首页

> 学术发表知识库

首页 学术发表知识库 问题

有关学习数学史概论论文

发布时间:

有关学习数学史概论论文

从算法教学管窥中国古代数学史俞 昕( 浙江湖州市第二中学 313000) 关于算法的涵义, 人们有着不同的界定. 普通高中数学课程标准( 实验) 在学生算法目标达成度上,重在算法思想的理解与应用,界定现代算法的意义就是解决某一类问题的办法. 确切地说,就是对于某一类特定的问题,算法给出了解决问题的一系列(有穷) 操作, 即每一操作都有它的确定性的意义( 使计算机能够按照它的指令工作) ,并在有限时间( 有穷步骤)内计算出结果.普通高中数学课程标准( 实验) 对! 算法部分∀进行说明时,突出强调! 需要特别指出的是, 中国古代数学中蕴涵了丰富的算法思想∀. 吴文俊先生曾经说过! 我们崇拜中国传统数学,决非泥古迷古、 为古而古. 复古是没有出路的. 我们的目的不仅是要显示中国古算的真实面貌, 也不仅是为了破除对西算的盲从,端正对中算的认识,我们主要的也是真正的目的, 是在于古为今用. ∀算法教学中蕴涵着丰富的数学史教育价值, 作为新时代的高中数学教师是有必要了解这一点的.1 中国古代数学的特点古代数学思想分为两大体系, 一个是以欧几里得的几何原本 为代表的西方数学思想体系,这个体系以公理化的思想、 抽象化的方法、 封闭的演绎体系为特色. 另一个则是以我国的九章算术 为代表的东方数学思想体系,这个体系以算法化的思想、 构造性的方法、 开放的归纳体系为特色.我国传统数学在从问题出发,以解决问题为主旨的发展过程中, 建立了以构造性与机械化为其特色的算法体系, 这与西方数学以欧几里得几何原本 为代表的所谓公理化演绎体系正好遥遥相对.中国古代数学中的! 术∀相当于现代数学术语中的! 公式∀,两者虽有相同点(都可以用来解决一类有关问题) , 其差异也非常之大. 主要表现在,! 公式∀只提供了几个有关的量之间的关系, 指明通过哪些运算可由已知量求出未知量,但并没有列出具体的运算程序,一般地,认为这种程序是已知的了. 但! 术∀则由怎样运算的详细程序构成的,可以说它是为完成公式所指出的各种运算的具体程序,即把! 公式∀展开为使用某种计算工具的具体操作步骤. 从这点看, ! 术∀正是现代意义上的算法, 是用一套! 程序语言∀所描写的程序化算法,可以照搬到现代计算机上去. 我国古代数学包括了今天初等数学中的算术、 代数、 集合和三角等多方面的内容.由于受实用价值观的影响, 中国传统数学的研究遵循着一种算法化思想,这种思想从九章算术 开始一直是中国古代数学著作大都沿袭的模式:实际问题# # # 归类# # # 筹式模型化# # # 程序化算法即将社会生产生活中的问题,先编成应用问题,按问题性质分类, 然后概括地近似地表述出一种数学模型, 借助于算筹, 得到这一类问题的一般解法. 把算法综合起来, 得到一般原理, 分别隶属于各章,人们按照书中的方法、 原理和实例来解决各种实际问题. 可以说,中国传统数学以确定算法为基本内容,又以创造和改进算法为其发展的方向.受九章算术 的影响,在之后的几个世纪,一些数学家的著作都以算法为主要特点,包括王孝通的辑古算经 、 贾宪的黄帝九章算法细草 、 刘益的议古根源 、 秦九韶的数书九章 、 李冶的测圆海镜 和益古演段 、 杨辉的详解九章算法 、 日用算法 和杨辉算法 , 这些著作中包括了增乘开方术、 贾宪三角、 高次方程数值解法、 内插法、 一次同余式组解法等一些著名的算法,进一步发展了中国古代数学算法化的特点,使得算法的特点得到了进一步的强化和发展.1 1 中国古代数学的算法化思想算法化的思想是中国古代数学的重要特点,并贯穿于中国古算整个发展过程之中.即使是与24 数学通报 2010 年 第49 卷 第2 期图形有关的几何问题也不例外,中算家们将几何方法与算法有机地结合起来,实现了几何问题的算法化.这样,从问题出发建立程序化的算法一直是古代中国数学研究的传统,也是中算家们努力的方向.这种算法化的思想着重构造实践,更强调! 经验∀、 ! 发现∀和构造性思维方式下从无到有的发明,对今天的算法教学与研究具有重要的启迪作用.中国古代数学算法化的思想具体表现如下:第一步,把实际中提出的各种问题转化为数学模型;第二步,把各种数学模型转化为代数方程; 第三步,把代数方程转化为一种程序化的算法; 第四步,设计( 并逐步改进)、 归纳、 推导(寓推理于算法之中)出各种算法; 第五步,通过计算回溯逐步达到解决原来的问题.1 2 中国古代数学的构造性方法所谓构造性方法是解决数学问题的一种方法,是创造性思维方式直接作用的结果.按照现代直觉主义者,特别是构造主义者的观点,对于一个数学对象,只有当它可以通过有限次的操作而获得,并且在每步操作之后都能有效地确定下一步所需要采取的操作, 才能说它是存在的.按照这种思维方式,可以使概念和方法按固定的方式在有限步骤内进行定义或得以实施,或给出一个行之有效的过程使之在有限步骤内将结果确定地构造出来.换言之,就是能用有限的手段刻画数学对象并针对问题提出具体的解法.中国古代数学的算法化思想与构造性的方法紧密相连.由于古代中算家所关心的大多是较为实用的问题,他们在解决问题时首先考虑是如何得到可以直接应用的、 可以方便操作的解,而不会满足于仅仅知道解在理论上的存在性. 因为这种纯粹的理论解对于受实用价值观影响的中算家来说是没有多大意义的.从而我们推断,构造性方法的产生是算法化思想直接作用的结果.从我国许多经典算书中可以发现, 数学构造性方法在算法中有许多精彩的体现. 例如就! 方程∀的筹算图阵及其程序设计而言,首先, ! 群物总杂,各列有数,总言其实∀,这是对每行中未知数的系数和常数项的安排,其次, ! 令每行为率,二物者再程,三物者三程,皆如物数程之∀,这是对诸行关系的安排, ! 并列为行∀又说明了什么叫! 方程∀. 这为中国古代数学的构造性方法提供了一个具有说服力的样板.由于构造性的方法特别强调运算的可操作程度, 所以构造出的! 术∀可以通过一系列有限的运算求出解来, 具有一般性.时至今日我国古算家所设计的许多算法几乎都可以整套照搬到现代的电子计算机上实现.这也是我国古算在算法上长期居于领先地位的一个重要原因.2 中国古代数学中的优秀算法案例2. 1 中国古代的代数学代数学是中国传统数学中一个值得骄傲和自豪的领域.中小学数学中的算术、 代数内容, 从记数以至解联立的线性方程组, 实质上都是中国古代数学家的发明创造.结合新课程的算法教学,笔者选取我国古代著名算法进行分析.2. 1. 1 求最大公约数的算法(更相减损术)中国古代数学中,未曾出现素数、 因数分解等概念,但是发明了求两整数的最大公约数的方法# # # 更相减损术: ! 可半者半之,不可半者,副置分母子之数, 以少减多, 更相减损,求其等也.以等数约之. ∀事实上此术中包含了三个步骤:第一步, ! 可半者半之∀, 即进行观察, 若分子、分母都是偶数,可先取其半;第二步, ! 不可半者, 副置分母、 子之数, 以少减多,更相减损,求其等也∀;第三步, ! 以等数约之∀.其中第二步! 以少减多, 更相减损∀是关键,又是典型的机械化程序.在中国古代数学中, 将最大公约数称作! 等∀.由于! 更相减损∀过程终可以在有限步骤内实现, 所以它是一种构造性的方法.若用现代语言翻译即为:第一步,任意给定两个正整数, 判断它们是否都是偶数. 若是,用2 约减,若不是, 执行第二步. 第二步, 以较大的数减去较小的数, 接着把所得的差与较小的数比较, 并以大数减小数.继续这个操作, 直到所得的数相等为止, 则这个数( 等数)或这个数与约简的数的乘积就是所求的最大公约数.下面运用 QBA SIC 语言来编写相应的程序( 见程序1) .25 2010 年 第49 卷 第2 期 数学通报程序 1INPUT! m, n= ∀ ; m, nIF m< n T HEN a= m m= n n= aEND IFk= 0WHILE m MOD 2= 0 AND n MOD2= 0 m= m/ 2 n= n/ 2 k= k+ 1WENDd= m- nWHILE d< > n IF d> n TH EN m= d ELSE m= n n= d END IF d = m- nWENDd= 2 ∃ k * dPRINT dEND程序 2INPUT A, BWHILE A < > B IF A> B T H EN A = A- B ELSE B= B - A END IFWENDPRINT BEND程序 3INPUT ! M, N (M> N )∀ ; M, NDOR= M- N IF R> N TH EN M= R ELSE M= N N= R END IFLOOP UNTIL R= 0PRINT MEND程序 4INPUT ! n= ∀ ; nINPUT! an= ∀; aINPUT! x= ∀ ; xv= ai= n- 1WH ILE i> = 0 PRINT ! i= ∀; i INPUT! ai= ∀ ; a v= v * x+ a i= i- 1WENDPRINT vEND程序 2和 3 是两个简化的参考程序, 是从不同的角度来实现更相减损的过程.! 更相减损术∀提供了一种求两数最大公约数的算法, 这是九章算术 的一个重要成就, 与古希腊欧几里得的几何原本 中用来求最大公约数的! 欧几里得算法∀, 即辗转相除法, 有异曲同工之妙. 欧几里得在几何原本 中针对这个问题引入了许多概念, 给出了冗长的逻辑证明. 尽管如此,他还是暗用了一条未加说明的公理, 即如果 a, b都被c 整除, 则a- mb也能被c 整除.中国古算采用的! 更相减损∀方法,实际上也暗用了一条未加说明的公理, 即若 a- b 可以被c 整除,则 a, b 都能被c 整除. 正如刘徽在九章算术注 中! 其所以相减者, 皆等数之重叠∀. 从形式上看! 更相减损术∀比! 辗转相除法∀更复杂, 循环次数要比辗转相除法多, 但对于计算机来说, 作乘除运算要比作加减运算慢得多, 因此更相减损术在计算机上更为好用.26 数学通报 2010 年 第49 卷 第2 期2. 1. 2 求一元 n 次多项式值的算法(秦九韶算法)秦九韶,南宋著名数学家,其学术思想充分体现在数书九章 这一光辉名著中,该著作不仅继承了九章算术 的传统模式, 对中算的固有特点发扬光大,而且完全符合宋元社会的历史背景, 是中世纪世界数学史上的光辉篇章. 书中记载了! 正负开方术∀、 ! 大衍求一术∀等著名算法.在数书九章 卷五第 17 个问题以! 尖田求积∀为例的算法程序中,可以看出秦九韶对于求一元n 次多项式f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x+ a0 的值所提出的算法.秦九韶算法的特点在于通过反复计算n 个一次多项式,逐步得到原多项式的值. 在欧洲, 英国数学家霍纳( Horner ) 在1819 年才创造了类似的方法, 比秦九韶晚了572年.秦九韶算法把求f ( x ) = anxn+ an- 1 xn- 1+ %+ a1x + a0 的 值 转 化 为 求 递 推 公 式v0= anvk= vk- 1x+ an- k k= 1, 2, %, n中 v n 的值. 通过这种转化, 把运算的次数由至多( 1+ n) n2次乘法运算和n 次加法运算,减少为至多 n 次乘法运算和n 次加法运算,大大提高了运算效率.这种算法的QBASIC 语言程序如程序 4 所示.算法步骤是如下的五步: 第一步, 输入多项式次数 n、 最高次项的系数an 和x 的值;第二步,将 v 的值初始化为a v ,将i 的值初始化为n- 1; 第三步, 输入 i次项的系数ai ;第四步, v= v x+ ai , i= i- 1; 第五步,判断i 是否大于或等于 0, 若是, 则返回第三步,否则输出多项式的值v .2. 2 中国古代的几何学中国古代的几何学从田亩丈量等生产生活中的一些实际问题中产生, 并为生产生活服务. 基于传统实用价值观的影响, 中国古代的几何学并没有发展成为像欧氏几何那样严密的公理化演绎体系,所以中国古代几何学在整个数学史上的地位并不突出,但在许多几何问题的处理上也突出了算法化这一特色. 下面以! 割圆术∀为例作简要分析.中国古代数学家刘徽创立! 割圆术∀来求圆的面积及其相关问题. 刘徽! 瓤而裁之∀,即对与圆周合体的正多边形进行无穷小分割,分成无穷多个以正多边形每边为底、 圆心为顶点的小等腰三角形, 这无穷多个小三角形的面积之和就是圆的面积. 这样通过对直线形的无穷小分割, 然后求其极限状态的和的方式证明了圆的面积公式.刘徽的算法! 割之弥细,所失弥少,割之又割, 以至于不可割, 则与圆合体而无所失矣∀体现出程序化的过程, 可以看出圆内接正多边形逐渐逼近圆的变化趋势,并且刘徽依此开创了求圆周率精确近似值的方法, 将这种极限思想用于近似计算.其中包含有迭代过程和子程序,是一种典型的循环算法,充分体现了程序化的特点.中算家的几何学,并不追求逻辑论证的完美,而是着重于实际计算问题的解决, ! 析理以辞, 解体用图∀, 以建立解决问题的一般方法和一般原则. 但另一方面,这种几何学又是以面积、 体积、 勾股相似等为基本概念,以长方形面积算法、 长方形体积算法、 相似勾股形的性质为出发点的, 整个几何理论建立在! 出入相补原理∀等基本原理之上.例如,由勾股定理自然地引起平方根的计算问题,而求平方根和立方根的方法, 其步骤就是以出入相补原理为几何背景逐步索骥而得.这方面内容的介绍, 不仅可以丰富学生的算法知识,而且可以通过揭示蕴藏其中的数学背景和文化内涵, 激发学生学习算法的兴趣,体会算法在人类发展史中的作用.3 中国古代数学算法的教学价值3. 1 培养正确数学观的良好平台中国传统算法尽管与现代算法在具体形式上差别很大,但是重要的是形式后面的认识论发展线索可以为现代算法教学的体系、 教学层次提供依据.它的具体数学知识载体也是现代算法教学的重要源泉. 各种算法的创立就是创造性劳动的产物,即是创造思维的一种! 凝固∀和! 外化∀. 其次, 通过把一部分问题的求解归结为对于现成算法的! 机械应用∀, 这就为人们积极地去从事新的创造性劳动提供了更大的可能性. 从而算法化也就意味着由一个平台向更高点的跳跃.吴文俊先生的研究使中国传统数学的算法重见天日, 开拓了数学机械化的新领域, 吴先生提出! 数学教育的现代化就是机械化∀.他在研究中这样写道: 数学问题的机械化, 就要求在运算和证明过程中, 每前进一步之后,都有一个确定的必须选27 2010 年 第49 卷 第2 期 数学通报择的下一步, 这样沿着一条有规律的, 刻板的道路,一直达到结论.证明机械化的实质在于, 把通常数学证明中所固有的质的困难,转化为计算的量的复杂性.计算的量的复杂性在过去是人力不可能解决的,而计算机的出现解决了这种复杂性.吴先生的理论和实践已经表明,证明和计算是数学的两个方面, 且又是统一的,这在数学教育中具有重要意义.我们应当引导学生了解古人对问题思考的角度,学会站在巨人的肩膀上,比如按照中国古代开方术的思路就可以编造程序在现代计算机上实现开方.培养学生在学习数学知识的同时更多地关心所学知识的社会意义和历史意义,力图在面向未来的同时,通过同传统上的哲学、 历史和社会学的思想结合起来, 形成正确的数学观.算法教学就为此搭建了一个良好的平台, 并且承载丰富的历史底蕴.3. 2 渗透爱国主义教育的最佳契机与西方相比, 中算理论具有高度概括与精练的特征, 中算家经常将其依据的算理蕴涵于演算的步骤之中, 起到! 不言而喻, 不证自明∀的作用,可以认为中国传统数学乃是为建立那些在实际中有直接应用的数学方法而构造的最为简单, 精巧的理论建筑物. 因此, 中算理论可以说是一种! 纲目结构∀:目是组成理论之网的眼孔;纲是联结细目的总绳.以术为目, 以率为纲,即是依算法划分理论单元,而用基本的数量关系把它们连结成一个整体. 纲举目张,只有抓住贯串其中的基本理论与原理, 才能看清算法的来龙去脉.下面是吴文俊先生总结的! 关于算术代数部分发明创造的一张中外对照表∀.从算法教学管窥中国古代数学史中国 外国位值制十进位记 最迟在九章算术 成书时已十分成熟 印度最早在 6 世纪末才出现分数运算 周髀算经 中已有, 在九章算术 成书时已成熟 印度最早在 7 世纪才出现十进位小数 刘徽注中引入, 宋秦九韶 1247年时已通行 西欧 16 世纪时始有之, 印度无开平方、 立方 周髀算经 中已有开平方, 九章算术 中开平、 立方已成熟西方在 4 世纪末始有开平方, 但还无开立方, 印度最早在 7 世纪算术应用 九章算术 中有各种类型的应用问题 印度 7 世纪后的数学书中有某些与中国类似的问题与方法正负数 九章算术 中已成熟 印度最早见于 7 世纪,西欧至 16 世纪始有之联立一次方程组 九章算术 中已成熟 印度 7 世纪后开始有一些特殊类型的方程组, 西方迟至 16 世纪始有之二次方程 九章算术 中已隐含了求数值解法,三国时有一般解求法 印度在 7 世纪后,阿拉伯在 9世纪有一般解求法三次方程 唐初( 公元 7 世纪初) 有列方程法, 求数值解已成熟西欧至 16 世纪有一般解求法, 阿拉伯 10 世纪有几何解高次方程 宋时( 12 # 13 世纪)已有数值解法 西欧至 19 世纪初始有同样方法联立高次方程组与消元法 元时( 14 世纪初) 已有之 西欧甚迟,估计在 19 世纪28 数学通报 2010 年 第49 卷 第2 期3. 3 品位数学美学思想的美妙境界中国古代数学不但具有实用性特征, 还蕴涵着丰富的美学思想. 比如九章算术 中列方程的方式,相当于列出其增广矩阵,其消元过程相当于矩阵变换,而矩阵是数学美学方法中对称最典型的表现形式之一; 九章算术 中用几何方法巧妙地解决了很多代数问题, 这是数形结合的统一: 把数学问题改编成歌诀,以便于掌握和传授,这是文学艺术与数学的统一. 总之, 在算法教学中, 应努力把握和利用自己文化传统中的积极因素进行教学,这对数学教育的发展具有重要的意义.参考文献1 中学数学课程教材研究开发中心. 普通高中课程标准实验教材书(数学) [ M] . 北京: 人民教育出版社, 20072 中华人民共和国教育部. 普通高中数学课程标准(实验) [ M] .北京: 人民教育出版社, 20033 李文林. 数学史概论(第二版) [ M ] . 北京: 高等教育出版社, 20024 王鸿钧, 孙宏安. 中国古代数学思想方法[ M] . 南京: 江苏教育出版社, 19885 张维忠. 数学, 文化与数学课程[ M] . 上海: 上海教育出版社, 19996 吴文俊. 吴文俊论数学机械化[ M ] . 济南: 山东教育出版社, 19957 代钦. 儒家思想与中国传统数学[ M] . 北京: 商务印书馆, 20038 费泰生. 算法及其特征[ J] . 数学通讯, 2004, 79 张奠宙. 算法[ J] . 科学, 2003, 55( 2)10 李建华. 算法及其教育价值[ J ] . 数学教育学报, 2004, 311 李亚玲. 算法及其学习的意义[ J ] . 数学通报, 2004, 2(上接第23 页) 实验教师对课改实验进行探索、 总结、 反思、 调整, 推广比较成熟的经验,同时纠正实验过程中的偏颇与极端行为,教学过程逐步进入新的稳定阶段.教学过程逐步过渡到以问题为主线、 以活动为主线的! 无环节∀模式.( 2)受不同的教学理念影响, 教师角色、 学生角色、 教学目标、 教学过程关注点等方面, 在教学过程中有很大差异.教师角色 学生角色 教学目标 教学过程关注领导者(权威)接 受 者(被动)让 学 生 掌握 数 学 知识技能知识 引入, 讲 解本质, 巩固练习主导者(决定)观 察 者(协助)让 学 生 观摩 数 学 产生过程展示 过程, 注 重建构, 强化训练引导者(组织)参 与 者(主动)让 学 生 参与 探 究 数学 生 成 过程问题 情境, 提 出问题, 学生活动( 3) 2004 年高中数学课程改革后, 课堂教学发生一定的变化,广泛地进行! 创设情境∀! 提出问题∀!引导学生探究探索∀, 出现了以! 问题主线∀、! 活动主线∀为主的课堂, 出现了! 问题情境学生活动建立数学运用数学同顾反思∀的整体课堂构思.这些改变对于揭示数学的内在本质, 发展学生的思维能力起到积极的作用.( 4) 由于受多种因素制约(特别是高考) ,与初中相比, 本次课改后高中数学课堂教学变化幅度不大,近半数的课堂教学模式仍然以五环节为主.对于课改倡导的教学理念, 只是渗透在传统的教学模式中,目前高中数学课堂教学改革的力度、 深度与课改的预期目标还有一定的距离.我们看到2008 年的赛课教案的创新、 探索力度, 远没有1990 年的名师授课录 大, 那时还没有明确提出课改理念,但他们却进行积极的探索, 关注学生主体. 而今天,课改的理念已经系统培训 5 年, 许多教师仍停留在形式层面,未能变成自觉的行为.参考文献1 李善良. 我国数学教学设计的探索与评析# # # 兼及十年初中数学教师说课评比活动[ J ] . 中国数学教育(初中版) , 2007, 92 编委会. 名师授课录(中学数学高中版) [ M] , 上海教育出版社, 19913 2000 年全国首届高中青年数学教师优秀课观摩与评比的教案(会议资料)4 2008 年全国第四届高中青年数学教师优秀课观摩与评比的教案(会议资料)5 李善良. 关于数学教学中问题的设计[ J] . 高中数学教与学,2008, 129 2010 年 第49 卷 第2 期 数学通报

