和加快、降低成本以及对人身安全的需求增加等因素将驱动AMR市场近五年持续保持两位数增长,并且预计到2022年,全球移动机器人中对AMR的需求、收入和销量预计将超过AGV。

中国市场现状

根据中国移动机器人产业联盟资料,2019年中国市场自主导航AMR销量在总体工业应用移动机器人销售数量中占比4%左右,销量在1500余台左右。根据增长趋势预计,2020年国内市场自然导航AMR出货量大概在2800台左右,年增长率约为86%,市场规模约在5.6亿。

目前,国内AMR在工业物流领域的应用并不多,产业规模较小。相较于传统的磁导AGV而言,AMR起步较晚,技术相对来说还没有那么成熟,目前还处于市场培育期。随着市场培育的进一步发展,应用端对于AMR的认可度正在逐步提高,将有利于后续市场规模的快速扩展。

注:以上统计的工业应用自然导航AMR数据包括应用在工业及物流领域中,不依靠任何标识,具备自主导航能力,由车载控制系统控制,以轮式特征为特征,自带动力或动力转换装置的机器人数据。

市场竞争格局

伴随着行业的发展,近几年进入工业移动机器人这一领域的企业越来越多,这其中有以AMR切入市场的新企业,如迦智科技、优艾智合等,也有从传统AGV和仓储机器人领域切入“新赛道”的企业,如极智嘉、新松机器人等。

从国内AMR市场不同企业的市场份额来看,目前专注于这一领域的自主导航AMR厂商占据了59%的市场份额,其次是仓储机器人厂商,占整体市场份额的17%,还有传统AGV厂商和物流集成商分别占比例15%和5%。

整体来看,相比于其他类型的厂家,专注该细分产品领域的自然导航AMR企业入局早,项目经验更加丰富,产品已经经过成熟验证,拥有较大市场竞争优势。

行业发展趋势

伴随着生产制造的发展,对制造灵活性的需求增加、产品周期缩短和加快、劳动力成本上升以及对使用环境人类安全趋势的需求的上升,都要求制造及物流场景必须具备快速应变能力以及更高的效率。AMR这种高度自动化的柔性搬运设备,将会是未来产业升级自动化的大方向。

—— 以上数据及分析来源参考前瞻产业研究院发布的《中国工业机器人行业产销需求预测与转型升级分析报告》

履带式移动机器人设计与研究论文

数字化家庭是未来智能小区系统的基本单元。所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。 数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。 传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。 本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。2 智能机器人的总体设计 2.1 智能机器人的多传感器系统 机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。智能机器人的多传感器系统框图如图1所示。 2.2 智能机器人控制系统 机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。 如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。 控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。 (2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。 (3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。 (4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现 智能机器人对于数字化家庭的医疗保健可以提供如下的服务: (1)医疗监护 通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。 (2)远程诊断和会诊 通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。 3.1机器人视觉与视频信号的传输 机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。 机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程: (1)图像获取。通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。 (2)图像处理。图像到图像的变换,如特征提取。 (3)图像理解。在处理的基础上给出环境描述。 通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求: (1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。 (2)医生借助动态画面查看家庭成员的身体移动能力时,可以传送分辨率较低和尺寸较小的图像,采用的方法是进行合理的压缩和恢复以保证实时性。 3.2机器人听觉与音频信号的传输 机器人采集的音频信号也有2种作用:一是提供机器人听觉;二是借助于音频信号,家庭成员可以和医生进行沟通,医生可以了解家庭成员的健康状况和心态。音频信号的传输为医生对家庭成员进行医疗保健提供了语言交流的途径。 机器人听觉是语音识别技术,医疗保健智能机器人带有各种声交互系统,能够按照家庭成员的命令进行医疗测试和监护,还可以按照家庭成员的命令做家务、控制数字化家电和照看病人等。 声音的获取采用多个立体麦克风。由于声音的频率范围大约是300hz一3400hz,过高或过低频率的声音在一般情况下是不需要传输的,所以只用传送频率范围在1000hz-3000hz的声音,医生和家庭成员就可以进行正常的交流,从而可以降低传输音频信号所占用的带宽,再采用合适的通信音频压缩协议即可满足实时音频的要求。智能机器人的听觉系统如图3所示。3.3各项生理信息的采集与传输 传统检测设备通过有线方式连到人体上进行生理信息的采集,各种连线容易使病人心情紧张,从而导致检测到的数据不准确。使用蓝牙技术可以很好地解决这个问题,带有蓝牙模块的医疗微型传感器安置在家庭成员身上,尽量使其不对人体正常活动产生干扰,再通过蓝牙技术将采集的数据传输到接收设备并对其进行处理。 在智能机器人上安装1个带有蓝牙模块的探测器作为接收设备,各种医疗传感器将采集到的生理信息数据通过蓝牙模块传输到探测器,探测器有2种工作方式:一是将数据交给智能机器人处理,提供本地结果;二是与internet连接(也可以通过gsm无线模块直接发回),通过将数据传输到远程医疗中心,达到医疗保健与远程监护的目的。视频和音频数据的传输也采用这种方式。智能机器人的数据传输系统如图4所示。 4 蓝牙模块的应用 4.1蓝牙技术概况 蓝牙技术[4]是用于替代电缆或连线的短距离无线通信技术。它的载波选用全球公用的2.4ghz(实际射频通道为f=2402 k×1mhz,k=0,1,2,…,78)ism频带,并采用跳频方式来扩展频带,跳频速率为1600跳/s。可得到79个1mhz带宽的信道。蓝牙设备采用gfsk调制技术,通信速率为1mbit/s,实际有效速率最高可达721kbit/s,通信距离为10m,发射功率为1mw;当发射功率为100mw时,通信距离可达100m,可以满足数字化家庭的需要。 4.2蓝牙模块 rokl01007型蓝牙模块[5]是爱立信公司推出的适合于短距离通信的无线基带模块。它的集成度高、功耗小(射频功率为1mw),支持所有的蓝牙协议,可嵌入任何需要蓝牙功能的设备中。该模块包括基带控制器、无线收发器、闪存、电源管理模块和时钟5个功能模块,可提供高至hci(主机控制接口)层的功能。单个蓝牙模块的结构如图5所示。 4.3主,从设备硬件组成 蓝牙技术支持点到点ppp(point-t0-point pro-tocol)和点对多点的通信,用无线方式将若干蓝牙设备连接成1个微微网[6]。每个微微网由1个主设备(master)和若干个从设备(slave)组成,从设备最多为7台。主设备负责通信协议的动作,mac地址用3位来表示,即在1个微微网内可寻址8个设备(互联的设备数量实际是没有限制的,只不过在同一时刻只能激活8个,其中1个为主,7个为从)。从设备受控于主设备。所有设备单元均采用同一跳频序列。 将带有蓝牙模块的微型医疗传感器作为从设备,将智能机器人上的带有蓝牙模块的探测器作为主设备。主从设备的硬件主要包括天线单元、功率放大模块、蓝牙模块、嵌入式微处理器系统、接口电路及一些辅助电路。主设备是整个蓝牙的核心部分,要完成各种不同通信协议之间的转换和信息共享,以及同外部通信之间的数据交换功能,同时还负责对各个从设备的管理和控制。 5 结束语 随着社会的进步,经济的发展和人民生活水平的提高,越来越多的人需要家庭医疗保健服务。文中提出的应用于数字化家庭医疗保健服务的智能机器人系统的功能较为全面,且在家用智能机器人、基于蓝牙技术的智能家居和数字化医院等方面的拓展应用非常广阔,具有极大的市场潜力。 更多论文请到文秘杂烩网 采纳哦