数学史选讲的新课标要求:通过生动、丰富的事例,了解数学发展过程中若干重要事件、重要人物与重要成果,初步了解数学产生与发展的过程,体会数学对人类文明发展的作用,提高学习数学的兴趣,加深对数学的理解,感受数学家的严谨态度和锲而不舍的探索精神。教师应鼓励学生对数学发展的历史轨迹、自己感兴趣的历史事件与人物,写自己的研究报告。为此,结合新课程内容,我简要总结了中国数学史的发展过程,主要分为以下七个阶段: 第一时期:中国数学的萌芽(远古~春秋) 古希腊学者毕达哥拉斯有这样一句名言:“凡物皆数”。在7000年以前,我们的祖先甚至连2以上的数字还数不上来,在逐步摸索中,先是结绳记数,然后又发展到“书契”,五六千年前就会写1~30的数字,到了2000多年前的春秋时代,祖先们不但能写3000以上的数学,还有了加法和乘法的意识。《周髀算经》是周代传下来有关测量的理论和方法,其中就有中国最早的勾股定理。 春秋时代,诸子百家中的墨家的思想《墨经》中的几何学与逻辑、无限分割思想,体现出理性思维。孔子修改过的古典书籍之一《周易》中含有组合学知识,坐标系思想,二进制思想,还出现了八卦,这神奇的八卦至今在中国和外国仍然是人们努力研究和对象,它在数学、天文、物理等多方面都发挥着不可低估和作用。 第二时期: 中国古代数学框架的形成(战国~秦汉) 到了战国时期,在算术、几何,甚至在现代应用数学的领域,都开始了耕耘播种。算术领域,四则运算在这一时期内得到了确立,乘法中诀已经在《管子》、《荀子》、《周逸书》等著作中零散出现,分数计算也开始被应用于种植土地、分配粮食等方面。几何领域,出现了勾股定理。代数领域,出现了负数概念的萌芽。 秦汉时期在算术方面乘除法算例明显增多,还出现了多步乘除法和趋于完整的九九乘法中诀。在几何方面,对于长方形面积的计算以及体积计算的知识也具备了。 《九章算术》集先秦到西汉数学知识之大成,确定了中国古代数学的框架、内容、形式、风格和思想方法的特点。全书有90余条抽象性算法、公使,246道例题及其解法,基本上采用算法统率应用题的形式,包括丰富的算术、代数和几何。从体系方面,归纳的,开放的,以计算为中心的算法体系,体现实用性,如“出南北门求邑方”。 第三时期:数学理论的奠基(魏晋~唐初) 在这一时期,数学教育的正规化和数学人才辈出,为数学理论奠定了基础。 赵爽,三国时代吴国人,全面注《周髀算经》,其中的“勾股圆方图注”是对勾股定理的最早证明。 刘徽,三国时代魏国人,是中国古代最伟大的数学家之一。他为《九章算术》做注,《九章算术注》集中了秦汉以来的创造发明,把中国古代数学提高到了一个新的水平,奠定了中国数学教育体系的坚实的基础.其中主要成果:(1)求得圆周率为157/50,(2)出入相补法,棋验法,齐同原理等;(3)数学概念的严格定义.例如幂,率,方程,正负数等;(4)割圆术,反映了数学的极限思想.(5)“重差”之法.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.他认为数学方法起源于空间形式和数量关系的统一,这正反映了中国古算的特色——几何与算术、代数的统一.祖冲之是我国南北朝时期杰出的数学家、天文学家。他从小就阅读了许多天文、数学方面的书籍,勤奋好学,刻苦实践。他在数学上的杰出成就是关于圆周率的计算。祖冲之还与他的儿子祖暅(也是我国著名的数学家)一起,用巧妙的方法解决了球体体积的计算.他们当时采用的一条原理是:"幂势既同,则积不容异."这一原理,在西文被称为卡瓦列利原理,但这是在祖氏以后一千多年才由卡氏发现的.为了纪念祖氏父子发现这一原理的重大贡献,大家也称这原理为"祖暅原理". 中国从隋建立起数学专科教育,开设算学馆.学习内容主要是算经十数;学制七年;三位一体(读书,考试,做官)的体制;学生来源整个大众,任何人可以报。 第四时期:中国传统数学的高潮(宋元时期) 数学内容在宋元达到高峰:数学教育家出现,专门研究数学教育制度。在日趋完善的数学教育制度下,涌现出了一代名垂青史的数学泰斗,如宋元五大数学家是:贾宪、秦九韶、杨辉、李冶、朱世杰。 贾宪,北宋数学家。他继承了《九章算术》以来的诸多方法,扬弃了他们的不足,在算法机械化方面做出了贡献。他构造贾宪三角的“增乘方求廉法”,把中国古代数学的程序化思想又提高到一个新的阶段。 秦九韶,南宋著名数学家。他在数学上的贡献主要有:1、一般高次方程的解法;2、建立一般线性方程组严整规范的算法;3、一次同余式组完整解法程序的建立;4、三斜求积公式(等价于海伦公式)。 杨辉,南宋末年著名的数学家和数学教育家。在教学过程中,他搜集、阅读了大量数学著作,先后完成数学著作15种21卷。为普及日常所用的数学知识,他专门写了《日用算法》一书,书中的题目全部取自社会生活,多为简单的商业问题,也有土地丈量、建筑和手工业问题。他还为初学者制定了《习算纲目》,主要数学教育思想有:由浅入深,循序渐进;重视解题能力的培养,强调精讲多练,举一反三;充分利用直观材料,抽象与具体相结合;理论结合实际,注重应用能力的培养;循循善诱,指导学生学法。他的现金的教育思想和数学方法对后世也有深刻的影响。 元代著名数学家李冶和朱世杰私人传授数学的教育实践。李冶以《益古演段》教材,从最简单的方程,不等式,算术一直到四元术;朱世杰著有《算学启蒙》和《四元玉鉴》传世。 第五时期:中国传统数学的衰落(明初~清中1840年) 满清统治者为了维护其部族的统治压抑民智,如同黑暗的欧洲中世纪一样,思想领域实行强控制,不光政治文化的书籍要禁,就连包括数学在内的科学技术也不放过。《几何原本》、《天工开物》大批明代的科技成果或毁或弃,只要和官方的程朱理学不统一的,都要禁止。满清统治不支持西方传教士向中国的学者介绍西方科学知识和数学知识,不鼓励中国学人参与中西文化交流。学习西方科技不是国策,也没有形成社会风气。中国数学日渐衰落。 第六时期:中西数学的合流(清中~清末1911年) 自明末西方数学开始大规模传入中国以来,直到20世纪初中国数学与西方数学合流,这300多年间中国数学的发展实际上就是中国数学由传统走向近代的过程。以三角学、天元术和垛积术为纲具体研究数学研究内容的西化过程,中国数学家对西方数学的“拒斥”与“吸纳”之间的微妙关系在改变。中国数学家在幂级数、尖锥术等方面已独立地得到了一些微积分成果,在不定分析和组合分析方面也获得了出色的成绩。然而,即使是这样,在世界的同行们之中,我国也仍然没达到领先的地位。 第七时期:现代数学的奠基与发展(公元1911年~公元1976年) 19世纪末20世纪初,中国数学界发生了很大的变化,派出大批留学生,创办新式学校,组织学术团体,有了专门的期刊,中国从此进入了现代数学研究阶段。从1847年,形成了一个出国留学的高潮。这样一批海外学子归来之后,在科研、教育、学术交流等方面都有了新转变。其中在数学方面做出突出成就的有:苏步青、陈建功、陈省身、周炜良、许宝、华罗庚、林家翘等人。 1949年,新中国成立之初,国家虽然正处于资金匮乏、百废待兴的困境,然而政府却对科学事业给予了极大关注。1949年11月成立了中国科学院,1952年7月数学研究所正式成立,接着,中国数学会及其创办的学报恢复并增创了其他数学专刊,一些科学家的专著也竞相出版,这一切都为数学研究铺平了道路。正当数学家们奋起直追,力图恢复中国数学在世界上的先进地位时,一场无情的风暴席卷了中国。在文化大革命的十年中,社会失控,人心混乱,科学衰落,在数学的园地里除了陈景润、华罗庚、张广厚等几个数学家挣扎着开了几朵花,几乎是满目凋零,一片空白。 中华民族历来就有自强不息的光荣传统和坚韧不拔的耐力。浩劫以后,随着郭沫若先生那篇文采横溢的《科学的春天》的发表,数学园地里又迎来了万物复苏的春天。1977年,在北京制订了新的数学发展规划,恢复数学学会工作,复刊、创刊学术杂志,加强数学教育,加强基础理论研究…