我的论文,基于STM32的多关节机器人设计,图文详细,绝对满足你的需求

网页链接

随着科技的进步,智能机器人的性能不断地完善,因此也被越来越多的应用于军事、排险、农业、救援、海洋开发等方面。这是我为大家整理的关于机器人的科技论文,供大家参考!机器人的科技论文篇一:《浅谈智能移动机器人》 摘要:随着科技的进步,智能机器人性能不断地完善,移动机器人的应用范围也越来越广,广泛应用于军事、排险、农业、救援、海洋开发等。介绍了常见智能移动机器人的基本系统组成及其相关的一些技术,提出一种能够应用于智能移动机器人的越障机构,并简单阐述了其工作原理。在对智能机器人有一定了解的基础上,论述了智能移动机器人的研究现状及其发展动向。 关键词:智能移动机器人越障避障伸展收缩 1 引言 上世纪60年代智能机器人的出现开辟了智能生产自动化的新时代。在工业机器人问世50多年后的今天,机器人已被人们看作是不可缺少的一种生产工具。由于传感器、控制、驱动及材料等领域的技术进步开辟了机器人应用的新领域。智能移动机器人是机器人学中的一个重要分支。 2 智能移动机器人的基本系统组成及其相关技术 由于智能移动机器人在危险与恶劣环境以及民用等各方面具有广阔的应用前景,使得世界各国非常关注它的发展。其共同的五大系统组成要素为:(1)机械机构单元是智能移动机器人的骨架,机器人所有的模块都依靠其支撑,机械机构单元的结构,性能,强度直接影响着整个机器人的稳定性。随着科技发展和新型材料的研制开发,使得智能机器人产品的结构性能有了很大提高,机械机构的各项工艺性及尺寸设计都向着更加合理高效,更加轻便美观,更加环保节能,更加安全可靠等方向发展。(2)动力与驱动单元为智能移动机器人提供动力来源。(3)环境感知单元相当于智能移动机器人的五官,机器人通过感知单元对周围的环境进行感知识别及各种参数的收集,然后通过转换成控制模块可以识别的光电信号,输入到控制单元进行数据处理。(4)执行机构单元为智能移动机器人执行部分,能根据控制中心的命令执行命令,完成任务。不同的机器人有着不同的执行机构,执行机构的设计影响着对要执行动作的效率,精度,稳定性,可靠性等。(5)信息处理与控制单元作为整个机械系统的核心部分,它如人的大脑一样,调控着整个系统,一切的活动都由它指挥。将来自传感器部分采集到的信息进行集中汇总,存储,对所有信息分析,规划决策,输出命令。使机器人有目的的运行。 智能移动机器人是一个集环境感知、动态决策与规划、行为控制与执行等多种功能于一体的综合机电系统。它是传感器技术,控制技术,移动技术,信息处理、人工智能、电子工程、计算机工程等多学科的重要研究成果,从某种意义上讲是机器发展进化过程中的产物,是目前科学技术发展最活跃的领域之一。 3 一种越障机器人 我们设计的移动机器人(图1)有很好的机动性能,前导轮、前轮和后轮可以实现独立升降运动。前导轮(如图1)由通过曲柄圆盘的转动角度控制摇杆的摆动角度,带动相关的平面连杆机构运动,从而实现前导向轮的伸展和收缩实现攀越。机器人两侧的侧边驱动机构为平面连杆-滑块越障机构,前后轮(如图1)分别通过导杆在槽中的移动,带动平面连杆机构的运动,实现前后轮的伸展和收缩,实现越障功能。本机器人通过尺寸的设计可以实现较大的越障高度,通过合理的控制轮摆动的角度还能实现多种类型障碍物的攀越。 4 智能移动机器人的应用概况 随着科技的进步,机器人的功能不断完善,智能移动机器人的应用范围也大大拓宽,不仅在工业、农业、医疗、服务等行业中得到广泛的应用,而且在排险、海洋开发和宇宙探测领域等有害与危险场合(如辐射、灾区、有毒等)得到很好的应用。 4.1 陆地智能移动机器人 20世纪60年代后期,苏美为了完成对宇宙空间的占领,完成月球探测计划,各自研制开发并应用了移动机器人,通过移动机器人实现对外星土壤的样本采集和土壤分析等各种任务。陆地智能移动机器人的出现是为了帮助人类完成无法完成的任务。陆地移动机器人也广泛应用于军事,可以完成排除爆炸物,扫雷,侦查,清除障碍物等等,近年来智能移动机器人也开始渐渐融入人们的日常生活。 4.2 水下智能移动机器人 近年来,人们对资源的渴求加大,开始对原子能和海洋资源的开发,加之水下环境十分复杂(能见度差,定位困难,流体变化等),水下智能移动机器人在海底资源探测上的优势使之受到关注。近年德国基尔大学的科学家研制出新型深水机器人“ROV Kiel 6000”,这架深水机器人能够下探到6000米深的海底,寻找神秘的深水生物和“白色黄金”可燃冰。 4.3 仿生智能移动机器人 近年来,全球许多机器人研究机构越来越多的关注仿生学与机构的研究工作.在某些情况下仿生机器人尤其独特优势,例如,蛇形机器人重心低,能够模仿蛇的动作,穿梭在能够穿梭在受灾现场和其他复杂的地形中能够帮助人类完成各种任务。除此之外还有仿生宠物狗、仿生鱼、仿生昆虫等。 5 智能移动机器人的发展方向及前景 影响移动机器人发展的因素主要有:导航与定位技术,多传感器信息的融合技术,多机器人协调与控制技术等因而移动机器人技术发展趋势主要包括: (1)高智能情感机器人。