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

有关数学史论文

大学数学论文范文

导语:无论是在学校还是在社会中,大家都写过论文,肯定对各类论文都很熟悉吧,论文是探讨问题进行学术研究的一种手段。怎么写论文才能避免踩雷呢?以下是我收集整理的论文,希望对大家有所帮助。

论文题目: 大学代数知识在互联网络中的应用

摘要: 代数方面的知识是数学工作者的必备基础。本文通过讨论大学代数知识在互联网络对称性研究中的应用,提出大学数学专业学生检验自己对已学代数知识的掌握程度的一种新思路,即思考一些比较前沿的数学问题。

关键词: 代数;对称;自同构

一、引言与基本概念

《高等代数》和《近世代数》是大学数学专业有关代数方面的两门重要课程。前者是大学数学各个专业最重要的主干基础课程之一,后者既是对前者的继续和深入,也是代数方面研究生课程的重要先修课程之一。这两门课程概念众多,内容高度抽象,是数学专业学生公认的难学课程。甚至,很多学生修完《高等代数》之后,就放弃了继续学习《近世代数》。即使对于那些坚持认真学完这两门课程的学生来讲,也未必能做到“不仅知其然,还知其所以然”,而要做到“知其所以然,还要知其不得不然”就更是难上加难了。众所周知,学习数学,不仅逻辑上要搞懂,还要做到真正掌握,学以致用,也就是“学到手”。当然,做课后习题和考试是检验是否学会的一个重要手段。然而,利用所学知识独立地去解决一些比较前沿的数学问题,也是检验我们对于知识理解和掌握程度的一个重要方法。这样做,不仅有助于巩固和加深对所学知识的理解,也有助于培养学生的创新意识和自学能力。笔者结合自己所从事的教学和科研工作,在这方面做了一些尝试。

互连网络的拓扑结构可以用图来表示。为了提高网络性能,考虑到高对称性图具有许多优良的性质,数学与计算机科学工作者通常建议使用具有高对称性的图来做互联网络的模型。事实上,许多著名的网络,如:超立方体网络、折叠立方体网络、交错群图网络等都具有很强的对称性。而且这些网络的构造都是基于一个重要的代数结构即“群”。它们的对称性也是通过其自同构群在其各个对象(如:顶点集合、边集合等)上作用的传递性来描述的。

下面介绍一些相关的概念。一个图G是一个二元组(V,E),其中V是一个有限集合,E为由V的若干二元子集组成的集合。称V为G的顶点集合,E为G的边集合。E中的每个二元子集{u,v}称为是图G的连接顶点u与v的一条边。图G的一个自同构f是G的顶点集合V上的一个一一映射(即置换),使得{u,v}为G的边当且仅当{uf,vf}也为G的边。图G的全体自同构依映射的合成构成一个群,称为G的全自同构群,记作Aut(G)。图G称为是顶点对称的,如对于G的任意两个顶点u与v,存在G的自同构f使得uf=v。图G称为是边对称的,如对于G的任意两条边{u,v}和{x,y},存在G的自同构f使得{uf,vf}={x,y}。