随着科学技术的发展,人们对人机交互的技术的要求越来越高,具有人类智能的情感移动机器人是移动机器人未来发展趋势。目前的移动机器人只能说是具有部分的智能,人们渴望能够出现安全可靠的能够沟通交流的高智能的机器人。虽然现在要实现高智能情感机器人还非常的困难,但是终有一天,随着科学技术的突破,它将成为现实。 (2)高适应性多功能化的机器人。机器人的出现是为人类服务的,自然界中还有好多未知的世界等着我们开拓,各种危险的复杂多变的环境,人类无法涉足,因此人们也迫切希望有能够代替人类的机器人出现,高适应性多功能化的机器人也必将是机器人的发展方向之一。 (3)通用服务型的机器人。随着科学技术的发展,机器人也是应该越来越容易融入人们日常生活中的,在日常生活中为人们服务。例如在家庭中,机器人可以帮助人们做各种家务,和人们生活关系密切。 (4)特种智能移动机器人。根据不同应用领域,不同的目的,设计各种各样特种智能移动机器人是未来发展方向,如纳米机器人,宇宙探索机器人,深海探索机器人,娱乐机器人等等。 6 结束语 总之,智能移动机器人涉及到传感器技术,控制技术,移动技术,信息处理、人工智能、控制工程等多学科技术。未来智能移动机器人走向生活,安全可靠,操作简单是其趋势。尽管智能移动机器人以惊人的速度在发展着,但是实现高适应性,智能化,情感化,多功能化的移动机器人还有很长的路要走。 参考文献: [1]谢进,万朝燕,杜立杰.机械原理(第2版)[M].北京:高等 教育 出版社,2010. [2]陈国华.机械机构及应用[M].北京:机械工业出版社,2008. [3]徐国保,尹怡欣,周美娟.智能移动机器人技术现状及展望[J].机器人技术与应用,2007(2). [4]肖世德,唐猛,孟祥印,等.机电一体化系统监测与控制[M].四川:西南交通大学出版社,2011. 机器人的科技论文篇二:《浅谈机器人设计 方法 》 摘要:机器人是人类完成智能化中非常重要的工具,随着时代的发展,机器人已经在世界有了一定的发展,甚至很多国家机器人已经运用到实际的生活中去。而机器人的设计方法无疑是很多人非常感兴趣的问题,因此本文针对机器人的设计方法进行了详细的探索。 关键词机器人;设计;方法 1.前言 纵观人类的发展史,工具的进步才能带动人类的文明,如今设计朝着智能化的方向在发展,机器人就是人类在发展智能化过程洪重要的产物,因此机器人常用的设计方法是设计师们必备的工具。 2.控制系统的硬件设计 在现代科学技术不断发展的背景之下,工业现场所涉及到的重体力劳动量不断提升。当中部分劳动任务的实现单单依靠人力是很难实现的。而为了良好的完成工业现场的相关生产作业任务。就需要通过对机器人装置的研究与应用来实现机器人控制系统的硬件部分主要由5个模块组成:控制模块、循迹模块、避障模块、电机驱动模块、电源模块。 (1)控制系统模块。ATmega128为基于AVR RISC结构的8位低功耗CMOS微处理器,运算速度快,具有多路PWM输出,可将测速、避障等电路产生的输入信号进行处理,并输出控制信号给驱动放大电路,从而控制电机转速,此方式产生的PWM信号比用定时器中断产生的PWM信号实时性更好,而且不会占用系统的定时器资源。 (2)循迹模块。循迹是指小车在比赛场地上循白色引导线线行走,循迹模块的原理图如图2所示。循迹模块采用灰度传感器,发射管为普通LED灯,接收管为光敏三极管3DU33。工作原理为:不同颜色的物体对LED发射光反射不同的亮度,光敏三极管3DU33接收这些不同亮度的光线,就会呈现不同的电压Vx。Vx输入到比较器LM339的同相端,并与电位器设定的电压V0相比较,当Vx>V0时,比较器输出高电平,当Vx循迹机器人前后两端均是由7个灰度传感器组成的循迹模块。其中,中间三个灰度传感器起巡线的作用,两端的灰度传感器起探测弯道作用,剩下两个灰度传感器交替进行巡线和探测弯道。实验证明,这样的灰度传感器的布置图,机器人循迹的效果好,且“性价比”非常高。 (3)避障模块。避障模块主要使用的是红外发射接收传感器,当红外感应避障模块靠近物体时,输出低电平信号;当没有感应到物体时,输出高电平信号。将该信号线接入到单片机的控制端口,控制程序就能起到探测障碍物的作用,当在机器人行进的路径上就可以发现有障碍物并及时避开绕行。 (4)驱动模块。循迹避障机器人要求行走灵活、反应快速,因此要求驱动电机具有“转速快、制动及时”等特点。我们设计制作的循迹避障机器人采用中鸣公司的JMP-BE-3508I驱动板模块,其输入电压为11V到24V,最大输出电流为20A,满足快速前进、制动、转弯的要求。并且电机速度达到500rpm,堵转力矩为8KG.CM,具有很强的刹车功能。利用单片机的四路PWM输出信号,分别控制四个轮子的转速。并采用“四轮驱动”、“差速转弯”的方式实现机器人的前进、后退与转弯。 (5)电源模块。循迹机器人的电源模块主要实现以下三大功能:①稳定输出5V工作电压。故我们设计制作的电源模块以7805芯片为核心,把输入电压截止到5V。②提供足够的电流。7805芯片最大输出电流为1.5A,而循迹机器人需要较大电流,所以我们使用了两片7805芯片分别对控制系统和外部设备进行供电。③滤波。在7805芯片的输入、输出端分别并联104贴片电容和10μF的电解电容,过滤高频、低频信号。 3.软硬件模块开发流程和界面程序 (1)图像处理模块:照相机实时捕捉图像,处理转化后和初始图像进行处理比较,找出图像中差异的位置通过TCP传输。 (2)TCP通信模块:视觉系统通过以太网连接贝加莱控制器,控制器可以作客户机或服务器实时传输数据,:定义结构体用于视觉系统传输位姿给机器人和机器人实时反馈位姿和信号状态数据给视觉系统。 (3)位置转换模块:把视觉系统的位姿转换为机器人的位姿传输给机器人,控制机器人运行。 (4)轨迹规划模块:进行运动轨迹规划和速度规划,根据机器人当前的位置和目标位置,选择最优的运动轨迹(直线、圆弧、不规则曲线等运动轨迹),然后对轨迹、速度进行插补,插补值调用机器人运动学算法计算轨迹的可靠性,再把实时插补的位置、速度传送给运动控制模块。 (5)运动控制模块:根据实时插补的值结合加速度、加加速度等控制参数给驱动器。 (6)伺服模块:根据控制器所发送数据,结合各伺服控制参数,驱动电机以最快响应和速度运行到各个位置。 4.机器人精度标定和视觉软件处理 4.1精度标定 精度的标定包括机器人精度标定 和机器人相对于视觉照相机位置标定 。机器人运动前,需要用激光跟踪仪标定准确各轴杆长、零点、减速比、耦合比等机械参数,给运动学、控制器系统,机器人才能按理论轨迹运行准确。行到指定点。 通过三点法、六点法标定机器人相对于视觉照相机的X、Y、Z方向距离给位置转化模块,确定机器人坐标系相对于照相机坐标系的转化关系。 4.2视觉处理软件 包括固定视觉系统标定模块和移动视觉系统标定模块 。视觉系统安装在固定位置相当于给机器人建立照相机一个用户坐标系,此模块用于运算机器人和固定视觉系统之间位姿转换关系。视觉系统安装在机器人末端法兰位姿相当于给机器人建立照相机一个工具坐标系,随着机器人运动而实时改变位置,此模块用于运算机器人和动态视觉系统之间位姿转换关系。 实时处理传输机器人、视觉系统和以太网的运行通信状态以及出错状态处理。 4.3人机界面设计及实现 当机器人出现故障,不能自动移动位置时,比如碰到硬件限位或出现碰撞现象时,此时可以进入手动页面,选择机器人操作,移动机器人到指定位置。对于新建码垛工艺线,需要配置系统参数、位置信息、以及产品参数,等必要的信息。码垛数据编辑与创建的功能,产品覆盖了袋子、箱子,以及可变数量抓取的功能。可以添加产品数量,改变产品方向,单步数量修改,产品位置移动以及旋转等设置。本页面中,示例生成了每层五包的袋装产品,编号从1到5,可以通过调整编号的顺序,达到改变产品的实际码垛顺序。 5.结束语 总之,在进行机器人的设计过程中,要根据设计的用途进行针对性的设计,对于设计过程中出现的问题要及时的采用上述的思维方法进行解决,随着机器智能化的推广,无疑机器人的设计在未来会有更广阔的天空。 参考文献: [1]张海平,陈彦. Wincc在打包机人机界面中的设计与应用[J].HMI与工业软件,2012(3):70-72. [2]朱华栋,孔亚广.嵌入式人机界面的设计[J].中国水运,2008(11):125-126. [3]金长新,李伟.基于Windows CE的车载电脑系统人机界面的实现[J].微计算机信息,2005(21):132-134. 机器人的科技论文篇三:《浅谈igm焊接机器人的故障处理》 [摘 要]机器人技术综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。本文通过介绍igm焊接机器人的工作原理,以及在实际工作中机器人的常见故障现象,对故障产生的原因进行分析,并提出了相应的维修方法。 [关键词]igm焊接机器人 工作原理 故障处理 0 前言 机器人技术是综合了计算机、控制理论、机构学、信息和传感技术、人工智能等多学科而形成的高新技术。这门新型技术的介入,对维修技术人员提出了更高要求。如何保证焊接机器人的可靠性、稳定性,发挥机器人的最大优势,针对机器人的故障维修及设备维护保养工作就尤显重要。 1 igm焊接机器人组成及工作原理 1.1 igm焊接机器人的组成 igm焊接机器人是从事焊接(包括切割与喷涂)的工业机器人,它加工精细、动作灵巧、焊接精度高、焊缝成形好。在机械行业中得到了广泛的应用。 1.2 igm焊接机器人工作原理 igm焊接机器人内部轴控制原理:通过数字伺服板DSE-IBS处理当前位置的校准、位置驱动、速度驱动等信息,处理后的信息送馈到伺服驱动器,由伺服驱动器内部的脉宽调制器调制,然后放大输出推动伺服电机。伺服电机运动的同时,编码器同步运行,并把采集的位置角度信息反馈给RDW控制板,通过RDW板的增量计算、数据整定后的位置信息回馈给DSE-IBS板,做下一个周期的计算处理,此过程反复进行从而实现了实时位置的更迭过程。 2 igm焊接机器人故障诊断及分析 2.1 焊接机器人故障类型 焊接机器人故障类型可分为软件故障和硬件故障,由机器软件造成的故障,如系统停机 死机 的现象;由机器硬件造成的故障,如驱动单元、电气元件各模块的故障。