设n为正整数,令Z2n为有限域Z2={0,1}上的n维线性空间。由《近世代数》知识可知,Z2n的加法群是一个初等交换2群。在Z2n中取出如下n个单位向量:

e1=(1,0,…,0),e2=(0,1,0,…,0),en=(0,…,0,1)。

●n维超立方体网络(记作Qn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei,其中1≤i≤n。

●n维折叠立方体网络(记作FQn)是一个以Z2n为顶点集合的图,对于Qn的任意两个顶点u和v,{u,v}是Qn的一条边当且仅当v-u=ei(1≤i≤n)或者v-u=e1+…+en。

●n维交错群图网络(记作AGn)是一个以n级交错群An为顶点集合的图,对于AGn的任意两个顶点u和v,{u,v}是AGn的一条边当且仅当vu-1=ai或ai-1,这里3≤i≤n,ai=(1,2,i)为一个3轮换。

一个自然的问题是:这三类网络是否是顶点对称的?是否边对称的?但值得我们注意的是,这些问题都可以利用大学所学的代数知识得到完全解决。

二、三类网络的对称性

先来看n维超立方体网络的对称性。

定理一:n维超立方体网络Qn是顶点和边对称的。

证明:对于Z2n中的任一向量x=(x1,…,xn),如下定义V(Qn)=Z2n上面的一个映射:f(x):u→u+x,u取遍V(Qn)中所有元素。容易验证f(x)是一个1-1映射。(注:这个映射在《高等代数》中已学过,即所谓的平移映射。)而{u,v}是Qn的一条边,当且仅当v-u=ei(1≤i≤n),当且仅当vf(x)-uf(x)=ei(1≤i≤n),当且仅当{v(fx),u(fx)}是Qn的一条边。所以,f(x)也是Qn的一个自同构。这样,任取V(Qn)中两个顶点u和v,则uf(v-u)=v。从而说明Qn是顶点对称的。

下面证明Qn是边对称的。只需证明:对于Qn的任一条边{u,v},都存在Qn的自同构g使得{ug,vg}={0,e1},其中0为Z2n中的零向量。事实上,{uf(-u),vf(-u)}={0,v-u},其中v-u=ei(1≤i≤n)。显然,e1,…,ei-1,ei,ei+1,…,en和ei,…,ei-1,e1,ei+1,…,en是Z2n的两组基向量。由《高等代数》知识可知存在Z2n上的可逆线性变换t使得t对换e1和ei而不动其余向量。此时易见,若{a,b}是Qn的一条边,则a-b=ej(1≤j≤n)。若j=1,则at-bt=ei;若j=i,则at-bt=e1;若j≠1,i,则at-bt=ej;所以{at,bt}也是Qn的一条边。由定义可知,t是Qn的一个自同构。进一步,{0t,(v-u)t}={0,e1},即{uf(-u)t,vf(-u)t}={0,e1}。结论得证。

利用和定理一相似的办法,我们进一步可以得到如下定理。

定理二:n维折叠立方体网络FQn是顶点和边对称的。

最后,来决定n维交错群图网络的对称性。

定理三:n维交错群图网络AGn是顶点和边对称的。

证明:首先,来证明AGn是顶点对称的。给定An中的一个元素g,如下定义一个映射:R(g):x→xg,其中x取遍An中所有元素。容易验证R(g)为AGn顶点集合上上的一个1-1映射。(注:这个映射在有限群论中是一个十分重要的'映射,即所谓的右乘变换。)设{u,v}是AGn的一条边,则vu-1=ai或ai-1,这里1≤i≤n。易见,(vg)(ug)-1=vu-1。所以,{vR(g),uR(g)}是AGn的一条边。因此,R(g)是AGn的一个自同构。这样,对于AGn的任意两个顶点u和v,有uR(g)=v,这里g=u-1v。这说明AGn是顶点对称的。

下面来证明AGn是边对称的。只需证明对于AGn的任一条边{u,v},都存在AGn的自同构g使得{ug,vg}={e,a3},其中e为An中的单位元。给定对称群Sn中的一个元素g,如下定义一个映射:C(g):x→g-1xg,其中x取遍An中所有元素。由《近世代数》知识可知,交错群An是对称群Sn的正规子群。容易验证C(g)是AGn的顶点集合上的一个1-1映射。(注:这个映射其实就是把An中任一元素x变为它在g下的共轭。这也是有限群论中一个十分常用的映射。)令x=(1,2),y(j)=(3,j),j=3,…,n。下面证明C(x)和C(y(j))都是AGn的自通构。取{u,v}为AGn的任一条边,则vu-1=ai或ai-1。从而,vC(x)(u-1)C(x)=(x-1vx)(x-1u-1x)=x-(1vu-1)x=ai-1或ai。

因此,{uC(x),vC(x)}也是AGn的一条边。从而说明C(x)是AGn的自通构。同理,若j=i,有vC(y(j))(u-1)C(y(j))=a3-1或a3;若j≠i,则有vC(y(j))(u-1)C(y(j))=ai-1或ai。这说明{uC(y(j)),vC(y(j))}也是AGn的一条边,从而C(y(j))是AGn的自通构。现在,对于AGn的任一条边{u,v},令g=u-1,则{uR(g),vR(g)}={e,vu-1}={e,ai}或{e,ai-1}。若i=3,则{e,a3-1}C(x)={e,a3}。而若i≠3,则{e,ai}C(y(j))={e,a3}而{e,ai-1}C(y(j))={e,a3-1}。由此可见,总存在AGn的自同构g使得{ug,vg}={e,a3},结论得证。

至此,完全决定了这三类网络的对称性。不难看出,除了必要的图论概念外,我们的证明主要利用了《高等代数》和《近世代数》的知识。做为上述问题的继续和深入,有兴趣的同学还可以考虑以下问题:

1、这些网络是否具有更强的对称性?比如:弧对称性?距离对称性?

2、完全决定这些网络的全自同构群。

实际上,利用与上面证明相同的思路,结合对图的局部结构的分析,利用一些组合技巧,这些问题也可以得到解决。

三、小结

大学所学代数知识在数学领域中的许多学科、乃至其他领域都有重要的应用。笔者认为任课教师可以根据自己所熟悉的科研领域,选取一些与大学代数知识有紧密联系的前沿数学问题,引导一些学有余力的学生开展相关研究,甚至可以吸引一些本科生加入自己的课题组。当然,教师要给予必要的指导,比如讲解相关背景知识、必要的概念和方法等。指导学生从相对简单的问题入手,循序渐进,由易到难,逐步加深对代数学知识的系统理解,积累一些经验,为考虑进一步的问题奠定基础。

结束语

本文所提到的利用《高等代数》和《近世代数》的知识来研究网络的对称性就是笔者在教学工作中曾做过的一些尝试。在该方面,笔者指导完成了由三名大三学生参加的国家级大学生创新实验项目一项。这样以来,学生在学习经典数学知识的同时,也可以思考一些比较前沿的数学问题;学生在巩固已学知识的同时,也可以激发其学习兴趣,训练学生的逻辑思维,培养学生的创新思维,以及独立发现问题和解决问题的能力。

【摘要】

随着数学文化的普及与应用,学术界开始重视对于数学文化的相关内容进行挖掘,这其中数学史在阶段我国大学数学教学之中,具有着重要的意义。从实现大学数学皎月的两种现象进行分析,在揭示数学本质的基础上,着重分析数学史在我国大学数学教育之中的重要作用,强调在数学教学之中利用数学史进行启发式教学活动。本文从数学史的角度,对于大学数学教学进行全面的分析,从中分析出适合我国大学数学教育的主要意义与作用。

【关键词】

数学史;大学数学教育;作用

一、引言

数学史是数学文化的一个重要分支,研究数学教学的重要部分,其主要的研究内容与数学的历史与发展现状,是一门具有多学科背景的综合性学科,其中不仅仅有具体的数学内容,同时也包含着历史学、哲学、宗教、人文社科等多学科内容。这一科目,距今已经有二千年的历史了。其主要的研究内容有以下几个方面:

第一,数学史研究方法论的相关问题;

第二,数学的发展史;

第三,数学史各个分科的历史;

第四,从国别、民族、区域的角度进行比较研究;

第五,不同时期的断代史;

第六、数学内在思想的流变与发展历史;

第七,数学家的相关传记;

第八,数学史研究之中的文献;

第九,数学教育史;

第十,数学在发展之中与其他学科之间的关系。

二、数学史是在大学数学教学之中的作用

数学史作为数学文化的重要分支,对于大学数学教学来说,有着重要的作用。利用数学史进行教学活动,由于激发学生的学习兴趣,锻炼学生的思维习惯,强化数学教学的有效性。

笔者根据自身的教学经验,进行了如下总结:首先,激发学生的学习兴趣,在大学数学的教学之中应用数学史,进行课堂教学互动,可以最大限度的弱化学生在学习之中的困难,将原本枯燥、抽象的数学定义,转变为简单易懂的生动的事例,具有一定的指导意义,也更便于学生理解。

从学生接受性的角度来讲,数学史促进了学生的接受心理,帮助学生对于数学概念形成了自我认知,促进了学生对于知识的透彻掌握,激发了学生兴趣的产生。其次,锻炼学生的创新思维习惯,数学史实际意义上来说,有很多讲授数学家在创新思维研发新的理论的故事,这些故事从很多方面对于当代大学生据有启迪作用。例如数学家哈密顿格拉斯曼以及凯利提出的不同于普通代数的具有某种结构的规律的代数的方法代开了抽象代数的研究时代。用减弱或者勾去普通代数的各种各样的假设,或者将其中一个或者多个假定代之一其他的假定,就有更多的体系可以被研究出来。这种实例,实际上让学生从更为根本的角度对于自己所学的代数的思想进行了了解,对于知识的来龙去脉也有了一定的认识,针对这些过程,学生更容易产生研究新问题的思路与方法。

再次,认识数学在社会生活之中的广泛应用,在以往的大学数学教学之中,数学学科往往是作为一门孤立的学科而存在的,其研究往往是形而上的研究过程,人们对于数学的理解也是枯燥的,是很难真正了解到其内涵的。但是数学史的应用,与其在大学数学教学之中的应用,可以让学生了解到更多的在社会生活之中的数学,在数学的教学之中使得原本枯燥的理论更加贴近生活,更加具有真实性,将原本孤立的学科,拉入到了日常生活之中。从这一点上来说,数学史使得数学更加符合人类科学的特征。

三、数学史在大学数学教学之中的应用

第一,在课堂教学之中融入数学史,以往枯燥的数学课堂教学,学生除了记笔记验算,推导以外,只能听老师讲课,课堂内容显得比较生硬,教师针对数学史的作用,可以在教学之中融入数学史,在教学活动之中将数学家的个人传记等具有生动的故事性的数学史内容,进行讲解,提高学生对于课堂教学的兴趣。例如一元微积分学的相关概念,学生在普通的课堂之中,很难做到真正意义的掌握,而更具教学大纲,多数老师的教学设计是:极限——导数与微分——不定积分——定积分。这种传统的教学方式虽然比较呼和学生的一般认知规律,但是却忽视了其产生与又来,教师在教学之中可穿插的讲授拗断——莱布尼茨公式的又来,将微积分艰难的发展史以故事的形式呈现出来,更加便于学生理解的同时也激发了学生的学习热情。