就故障现象可分为人为故障和自然故障、突发故障三大类。对于维修来说,自然故障和突发故障的排除就显得困难,因为这种维修不仅仅针对故障单元本身,还要对系统进行改进,这就需要周密分析,对故障诊断进行优化和改进,避免排除过的故障重复出现,使系统进一步稳定可靠。 2.2 igm焊接机器人常见故障处理 2.2.1 机器人开机后示教器无报警信息,但机械手无法正常引弧。首先检查系统是否送丝送气,发现送丝系统无法手动送丝,保护气瓶有压力,但是焊枪喷嘴处无保护气。再检查机械手焊接电缆、引弧板及送丝板,都没有发现故障。这说明机械手的功能是正常的,可能是焊接回路不通畅。可以通过测量焊接回路阻抗来判断焊接回路是否正常。 回路阻抗的测试步骤: i把连接工件的地线接好,保证地线夹与工件接触部分干净良好; ii接通机器人电柜电源,将福尼斯焊机电源开关拨至“I”位置; iii在焊机二级菜单内选择“r”功能。 iv取下焊枪喷嘴,拧上导电嘴,将导电嘴贴紧工件表面。需要注意的是,测量过程中要确保导电嘴与工件接触处的洁净。测量进行时,送丝机和冷却系统不启动; v轻按焊枪开关或点动送丝键。焊接回路阻抗值测算完成。测量过程中,右显示屏显示“run”; vi焊接回路测算结束后显示屏显示测量值。测得的焊接回路阻抗是18 Ω(正常值以<20Ω为佳),说明焊接机器人的焊接回路的通畅的。再断电、通电调试,焊接机器人能正常引弧,应该是回路测试过程中通过连接接地夹、拆卸喷嘴、导电嘴等将回路未正常接触处接通了。 2.2.2 igm机器人在焊接过程中,引弧困难、焊接电流极不稳定,且经常断弧,反复出现“Arc fault”电弧故障。 i检查接地电缆,测量回路电阻值为9.7Ω,正常 值以<20Ω为佳。 ii检查焊丝直径(Ф1.2)与送丝轮的公称直径相匹配。 iii焊丝材料(G2Si)与焊接方式及焊接母材相匹配。 iv后观察焊枪喷嘴处,存在大量粉尘的切粉,手动送出的焊丝不光滑平整,有小量弯曲及伤丝情况,说明送丝不畅。 v对送丝阻力进行检测。将送丝锁紧杆、压紧杆打开,手盘焊丝盘将焊丝收回,发现阻力很大。多为送丝软管堵塞或软管与机械手夹角过大造成。 vi检查送丝轮磨损情况,V型送丝槽不易过深过宽,以正好放置一根Ф1.2规格的焊丝为佳,间隙过大,将影响送丝的稳定性,焊接电流的稳定性。拆下送丝轮,发现送丝轮磨损严重,圆度误差较大,送丝槽过深。送丝机构一旦出现失控,就会高速送丝,焊接电源得不到正常的信号反馈(送丝速度的反馈采用光电测速),不能提供稳定的电流、电压,造成不能正常焊接。更换送丝轮、送丝软管,并进行压力调整,故障解除,焊接正常。 2.2.3 igm机器人回零参数自动丢失。igm机器人在下一次开机时,回零参数自动丢失,重新校零、输入参数,保存参数反复丢失。检查示教电缆、接口、程序、轴卡、RDW板指示灯全部正常,检查后备电池(缓冲电瓶,用于关机或意外掉电情况下,为系统提供短时间供电,进行信息的存储)测量电压值,一个为8.9V,一个为12 V,总电压为21 V,正常值为24V,更换一组电池后一切正常,再未出现数据丢失现象。 2.3 突发故障的分析及处理 该故障无可预见性,事发突然。实际工作中出现最多。多为受环境影响的系统故障,如焊接机器人控制部分电路板故障、稳压 电源故障 、通讯故障等,反映在机器人在工作时突然报警且无法消除报警。重新启动又恢复正常,但不久又出现报警,这类故障造成整个系统不稳定。 为了进一步判断驱动器的好坏,缩小故障范围, 对编码器进行检查,RCI系列的机器人各轴所使用的编码器是绝对编码器,它是一种电磁部件,可以传递旋转角度的信息,由两个固定绕组(sin绕组和cos绕组)及一个参考绕组组成,原理基本上同旋转变压器相似。将X12插头拔下,分别测量11-12、13-5、14-4端子阻值,结果没有一项有阻值,说明编码器出现异常。 找到12轴伺服电机,检查发现编码器插头锁紧并帽已退出,插头连接松动。将插头重新安插,锁紧到位,再次测量11-12端子阻值为94Ω,13-5端子阻值为65Ω,14-4端子阻值为65Ω,9-10端子阻值为600Ω,说明各绕组正常。上电后,驱动可正常打开,故障解除。 3 结束语 维修工作是理论指导实践,实践促进理论的一个反复过程,理论实践的有机结合才会使维修人员更加深入,更加准确的判断处理各种故障。工作中维修人员必须具有独立思考分析判断的能力,操作中一定要注意观察,不可盲目更改焊接机器人设定、跳线等状态,要养成做工作记录的好习惯,归纳 总结 各类故障现象以及处理过程,积累故障诊断和维修方面的 经验 ,以提高维修水平。 参考文献 [1] 戴光平.《焊接机器人故障诊断及维修技术》. 重庆:中国嘉陵工业股份有限公司,2003. [2] 中国焊接协会成套设备与专业机具分会. 《焊接机器人实用手册》.机械工业出版社,2014. [3] 李德民.《焊接机器人的故障维修》. 长春:长客股份制造中心,2011. 猜你喜欢: 1. 关于科技论文的范文 2. 关于计算机的科技论文3000字 3. 数学科技论文800字 4. 自动化科技论文题目与范文

路径规划论文答辩ppt

就是简要概括你的整篇论文的整体框架,写作思路等。PPT要简洁,字数不宜太多。有13左右就差不多了。PPT最后最好写上致谢,而且要说出来。个人看法。。。。呵呵。

主要展示研究背景、目的与意义、技术路线、试验研究、结论。PPT要简单大方,不要有过多的字这样会让人反感的,同时,不能对着PPT逐字念,这只是我个人的看法,呵呵

1、首先,PPT封面应该有:毕设题目、答辩人、指导教师以及答辩日期

2、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些;

3、接下来,就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义;

4、之后,是对于研究内容的理论基础做一个介绍,这版一部分简略清晰即可;

5、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样;

6、最后,是对工作的一个总结和展望。

7、结束要感谢一下各位老师的指导与支持。

毕业论文PPT模板

1、首先,PPT封面应该有:毕设来题目、答辩人、指导教师以及答辩日期;2、其次,需要有一个目录页来清楚的阐述本次答辩的主要内容有哪些;3、接下来,就到了答辩的主要内容了,第一块应该介绍课题的研究背景与意义;4、之后,是对于研究内容的理论源基础做一个介绍,这一部分简略清晰即可;5、重头戏自然是自己的研究内容,这一部分最好可以让不太了解相关方面的老师们也能听出个大概,知道到底都做出了哪些工作,研究成果有哪些,研究成果究竟怎么样;6、最后,是对工作的一个总结和展望。7、结束要感谢一下各位老师的指导与支持。下载精美的毕业论文答辩ppt模板,就到怪人网