第二,利用数学方法论进行教学,数学方法论是数学史的之中的有机组成部分,而方法论的探索对于大学数学教学来说,也具有着重要的意义,例如在极限理论的课堂教学来说,除了单纯的对于极限的相关概念进行讲解的基础上,也可以将第二次数学危机以及古希腊善跑英雄阿基里斯永远追不上乌龟等相关故事,融入到课堂之中。这种让学生带着疑问的听课方式,更进一步促进了学生对于教学内容的兴趣,全面的促进了学生在理解之中自然而然的形成了理解极限的形成思想,并逐渐的享受自身与古代数学家的共鸣,从而促进自身对于数学的理解,提高学生的学习兴趣,进一步提高课堂的教学效果。所以,在大学数学课堂教学之中,融入数学史的相关内容,不仅具有积极的促进作用,同时在实践之中,也具有一定的可操作性。这种教学模式与方法对于提高我国大学数学教学的质量有着积极的推动作用,同时也更进一步推动了大学数学教学改革的进行。

作为工科类大学公共课的一种,高等数学在学生思维训练上的培养、训练数学思维等上发挥着重要的做用。进入新世纪后素质教育思想被人们越来越重视,如果还使用传统的教育教学方法,会让学生失去学习高等数学的积极性和兴趣。以现教育技术为基础的数学建模,在实际问题和理论之间架起沟通的桥梁。在实际教学的过程中,高数老师以课后实验着手,在高等数学教学中融入数学建模思想,使用数学建模解决实际问题。

一、高等数学教学的现状

(一)教学观念陈旧化

就当前高等数学的教育教学而言,高数老师对学生的计算能力、思考能力以及逻辑思维能力过于重视,一切以课本为基础开展教学活动。作为一门充满活力并让人感到新奇的学科,由于教育观念和思想的落后,课堂教学之中没有穿插应用实例,在工作的时候学生不知道怎样把问题解决,工作效率无法进一步提升,不仅如此,陈旧的教学理念和思想让学生渐渐的失去学习的兴趣和动力。

(二)教学方法传统化

教学方法的优秀与否在学生学习的过程中发挥着重要的作用,也直接影响着学生的学习成绩。一般高数老师在授课的时候都是以课本的顺次进行,也就意味着老师“由定义到定理”、“由习题到练习”,这种默守陈规的教学方式无法为学生营造活跃的学习氛围,让学生独自学习、思考的能力进一步下降。这就要求教师致力于和谐课堂氛围营造以及使用新颖的教育教学方法,让学生在课堂中主动参与学习。

二、建模在高等数学教学中的作用

对学生的想象力、观察力、发现、分析并解决问题的能力进行培养的过程中,数学建模发挥着重要的作用。最近几年,国内出现很多以数学建模为主体的赛事活动以及教研活动,其在学生学习兴趣的提升、激发学生主动学习的积极性上扮演着重要的角色,发挥着突出的作用,在高等数学教学中引入数学建模还能培养学生不畏困难的品质,培养踏实的工作精神,在协调学生学习的知识、实际应用能力等上有突出的作用。虽然国内高等院校大都开设了数学建模选修课或者培训班,但是由于课程的要求和学生的认知水平差异较大,所以课程无法普及为大众化的教育。如今,高等院校都在积极的寻找一种载体,对学生的整体素质进行培养,提升学生的创新精神以及创造力,让学生满足社会对复合型人才的需求,而最好的载体则是高等数学。

高等数学作为工科类学生的一门基础课,由于其必修课的性质,把数学建模引入高等数学课堂中具有较广的影响力。把数学建模思想渗入高等数学教学中,不仅能让数学知识的本来面貌得以还原,更让学生在日常中应用数学知识的能力得到很好的培养。数学建模要求学生在简化、抽象、翻译部分现实世界信息的过程中使用数学的语言以及工具,把内在的联系使用图形、表格等方式表现出来,以便于提升学生的表达能力。在实际的学习数学建模之后,需要检验现实的信息,确定最后的结果是否正确,通过这一过程中的锻炼,学生在分析问题的过程中可以主动地、客观的辩证的运用数学方法,最终得出解决问题的最好方法。因此,在高等数学教学中引入数学建模思想具有重要的意义。

三、将建模思想应用在高等数学教学中的具体措施

(一)在公式中使用建模思想

在高数教材中占有重要位置的是公式,也是要求学生必须掌握的内容之一。为了让教师的教学效果进一步提升,在课堂上老师不仅要让学生对计算的技巧进一步提升之余,还要和建模思想结合在一起,让解题难度更容易,还让课堂氛围更活跃。为了让学生对公式中使用建模思想理解的更透彻,老师还应该结合实例开展教学。

(二)讲解习题的时候使用数学模型的方式

课本例题使用建模思想进行解决,老师通过对例题的讲解,很好的讲述使用数学建模解决问题的方式,让学生清醒的认识在解决问题的过程中怎样使用数学建模。完成每章学习的内容之后,充分的利用时间为学生解疑答惑,以学生所学的专业情况和学生水平的高低选择合适的例题,完成建模、解决问题的全部过程,提升学生解决问题的效率。

(三)组织学生积极参加数学建模竞赛

一般而言,在竞赛中可以很好地锻炼学生竞争意识以及独立思考的能力。这就要求学校充分的利用资源并广泛的宣传,让学生积极的参加竞赛,在实践中锻炼学生的实际能力。在日常生活中使用数学建模解决问题,让学生独自思考,然后在竞争的过程中意识到自己的不足,今后也会努力学习,改正错误,提升自身的能力。

四、结束语

高等数学主要对学生从理论学习走向解决实际问题的能力进行培养,在高等数学中应用建模思想,促使学生对高数知识更充分的理解,学习的难度进一步降低,提升应用能力和探索能力。当前,在高等教学过程中引入建模思想还存在一定的不足,需要高校高等数学老师进行深入的研究和探索的同时也需要学生很好的配合,以便于今后的教学中进一步提升教学的质量。

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

有关数学数学史论文题目

数学史是研究数学科学发生发展及其规律的科学,简单地说就是研究数学的历史。下文是我为大家整理的关于大学数学史论文的范文,欢迎大家阅读参考!

数学史的教育功能

摘要数学史作为数学学科中的一部分,它不仅揭示了数学知识发展的来源,也揭示了数学学科对于人们发展科学文化知识的巨大作用。数学史的教学已经成为了目前学校教育工作中的一部分,利用数学史的教学可以引导学生们提高对数学学科学习的兴趣,培养创新思维,从了解数学史的根源开始,主动发现数学学科中的奥秘。针对这一系列问题,本文从四大方面分析了数学史对于数学教育工作中的功能体现,从而引起数学教育工作者的高度重视。

关键词数学史教育功能创新思维功能体现

1 数学史的教育功能之一 ——提高学生们学习数学的兴趣

兴趣是最好的老师,有了兴趣学生才会对数学冰冷的美丽产生出火热的激情。然而,为了提高学生们学习数学的兴趣,不仅仅是鼓励和题海战术这么简单,我们应该采取引导与教育相结合的方式,青少年时期正是疑问多、想法多的阶段,我们应该抓住学生们的这一特点,从解除疑问的角度来引导学生们接受和爱好数学的学习。让学生们在了解数学史的基础上,深刻记忆数学定义、定理的模型与应用。

例如:数学老师在课堂上讲授无理数的概念时,若只是将无理数的概念硬性地传授给学生,学生们似乎已经记住了无理数的特征,也能够正确判断哪些数是无理数,哪些数不是无理数,然而,这只是课堂中的短暂记忆,无法给学生们留下深刻的印象,无法在学生们的脑子里留下长久的烙印。因此,我们可以从介绍无理数的历史发展入手,将生动的无理数来源的历史背景讲授给学生们,引起学生们学习无理数的兴趣,加深对这一知识点的记忆。

2 数学史的教育功能之二——培养学生们的数学应用意识

数学的主要功能是应用科学,数学是一种工具,是所有学科中最具前瞻性和科学性的自然科学,从数学知识的本身来看是十分枯燥乏味的,表面来看,学生们在课堂中所接受的是已经由大量科学家所发现和证明了的科学结晶,这些结果的产生是具有强大科学依据的,每一个结晶诞生的背后都有一个久远的历史故事,它不仅验证了科学的可靠性,同时也说明了世界奥秘的可知性。二十一世纪的青少年是与新时代接轨的一代,在学习的过程中只是了解学科的表面是不够的,我们要从数学史的教育抓起,深入探讨数学学科的伟大,从根本上培养学生们的数学应用意识,加大学习数学知识的深度与广度。

例如:我国古代名著 《孙子算经》上有这样一道题:今有鸡兔同笼,从上面看有三十五头,从下面看有九十四足,问笼子里鸡有几只?兔有几只?这道题对学生来说是十分有趣的,既让他们掌握了方程的基本思想,又让他们感觉到学习的新知识的价值所在;

又例如:在《九章算术》中记载了一道有趣的数学题:有一个边长为一丈的正方形水池,在池中央长着一根芦苇,芦苇露出水面1尺,若将芦苇拉到池边中点处,芦苇的顶端恰好到达水面。问水有多深?芦苇有多长?这是一道作为《探索勾股定理》的习题,通过练习,同学们可以在熟练应用勾股定理的同时,体会到勾股定理在实际问题中的应用。

再例如:公元三世纪我国数学家赵爽证明了勾股定理的弦图。老师在课堂上对于这种验证方法的介绍,可以通过数学知识重组再创造,分析当年数学家赵爽的探索过程,使其证明思路逐渐展现在如今的课堂中,帮助学生们理解与掌握勾股定理的内容与应用。

从以上例子中可以看出,数学史的诸多命题历史悠久,具有说服力和兴趣性,我们在利用数学史知识讲授数学课程的时候,既能够为学生们介绍大量的数学历史故事,让学生们深入了解数学中各种定理、模型的来源,加深对其的记忆,又能够扩大学生们的知识面,让学生们了解到数学(下转第189页)(上接第139页)学科的科学性和前瞻性,从认识历史、认识科学家、认识世界的角度学习科学文化知识是现如今加强学生们素质教育的关键。

3 数学史的教育功能之三——提高学生们的数学素养

对于任何一门学科的学习,都应该拥有这门学科的学习精神,数学是一门体现人类文明发展史的学科,它融汇了人类智慧的结晶,在历史悠久的中国,有着成千上万的科学家前仆后继,为数学学科的发展作出了卓越的贡献。数学史作为数学学科中的一部分,是如今提高学生们的素质、普及数学科学知识、增强个人科学素养的关键学科。老师应该在传授数学知识的同时,将数学的发展、科学家的成就、每一项成果的来之不易一并传授给学生们,让学生们认识到数学知识的可贵、数学知识的力量、数学知识的魅力。例如:在浙教版《义务教育课程标准实验教科书-数学》的六册书的阅读材料中,介绍了法国的笛卡尔、费马;中国的杨辉;德国的卢道夫等不少历史上的数学家及其重要成果。提高了学生们的学习兴趣,扩大了学生们的知识面,从实际案例中启发学生们学习科学文化知识的重要性。从而提高了学生们的数学素养。

4 数学史的教育功能之四——培养学生们对世界观的正确认知

从数学悠久的历史来看,中国从古至今涌现出了一批优秀的数学家,刘徽、祖冲之、祖咂、杨辉、秦九韶、李冶、朱世杰等,他们的数学成就流传至今,为中国的科学事业奠定了坚实的基础,为后代人对认识世界、改造世界的观念提供了强有力的科学依据。数学是一门自然科学,是上千万科学家智慧的结晶,是科学的真理体现,是对大千世界正确的认识,它是客观存在的科学,是唯物主义的认证。因此,作为数学教育工作者,有责任、有义务在传授知识的同时,培养学生们正确的世界观、人生观、价值观,相信科学,杜绝唯心主义,摆脱迷信思想,利用数学史的介绍勉励学生们对科学文化知识的正确认知,对世界观的正确理解。

总之,数学史在数学教学中的渗透,从提高学生们学习数学的兴趣,培养学生们的数学应用意识,提高学生们的数学素养,培养学生们对世界观的正确认知这四个方面来看是十分重要的。将数学的抽象运算方法融入到数学史的介绍当中,开阔学生们的思路,增强学生们科学知识结构的形成,是目前提高青少年素质教育的关键。我们要加大力度完善数学教学的模式,增加数学史教学的课程安排,有效实施文化教育与素质教育的适当结合,从而提高数学教学的整体质量。

参考文献

[1]范良火.义务教育课程标准实验教科书.数学(七年级上册~九年级下册)浙江教育出版社,2005.