桁架机器人轨迹规划研究现状论文

数字化家庭是未来智能小区系统的基本单元。所谓“数字化家庭”就是基于家庭内部提供覆盖整个家庭的智能化服务,包括数据通信、家庭娱乐和信息家电控制功能。 数字化家庭设计的一项主要内容是通信功能的实现,包括家庭与外界的通信及家庭内部相关设施之间的通信。从现在的发展来看,外部的通信主要通过宽带接入。intenet,而家庭内部的通信,笔者采用目前比较具有竞争力的蓝牙(bluetootlh)无线接入技术。 传统的数字化家庭采用pc进行总体控制,缺乏人性化。笔者根据人工情感的思想设计一种配备多种外部传感器的智能机器人,将此智能机器人视作家庭成员,通过它实现对数字化家庭的控制。 本文主要就智能机器人在数字化家庭医疗保健方面的应用进行模型设计,在智能机器人与医疗仪器和控制pc的通信采用蓝牙技术。整个系统的成本较低,功能较为全面,扩展应用非常广阔,具有极大的市场潜力。2 智能机器人的总体设计 2.1 智能机器人的多传感器系统 机器人智能技术中最为重要的相关领域是机器人的多感觉系统和多传感信息的集成与融合[1],统称为智能系统的硬件和软件部分。视觉、听觉、力觉、触觉等外部传感器和机器人各关节的内部传感器信息融合使用,可使机器人完成实时图像传输、语音识别、景物辨别、定位、自动避障、目标物探测等重要功能;给机器人加上相关的医疗模块(ccd、camera、立体麦克风、图像采集卡等)和专用医疗传感器部件,再加上医疗专家系统就可以实现医疗保健和远程医疗监护功能。智能机器人的多传感器系统框图如图1所示。 2.2 智能机器人控制系统 机器人控制系统包含2部分:一是上位机,一般采用pc,它完成机器人的运动轨迹规划、传感器信息融合控制算法、视觉处理、人机接口及远程处理等任务;二是下位机,一般采用多单片机系统或dsp等作为控制器的核心部件,完成电机伺服控制、反馈处理、图像处理、语音识别和通信接口等功能。 如果采用多单片机系统作为下位机,每个处理器完成单一任务,通过信息交换和相互协调完成总体系统功能,但其在信号处理能力上明显有所欠缺。由于dsp擅长对信号的处理,而且对此智能机器人来说经常需要信号处理、图像处理和语音识别,所以采用dsp作为智能机器人控制系统的控制器[2]。 控制系统以dsp(tms320c54x)为核心部件,由蓝牙无线通信、gsm无线通信(支持gprs)、电机驱动、数字罗盘、感觉功能传感器(视觉和听觉等)、医疗传感器和多选一串口通信(rs-232)模块等组成,控制系统框图如图2所示。 (1)系统通过驱动电机和转向电机控制机器人的运动,转向电机利用数字罗盘的信息作为反馈量进行pid控制。 (2)采用爱立信(ericsson)公司的rokl01007型电路作为蓝牙无线通信模块,实现智能机器人与上位机pc的通信和与其他基于蓝牙模块的医疗保健仪器的通信。 (3)支持gprs的gsm无线通信模块支持数据、语音、短信息和传真服务,采用手机通信方式与远端医疗监控中心通信。 (4)由于tms320c54x只有1个串行口,而蓝牙模块、gsm无线模块、数字罗盘和视觉听觉等感觉功能传感器模块都是采用rs一232异步串行通信,所以必须设计1个多选一串口通信模块进行转换处理。当tms320c54x需要蓝牙无线通信模块的数据时通过电路选通;当t~ms320c54x需要某个传感器模块的数据时,关断上次无线通信模块的选通,同时选通该次传感器模块。这样,各个模块就完成了与1~ms320c54x的串口通信。3 主要医疗保健功能的实现 智能机器人对于数字化家庭的医疗保健可以提供如下的服务: (1)医疗监护 通过集成有蓝牙模块的医疗传感器对家庭成员的主要生理参数如心电、血压、体温、呼吸和血氧饱和度等进行实时检测,通过机器人的处理系统提供本地结果。 (2)远程诊断和会诊 通过机器人的视觉和听觉等感觉功能,将采集的视频、音频等数据结合各项生理参数数据传给远程医疗中心,由医疗中心的专家进行远程监控,结合医疗专家系统对家庭成员的健康状况进行会诊,即提供望(视频)、闻、问(音频)、切(各项生理参数)的服务[3]。 3.1机器人视觉与视频信号的传输 机器人采集的视频信号有2种作用:提供机器人视觉;将采集到的家庭成员的静态图像和动态画面传给远程医疗中心。 机器人视觉的作用是从3维环境图像中获得所需的信息并构造出环境对象的明确而有意义的描述。视觉包括3个过程: (1)图像获取。通过视觉传感器(立体影像的ccd camera)将3维环境图像转换为电信号。 (2)图像处理。图像到图像的变换,如特征提取。 (3)图像理解。在处理的基础上给出环境描述。 通过视频信号的传输,远程医疗中心的医生可以实时了解家庭成员的身体状况和精神状态。智能机器人根据医生的需要捕捉适合医疗保健和诊断需求的图像,有选择地传输高分辨率和低分辨率的图像。在医疗保健的过程中,对于图像传送有2种不同条件的需求: (1)医生观察家庭成员的皮肤、嘴唇、舌面、指甲和面部表情的颜色时,需要传送静态高清晰度彩色图像;采用的方法是间隔一段时间(例如5分钟)传送1幅高清晰度静态图像。 (2)医生借助动态画面查看家庭成员的身体移动能力时,可以传送分辨率较低和尺寸较小的图像,采用的方法是进行合理的压缩和恢复以保证实时性。 3.2机器人听觉与音频信号的传输 机器人采集的音频信号也有2种作用:一是提供机器人听觉;二是借助于音频信号,家庭成员可以和医生进行沟通,医生可以了解家庭成员的健康状况和心态。音频信号的传输为医生对家庭成员进行医疗保健提供了语言交流的途径。 机器人听觉是语音识别技术,医疗保健智能机器人带有各种声交互系统,能够按照家庭成员的命令进行医疗测试和监护,还可以按照家庭成员的命令做家务、控制数字化家电和照看病人等。 声音的获取采用多个立体麦克风。由于声音的频率范围大约是300hz一3400hz,过高或过低频率的声音在一般情况下是不需要传输的,所以只用传送频率范围在1000hz-3000hz的声音,医生和家庭成员就可以进行正常的交流,从而可以降低传输音频信号所占用的带宽,再采用合适的通信音频压缩协议即可满足实时音频的要求。智能机器人的听觉系统如图3所示。3.3各项生理信息的采集与传输 传统检测设备通过有线方式连到人体上进行生理信息的采集,各种连线容易使病人心情紧张,从而导致检测到的数据不准确。使用蓝牙技术可以很好地解决这个问题,带有蓝牙模块的医疗微型传感器安置在家庭成员身上,尽量使其不对人体正常活动产生干扰,再通过蓝牙技术将采集的数据传输到接收设备并对其进行处理。 在智能机器人上安装1个带有蓝牙模块的探测器作为接收设备,各种医疗传感器将采集到的生理信息数据通过蓝牙模块传输到探测器,探测器有2种工作方式:一是将数据交给智能机器人处理,提供本地结果;二是与internet连接(也可以通过gsm无线模块直接发回),通过将数据传输到远程医疗中心,达到医疗保健与远程监护的目的。视频和音频数据的传输也采用这种方式。智能机器人的数据传输系统如图4所示。 4 蓝牙模块的应用 4.1蓝牙技术概况 蓝牙技术[4]是用于替代电缆或连线的短距离无线通信技术。它的载波选用全球公用的2.4ghz(实际射频通道为f=2402 k×1mhz,k=0,1,2,…,78)ism频带,并采用跳频方式来扩展频带,跳频速率为1600跳/s。可得到79个1mhz带宽的信道。蓝牙设备采用gfsk调制技术,通信速率为1mbit/s,实际有效速率最高可达721kbit/s,通信距离为10m,发射功率为1mw;当发射功率为100mw时,通信距离可达100m,可以满足数字化家庭的需要。 4.2蓝牙模块 rokl01007型蓝牙模块[5]是爱立信公司推出的适合于短距离通信的无线基带模块。它的集成度高、功耗小(射频功率为1mw),支持所有的蓝牙协议,可嵌入任何需要蓝牙功能的设备中。该模块包括基带控制器、无线收发器、闪存、电源管理模块和时钟5个功能模块,可提供高至hci(主机控制接口)层的功能。单个蓝牙模块的结构如图5所示。 4.3主,从设备硬件组成 蓝牙技术支持点到点ppp(point-t0-point pro-tocol)和点对多点的通信,用无线方式将若干蓝牙设备连接成1个微微网[6]。每个微微网由1个主设备(master)和若干个从设备(slave)组成,从设备最多为7台。主设备负责通信协议的动作,mac地址用3位来表示,即在1个微微网内可寻址8个设备(互联的设备数量实际是没有限制的,只不过在同一时刻只能激活8个,其中1个为主,7个为从)。从设备受控于主设备。所有设备单元均采用同一跳频序列。 将带有蓝牙模块的微型医疗传感器作为从设备,将智能机器人上的带有蓝牙模块的探测器作为主设备。主从设备的硬件主要包括天线单元、功率放大模块、蓝牙模块、嵌入式微处理器系统、接口电路及一些辅助电路。主设备是整个蓝牙的核心部分,要完成各种不同通信协议之间的转换和信息共享,以及同外部通信之间的数据交换功能,同时还负责对各个从设备的管理和控制。 5 结束语 随着社会的进步,经济的发展和人民生活水平的提高,越来越多的人需要家庭医疗保健服务。文中提出的应用于数字化家庭医疗保健服务的智能机器人系统的功能较为全面,且在家用智能机器人、基于蓝牙技术的智能家居和数字化医院等方面的拓展应用非常广阔,具有极大的市场潜力。 更多论文请到文秘杂烩网 采纳哦

我的论文,基于STM32的多关节机器人设计,图文详细,绝对满足你的需求

网页链接

相关百科

热门百科

首页
发表服务