[2]全日制义务教育数学课程标准解读(实验稿).北京师范大学出版社,2008.

[3]李正银.数学史与数学教育[J].海南师范学院学报,2003.16(3):98-10.

[4]王鹏飞.尝试错误数学教法[J].中学数学参考,1998(7).

[5]高慧明.在暴露思维过程中培养探究能力[J].数学教学通讯,2004(7).

[6]叶莉.浅谈小学数学课堂教学总结的价值和方法.理工,2012(3).

数学史在大学数学教学中的意义与价值

摘 要: 如今,越来越多的教育工作者对数学史教育在数学教学中的多方面作用给予了充分认可。本文结合大学数学教学的特点,着重探讨了数学史在大学数学教学中的意义与价值。

关键词: 数学史 高等数学 教学改革

1.数学史

数学史是研究数学概念、数学方法和数学思想的起源与发展,以及其与社会政治、经济和一般文化的联系的一门科学,蕴涵了丰富的数学思想的历史。它不仅追溯数学内容、思想和方法的演变、发展过程,而且探索影响这种过程的各种因素,以及历史上数学科学的发展对人类文明所带来的影响。数学的发展绝不是一帆风顺的,数学的发展在不同的历史阶段,受到政治、宗教等各种社会因素的干扰。历史上无理量的发现,微积分和非欧几何的创立,乃至费马大定理的证明,等等,无一不是数学家们经历了曲折艰难最终探索出来的。因此,数学史研究对象不仅包括具体的数学内容,而且涉及历史学、哲学、文化学、宗教等社会科学与人文科学内容,是一门交叉性学科。

2.数学史在大学数学教学中的意义与价值

我国的数学教学一直注重形式化的演绎数学思维的训练,而忽视了培养学生对数学作为一门科学的思想体系、文化内涵和美学价值的认识。但由于受传统教学课时和内容上的安排的影响,大学数学的教学往往存在课时少,内容多的矛盾。广大教师为了完成教学任务,达到“会考试”的效果,往往在课堂上只注重数学知识的传授,而忽视了数学的思想性和趣味性。目前数学史的教育价值也早已被一些学者所认识。2005年在中国召开了“第一届数学史与数学教育会议”,由此看出,充分发掘数学史在数学教学中的作用越来越受到重视。要发展数学史教育首先要提高人们对数学史教育重要性的认识,虽然目前学术界对数学史教育在数学教学的功效引起一定的重视,但这并不够。数学并不是一些枯燥定理的堆砌,而是人类文明、人类文化高度发展的结晶。

数学家庞加莱说:“若欲预见数学的将来,正确的方法是研究它的历史和现状。”数学史是人类文明给后人留下的路标,具有独特的教育功能。数学史的学习在大学数学教学中的意义与价值主要体现在以下几个方面。

(1)数学史是数学文化的最佳载体

传统的数学教学一般只涉及数学的两个层面:数学的概念、命题,数学的思想和方法。现如今,数学作为一种文化现象,早已是常识,那么,我们就应该用较为宽泛的眼光来看数学或数学文化。数学作为人类创造的文化之一,它并不是超文化的。数学课程应适当反映数学的历史、应用和发展趋势。数学文化除了数学知识本身,还包括数学对推动社会发展的作用,数学的社会需求,社会发展对数学发展的推动作用,数学科学的思想体系,数学的美学价值,数学家的创新精神,等等。数学史正是数学文化教育的最佳载体。

(2)数学史是激发兴趣的有效途径

几乎所有学科都强调激发学生学习兴趣的重要性,而数学学科尤为突出,在著名数学家成才规律的探索中,中外学者不约而同地将“对数学浓厚的兴趣”列为第一位要素。在教学过程中,要善于激发学生对数学学科的兴趣,正如爱因斯坦所言:“兴趣是最好的老师。”大学阶段的学生无论是逻辑思维能力还是自控能力都已经基本发展成熟,且大学阶段的数学知识内容已经非常注重体系的严密性和完整性,学习方式也从中学时期的“要我学”变成“我要学”,学习兴趣显得尤为重要。

纵观数学发展史,许多数学名家并非一开始就是从事数学研究的,很多人是因偶然的机会而对数学产生了兴趣,才走上了专业化发展道路。解析几何的创始人笛卡尔,从小游手好闲,偶遇一次街头数学问题悬赏解答,强烈的兴趣使他对数学入了迷,那年他已经近二十岁了。

数学史上的许多经典问题,仍然吸引了一代又一代数学学习者投入其中,如欧拉研究过的七桥问题,我国的七巧板游戏等,都是激发学生学习兴趣的良好素材,在教学中要有意识地发掘其教育价值。

(3)数学史是理解数学的必由之路

数学课程通常给出的是一个系统的逻辑论述,好像从这一结论到那一个定理是很自然的事情,其实历史的发展并非一帆风顺,通过数学史的学习可以使同学们认识到,一个学科的发展是从点滴积累开始的,有的甚至需要几百年时间。比如我们熟悉的四色原理从产生到最终解决花了三百多年,在解决问题过程中,衍生出了众多应用数学的分支,从不同侧面影响着社会生活。

从数学史看,数学成果的流传主要是数学思想方法的流传,所以我们在学习知识的过程中,只有了解数学研究的历史背景,分析前人的方法,才能透过现象看本质,得到有益的启示,激发出思想的火花,并真正学会“像数学家那样思考”。

(4)数学史是思想教育的良好素材

数学史在课本中的反映是经过提炼的,自然淡化了发展中艰苦漫长的历程。通过数学史的学习,同学们会获得学习的勇气,不会因为学习中的挫折而沮丧。中外数学家刻苦钻研,严谨创新和为了科学事业而勇于献身的例子比比皆是,在解决数学史上的三大危机时,许多数学家甚至为此付出了生命,这些都是极好的思想教育的材料。

欧拉终身为数学奋斗,所有的领域都留下欧拉研究的痕迹,长期的劳累使他双目失明,在此以后的17年,仍忘我地献身于数学研究。牛顿出身于农民家庭,1661年考入剑桥大学。1665年,伦敦地区流行鼠疫,剑桥大学暂时关闭。牛顿回到了家乡,在乡村幽居了两年,终日思考各种问题、探索大自然的奥秘。他平生的三大发明――微积分、万有引力、光谱分析都萌发于此。后来牛顿在追忆这段峥嵘的青春岁月时,深有感触地说:“我的成功当归功于精力的探索。”“没有大胆的猜想就做不出伟大的发现。”学生听了数学家的事迹,必然会备受鼓舞,从而认识到只有经过自己奋斗,才能取得成就。通过这些数学史实和事例能够帮助学生树立超越世界数学先进水平的胆识,培养学生的科学态度和优良品质。

3.结语

数学史是人类的认识史、发明史和创造史,其中蕴涵着可供后人借鉴的巨大思想财富,广大教育工作者已经认识到它的重要作用。数学史可以将逻辑推理还原为合情推理,将逻辑演绎追溯到归纳演绎,通过挖掘历史上数学家解决问题的真谛学生不仅可以学到具体的现成的数学知识,而且可以学到“科学的方法”,更深刻地领略数学文化。在大学数学教学中融入数学史对强化课堂效果是一种很行之有效的做法,会起到良好的作用。最后引用19世纪英国数学家格莱舍的一句话作为结语:“任何企图将一种科目和它的历史割裂开来,我确信,没有哪一种科目比数学的损失更大。”

参考文献

[1]靳玉乐.现代教育学[M].四川教育出版社,2006.

[2]张奠宙,李士,李俊.数学教育学导论[M].高等教育出版社,2003.

[3]杨泰良.以史为鉴 注重反思[J].数学通报.2004.2.

[4]J.N.Kapur.数学家谈数学本质[M].北京大学出版社,1989.

[5]李心灿.微积分的创立者及其先驱[M].高等教育出版社,2002.

可以通过线性关系,计算生活中手机充话费,什么样的人群使用什么样的套餐比较划算。希望能帮到你

1、 数学中的研究性学习2、数字危机3、中学数学中的化归方法4、高斯分布的启示5、a2 b2≧2ab的变形推广及应用6、网络优化7、泰勒公式及其应用8、浅谈中学数学中的反证法9、数学选择题的利和弊10、浅谈计算机辅助数学教学11、论研究性学习12、浅谈发展数学思维的学习方法13、关于整系数多项式有理根的几个定理及求解方法14、数学教学中课堂提问的误区与对策15、中学数学教学中的创造性思维的培养16、浅谈数学教学中的“问题情境”17、市场经济中的蛛网模型18、中学数学教学设计前期分析的研究19、数学课堂差异教学20、浅谈线性变换的对角化问题21、圆锥曲线的性质及推广应用22、经济问题中的概率统计模型及应用23、通过逻辑趣题学推理24、直觉思维的训练和培养25、用高等数学知识解初等数学题26、浅谈数学中的变形技巧27、浅谈平均值不等式的应用28、浅谈高中立体几何的入门学习29、数形结合思想30、关于连通性的两个习题31、从赌博和概率到抽奖陷阱中的数学32、情感在数学教学中的作用33、因材施教 因性施教34、关于抽象函数的若干问题35、创新教育背景下的数学教学36、实数基本理论的一些探讨37、论数学教学中的心理环境38、以数学教学为例谈谈课堂提问的设计原则39、不等式证明的若干方法40、试论数学中的美41、数学教育与美育42、数学问题情境的创设43、略谈创新思维44、随机变量列的收敛性及其相互关系45、数字新闻中数学应用46、微积分学的发展史47、利用几何知识求函数最值48、数学评价应用举例49、数学思维批判性50、让阅读走进数学课堂51、开放式数学教学52、浅谈中学数列中的探索性问题53、论数学史的教育价值54、思维与智慧的共享——从建构主义到讨论法教学55、微分方程组中的若干问题56、由“唯分是举”浅谈考试改革57、随机变量与可测函数58、二阶变系数齐次微分方程的求解问题59、一种函数方程的解法60、积分中值定理的再讨论对原函数存在条件的试探分块矩阵的若干初等运算函数图像中的对称性问题泰勒公式及其应用微分中值定理的证明和应用一元六次方程的矩阵解法‘数学分析’对中学数学的指导作用

一、创设教学情景,使“数学教学生活化”。以此激发学生的学习兴趣,调动学生积极性。 创设教学情境是模拟生活,使课堂教学更贴近现实生活,让学生身临其境,如见其人,如闻其声,加强感知,突出重点,突破难点,激发兴趣,开发思维。课堂教学中如何创设教学情境呢?我认为可这样做: 1、运用实例创设情境。如教学循环小数概念时,我给学生讲永远讲不完的故事:“从前,山上有座庙,庙里有个老和尚在给小和尚讲故事:老和尚说:从前山上有座庙……”,通过实例初步感知“不断重复”,再举出自然现象“水→汽→云→水”的循环变化,引出“循环”的概念。 2、运用实物(挂图)创设情境。“圆的认识”教学时,我这样引入:出示一幅颜色鲜艳的用正方形做轮子的自行车,问同学们这自行车漂亮吗?喜不喜欢?为什么?学生们回答:“不喜欢。因为这车虽然漂亮但踩不动。”我把正方形车轮换成椭圆后再问学生喜不喜欢,同学们还是说不喜欢,因为骑这样的自行车,即使是在平坦大路上也象在颠跛不平的路上骑一样,我再把椭圆形车轮换成圆形,学生才满意。 3、动手操作创设情境。在推导平行四边形面积公式时,我让学生准备几个平行四边形,鼓励他们动手操作,通过画、剪、移、拼等方法把一个平行四边形变成我们学过平面图形——长方形,观察拼成的长方形长和宽与平行四边形的底和高有什么关系,然后推导出:因为长方形面积=长×宽,所以平行四边形面积=底×高。平行四边形面积公式是学生在操作时,通过观察、思考概括而来,学生尝试到成功的快乐,不但能掌握知识,更能培养他们的信心和兴趣。 4、运用多媒体创设情境。多媒体教学具有直观、形象、具体、生活化的特点,运用多媒体创设情境,使抽象概念具体化,使难理解的问题容易化。如教学“长方体的认识”时,相对的面完全相同,相对的棱长度相等,我运用电脑平移两个面和相应的棱,使学生看见两个相对的面完全重合,相对的棱完全相等,从而达到具体,直观的效果。 5、 模拟生活创设情境。如教学两步加减的应用题时,要求每个小组的同学可以邀请别组的同学参加,小组人数可以比原来的人数多也可以比原来的少。 第一小组:我这组原来6人,走了2人,来了4人,现在有8人。 问:谁能把第一小组人员变化情况列成式子?6-2+4=8(人) 又问:谁把它编成求“现在有多少人?”的应用题。 第二小组:我这组原来6人,先来了2人,后面又来了3人,现在有11人。…… 通过若干个小组的汇报训练,学生在活动中完成了两步加减的应用题学习。 创设生活化的情景,让学生经历将现实问题抽象成数学模式的过程。 如我在教三年级教学《分数的初步认识》时,我就安排了这样一个游戏:先请上男、女学生各一名站在讲台前,然后,我拿出4个月饼,请其余学生用手指表示每人分到的月饼个数。要求大家仔细听老师要求,然后做。我边分边说:“我有4个月饼,平均分给蔡伟和熊娴,请用手指个数表示每人分到的月饼个数”。学生很快伸出2个手指。我接着问如果只有一个月饼,要平均分给蔡伟和熊娴,请用手指表示每人分到的月饼个数,这时,许多同学都难住了,有的同学伸出弯着的一个手指,问他表示什么意思,回答说,因为每人分到半个月饼,我进一步问:你能用一个数来表示“半个”吗?学生被问住了。此时,一种新的数(分数)的学习,成了学生自身的欲望,这样创设了一个与生活相关的教学情景,就激发了学生学习的兴趣,激起了学生解决问题的欲望。 二、研究生活中的数学,使数学课堂教学生活化。 知识是前人在生活中积累的经验或是揭示出的规律,而教学目标是为了掌握规律及学习发现规律的方法。我们老师如果只是让学生掌握知识,那就是把学生头脑当成了知识的容器,“头脑不是一个要被填满的容器,而是一把需被点燃的火把”。因此,教学中必须让学生了解知识发生的过程,但40分钟毕竟有限,因此我们老师要引导学生善于去捕促、获取、积累生活中的数学知识。 首先,要挖掘教材中生活资源。我以小学数学第十册举三个例。例1:数据的收集,要求学生在上放学途中遇到红灯时,数一数另一方向经过的大客车、小汽车、摩托车各是多少辆?例2:长方体和正方体的认识,要求学生模仿家庭中长方体和正方体用硬纸板动手做一个长方体和正长体。例3:质数和合数,分解质因数,布置作业,想一想班上每个同学的学号是质数还是合数,并把合数分解质因数。 其次,要指导学生观察生活中的教学。让学生观察生活中的数学,既可积累数学知识,更是培养学生学习数学兴趣的最佳途径。低年级学生数一数客厅的资砖、光碟等数量,比一比身高、体重,认一认周围的平面图形和立体图形。中高年级观察数学美,如形体的美、结构美等。 三、设计“数学生活化”的练习,帮助学生去发现生活中的数学问题,并应用所学的数学知识解决实际问题。使学生通过练习感觉到生活中处处有数学,数学来源于生活并应用于生活。 1、在练习过程中创造性地对教材内容进行还原和再创造,将数学练习融合于生活中,就可以使原有的练习为我所用。如我教《求平均数》(第八册)时,练习中有一题是给出一组学生身高数据,算出平均身高,来巩固平均数=总数÷个数的这种方法。我是这样做的:先给出我省十岁儿童的平均身高是140cm,问“我们组的身高水平是在平均身高之上还是不到平均身高呢?”引出要算本组平均身高,再让学生统计本小组8个人的身高,最后通过计算,得出小组的平均身高,与140cm进行比较。同样是计算学生平均身高的练习,但这样的练习设计不但巩固了求平均数的方法,还让学生明白了算平均数的必要性,也体会到生活中需要平均数;还学会了算平均数的这些数据是怎样来的;从平均数中可以获得哪些信息等等。我觉得这样的教学就达到了目标。 2、把生活中的数学原型生动地展现在课堂上,使学生眼中的数学不再是简单的做数学练习,而是富有情感、贴近生活,具有活力的东西。如我在教学长“方体和正方体的表面积”一课的练习拓展中,我设计了这样一个题目,我们的教室由于使用时间过长,比较成旧,需要重新粉刷,泥工师傅要按平方受取工资,总务处胡老师想要大家帮他算一算:我们教室要粉刷的面积是多少?请同学们明天作个答复。接着我让同学们讨论:要算出这个教室的粉刷面,需要找到那些数据,同学们准备怎么办?然后,让大家课后完成,可以合作。通过老师的点拨,激发了学生的自主探究和动手实践,学生兴趣高涨,积极动脑思考,动手实践,真正地把数学知识用到了生活当中。 总之,我们数学教师要引导学生善于思考生活中的数学,加强知识与实际联系;要做生活中的有心人,力争结合教学内容和学生的生活经验以及已有的知识,尽可能地创设一些生动有趣、贴近生活、富有生活气息的情景和练习,使学生切实体验到“生活离不开数学”,“人人身边有数学”,用数学可以解决生活中的实际问题,从而对数学产生亲切感,和浓厚的学习兴趣,增强学生对数学知识的应用意识,培养学生的自主创新能力和解决问题的能力。我对“数学教学生活化”的点滴尝试 数学中的测量在现实生活中的应用

有关数学史的学术论文

我可以写,私信

宋元数学总结唐朝亡后,五代十国仍是军阀混战的继续,直到北宋王朝统一了中国,农业、手工业、商业迅速繁荣,科学技术突飞猛进。从公元十一世纪到十四世纪(宋、元两代),筹算数学达到极盛,是中国古代数学空前繁荣,硕果累累的全盛时期。这一时期出现了一批著名的数学家和数学著作,列举如下:贾宪的《黄帝九章算法细草》(11世纪中叶),刘益的《议古根源》(12世纪中叶),秦九韶的《数书九章》(1247),李冶的《测圆海镜》(1248)和《益古演段》(1259),杨辉的《详解九章算法》(1261)、《日用算法》(1262)和《杨辉算法》(1274-1275,朱世杰的《算学启蒙》(1299)和《四元玉鉴》(1303)等等。宋元数学在很多领域都达到了中国古代数学,甚至是当时世界数学的巅峰。其中主要的工作有:(1)高次方程数值解法;(2)天元术与四元术,即高次方程的立法与解法,是中国数学史上首次引入符号,并用符号运算来解决建立高次方程的问题;(3)大衍求一术,即一次同余式组的解法,现在称为中国剩余定理;(4)招差术和垛积术,即高次内插法和高阶等差级数求和。另外,其它成就包括勾股形解法新的发展、解球面直角三角形的研究、纵横图(幻方)的研究、小数(十进分数)具体的应用、珠算的出现等等。这一时期民间数学教育也有一定的发展,以及中国和伊斯兰国家之间的数学知识的交流也得到了发展。百度文库里有的下载,建议多找几种版本,拼拼凑凑,一篇论文再加点润色,可以很棒的。

songyuan

浅谈中国古代数学作为一个炎黄子孙,龙的传人,我们可以很骄傲的说我们的祖先有很多优秀的,好的东西留给了我们同时也留给了世界,四大发明,影响着整个世界,改变了整个世界。另外就是今天我们要说的数学,中国古人对数学的研究以及对世界作出的贡献。 在中国明代中叶以前我国的数学一直处于世界的领先地位,这是我们的骄傲,我国古代的许多数学家曾经写下了不少著名的数学著作。许多具有世界意义的成就正是因为有了这些古算书而得以流传下来。这些中国古代数学名著是了解古代数学成就的丰富宝库。比如,现在所知道的最早的数学著作《周髀算经》和《九章算术》,它们都是公元纪元前后的作品,到现在已有两千年左右的历史了。能够使两千年前的数学书籍流传到现在,这本身就是一项了不起的成就。最早由于没有印刷术的出现,我们的古人都是用手抄写的方式,把这些数学知识传给下一代的,古代的数学家给已有的算数作出自己的注解,同时提出自己的心得 观点和看法。 大家最熟悉的数学著作就是《九章算术》了,《九章算术》不仅在中国数学史上占有重要地位,它的影响还远及国外。在欧洲中世纪,《九章算术》中的某些算法,例如分数和比例,就有可能先传入印度再经阿拉伯传入欧洲。再如“盈不足” (也可以算是一种一次内插法),在阿拉伯和欧洲早期的数学著作中,就被称作“中国算法”。现在,作为一部世界科学名著,《九章算术》已经被译成许多种文字出版。然而,直到今天我们都不知道这本著作的具体作者是谁,只知道西汉早期的著名数学家张苍(前201—前152)、耿寿昌等人都曾经对它进行过增订删补。《汉书?艺文志》中没有《九章算术》的书名,但是有许商、杜忠二人所著的《算术》,因此有人推断其中或者也含有许、杜二人的工作。1984年,湖北江陵张家山西汉早期古墓出土《算数书》书简,67 推算成书当比《九章算术》早一个半世纪以上,内容和《九章算术》极相类似,有些算题和《九章算术》算题文句也基本相同,可见两书有某些继承关系。可以说《九章算术》是在长时期里经过多次修改逐渐形成的,虽然其中的某些算法可能早在西汉之前就已经有了。正如书名所反映的,全书共分九章,一共搜集了二百四十六个数学问题,连同每个问题的解法,分为九大类,每类算是一章。同时,《九章算术》在数学上还有其独到的成就,不仅最早提到分数问题,也首先记录了盈不足等问题,“方程”章还在世界数学史上首次阐述了负数及其加减运算法则。它是一本综合性的历史著作,是当时世界上最先进的应用数学,它的出现标志中国古代数学形成了完整的体系。然而,《九章算术》亦有其不容忽视的缺点:没有任何数学概念的定义,也没有给出任何推导和证明。直到我国古代的数学家刘徽给《九章算术》作注,才大大弥补了这个缺陷。刘徽可是咱们山东邹平人哟,刘徽定义了若干数学概念,全面论证了《九章算术》的公式解法,提出了许多重要的思想、方法和命题,他在数学理论方面成绩斐然。《海岛算经》,就是刘徽所著,这部书中讲述的都是利用标杆进行两次、三次、最复杂的是四次测量来解决各种测量数学的问题。这些测量数学,正是中国古代非常先进的地图学的数学基础。此外,刘徽对《九章算术》所作的注释工作也是很有名的。一般地说,可以把这些注释看成是《九章算术》中若干算法的数学证明。刘徽注中的“割圆术”开创了中国古代圆周率计算方面的重要方法,他还首次把极限概念应用于解决数学问题。中国古代数学,经过从汉到唐一千多年间的发展,已经形成了更加完备的体系。在这基础上,到了宋元时期(公元十世纪到十四世纪)又有了新的发展。宋元数学,从它的发展速度之快、数学著作出现之多和取得成就之高来看,都可以说是中国古代数学史上最光辉的一页。 特别是公元十三世纪下半叶,在短短几十年的时间里,出现了秦九韶(1202—1261)、李冶(1192—1279)、杨辉、朱世杰四位著名的数学家。所谓宋元算书就指的是一直流传到现在的这四大家的数学著作,包括: 秦九韶著的《数书九章》(公元1247年); 李冶的《测圆海镜》(公元1248年)和《益古演段》(公元1259年); 杨辉的《详解九章算法》(公元1261年)、《日用算法》(公元1262年)、《杨辉算法》(公元1274—1275年); 朱世杰的《算学启蒙》(公元1299年)和《四元玉鉴》(公元1303年)。另外,大家都知道《算经十书》,它是指汉、唐一千多年间的十部著名数学著作,它们曾经是隋唐时候国子监算学科(国家所设学校的数学科)的教科书。十部算书的名字是:《周髀算经》、《九章算术》、《海岛算经》、《五曹算经》、《孙子算经》、《夏侯阳算经》、《张丘建算经》、《五经算术》、《缉古算经》、《缀术》。 这十部算书,以《周髀算经》为最早,不知道它的作者是谁,据考证,它成书的年代当不晚于西汉后期(公元前一世纪)。《周髀算经》不仅是数学著作,更确切地说,它是讲述当时的一派天文学学说——“盖天说”的天文著作。就其中的数学内容来说,书中记载了用勾股定理来进行的天文计算,还有比较复杂的分数计算。当然不能说这两项算法都是到公元前一世纪才为人们所掌握,它仅仅说明在现在已经知道的资料中,《周髀算经》是比较早的记载。另外,还有就是在出现计算器前,我们使用的算盘,对,就是珠算。说道珠算,我们还有必要提一下筹算。筹算在我国古代用了大约两千年,在生产和科学技术以至人民生活中,发挥了重大的作用。但是它的缺点也是十分明显的:首先,在室外拿着一大把算筹进行计算就很不方便;其次,计算数字的位数越多,所需要的面积越大,受环境和条件的限制;此外,当计算速度加快的时候,很容易由于算筹摆弄不正而造成错误。随着社会的发展,计算技术要求越来越高,筹算需要改革,这是势在必行的。这个改革从中唐以后的商业实用算术开始,经宋元出现大量的计算歌诀,到元末明初珠算的普遍应用,历时七百多年。《新唐书》和《宋史•艺文志》记载了这个时期出现的大量著作。由于封建统治阶级对民间数学十分轻视,以致这些著作的绝大部分已经失传。从遗留下来的著作中可以看出,筹算的改革是从筹算的简化开始而不是从工具改革开始的,这个改革最后导致珠算的出现。珠算是由筹算演变而来的,这是十分清楚的。筹算数字中,上面一根筹当五,下面一根筹当一,珠算盘中的上一珠也是当五,下一珠也是当一;由于筹算在乘、除法中出现某位数字等于十或多于十的情形(例如26532÷8,第一步就是“八二下加四”,就变成),所以珠算盘采用上二珠下五珠的形式。其次,我们可以证明,从杨辉、朱世杰开始到元末丁巨、何平子、贾亨止起除“起一”法外的全部现今通用的珠算歌诀,是为筹算而设的。 杨辉的《乘除通变本末》(公元1274年)和朱世杰的《算学启蒙》(公元1299年)已经有相当完备的歌诀,但是杨辉在《乘除通变本末》中说:“下算不出‘横’‘直’”,其中“横”“直”显然是指算筹的纵横排列,朱世杰在《算学启蒙》中提到“知算纵横数目真”,也是这个意思。《丁巨算法》(公元1355年)、何平子的《详明算法》(公元1373年)、贾亨的《算法全能》(约公元1373年)也有相当完备的归除歌诀,但是都没有提到珠算,而《详明算法》还有许多筹算算草。歌诀出现后,筹算原来存在的缺点就更突出了,歌诀的快捷和摆弄算筹的迟缓存在矛盾。为了得心应手,劳动人民便创造出更加先进的计算工具——珠算盘。 现存文献中最早提到珠算盘的是明初的《对相四言》。明代中期公元十五世纪中叶《鲁班木经》中有制造珠算盘的规格:“算盘式:一尺二寸长,四寸二分大。框六分厚,九分大,……线上二子,一一寸一分;线下五子,三寸一分。长短大小,看子而做。”把上二子和下五子隔开的不是木制的横梁,而是一条线。比较详细地说明珠算用法的现存著作有徐心鲁的《盘珠算法》(公元1573年)、柯尚_迁的《数学通轨》(公元1578年)、朱载堉(1536—1611)的《算学新说》(公元1584年)、程大位的《直指算法统宗》(公元1592年)等,以程大位的著作流传最广。 值得指出的是,在元代中叶和元末的文学、戏剧作品中有提到珠算的。例如元世祖至元十六年(公元1279年)刘因在他的《静修先生文集》中有一首关于算盘的五言绝诗;陶宗仪在他的《辍耕录》中把婢仆贬作算盘珠,要拨才动;《元曲选》“庞居上误放来生债”提到“去那算盘里拨了我的岁数”,等等。文学、戏剧中用算盘珠作比喻,说明珠算盘已经比较流行,也说明它是比较时新的东西。因此可以认为,珠算出现在元代中叶,元末明初已经普遍应用了。 有的外国学者认为我国的珠算出现在汉代,他们的根据是汉徐岳著、北周甄蛮注的《数术记遗》已经明确提到珠算。我国数学家、数学史家钱宝琮(1892—1974)曾经考证过,《数术记遗》是甄鸾依托伪造而自己注释的书。在北周时,乘、除运算都在上、中、下三层进行,又没有简化乘、除法的歌诀,因此甄鸾注释的珠算,充其量不过是一种记数工具或者只能作加减法的简单算盘,和后来出现的珠算是完全不同的。 珠算还传到朝鲜、日本等国,对这些国家的计算技术的发展曾经起过一定的作用。日本人在十七世纪中叶,在中国算盘的基础上,改成梁上一珠、珠作棱形的日本算盘有次可以看出,我们的祖先不仅在数学领域对世界作出了贡献,同时也把算盘这种便于计算的工具推向了世界。希望我们现在的一代还可以继承祖先的优良传统,在世界的数学之林再次贡献自己的知识,力量,让世界重新认识我们中国。

小学数学有关复习论文的参考文献

作为小学数学教师,让四年级的学生写数学的小论文,对于学生的成绩提高有很大的作用。下面是我为大家整理的 四年级数学 小论文,供大家参考。

【摘要】要:新课改出台后,新的课程教学标准对小学数学教学也作了新的要求。如何在新课改背景之下采取有效的 教学 方法 和策略,提升数学教学效果,是摆在所有数学老师面前的问题。本文以小学数学四年级教学为对象,深入探讨了新课改背景下,教师转换身份角色、注重学生数学 逻辑思维 能力和实践操作能力的培养对提高数学教学效果的重要作用。

【关键词】四年级数学角色思维能力实践能力

随着新课程改革的不断深入,小学数学教学更加突出地体现出义务 教育 所具有的普遍性、基础性和发展性特点。小学数学课堂的改革也呈现出蓬勃的趋势。越来越多的数学教师逐渐对“合作、自主、探索”的课堂教学模式表示认可和推崇,切实践行了新课程改革中“人人学有价值的数学,人人都能获得必需的数学,不同的人在数学上得到不同的发展”的要求。小学四年级起着连接低年级与高年级的作用,是学生能否建立起学习的兴趣,顺利向小学高年级过度的重要阶段,因此,如何提升课堂教学效果,进而提高小学四年级数学教学质量是摆在所有数学教师面前的重要课题。

(一)要敢于并善于做出教师角色转换

长期以来,因为应试教育根深蒂固的影响而形成的教育教学模式已不能适应教育发展需要。作为小学教师,要提高数学教学质量,首要的是敢于做出自身教师角色的转换,在课堂教学上要进行创新,重视学生能力、 学习态度 以及 创新思维 的培养。摒弃传统教学中教师单纯地讲,学生被动地听这种填鸭式的教学方式。通过丰富多彩的课堂教学模式。发动学生的学习积极性,让学生在课堂教学中讨论、探讨,实际动手操作,相互帮助,真正树立学生是课堂核心的观念。

具体而言,要实现教师角色转化,应注意以下方面。一是要切实转变数学教学观念。随着新课程改革理念的提出,新时期的数学教师要切实转变传统的填鸭式教学模式。教师应发挥引导作用,尝试着让学生进行课堂分组讨论和合作,在此基础上进行评价和指导,教学效果必定会有显著的改变。二是数学教师要进一步加强自身知识素养,由单一型教师向综合型教师转变。数学教师不能针对数学教学而只讲数学教学,实际上,教师的知识素养应当包括专业知识素养、 文化 知识素养和教育知识素养等方面的内容。新课程改革背景下,数学教学可能涉及多门学科和知识,也就要求数学教师要尽力完善自身知识结构以适应新课改背景下教师教学要求。为此,数学教师要以继续教育为契机进一步拓宽自身获取文化知识资源载体的 渠道 ,提升自我的知识素养,在课堂教学中展现出综合教学能力,引导学生快速成长。三是要由课堂的主导者转向引导者,作知识平等的交流者和朋友。新课改背景下,教师要敢于改变传统高高在上的身份,走下讲台,深入学生之中,与学生一起探讨、交流,合作学习。真正坚持“以学生为本”,将课堂主动权交还给学生,发挥学生的教学主体作用。通过教师主导者向引导者身份的转变,逐渐建立起民主、平等的新型和谐师生关系,使学生在愉快轻松的氛围中学习到知识。四是要由教学的灌输者转变为服务者。为此,数学教师要充分利用课堂,创造条件,使学生充分发挥主观能动性参与到合作学习当中去。要采取激励机制,鼓励学生在课堂上勇于表达自己的思想。同时要善于倾听与评价学生提出的问题,并引导学生作出正确的解答。在这个过程中,进一步鼓励学生敢于表现、敢于质疑,建立起批判性思维。

通过笔者的试验,教师经过上述角色转化后,数学教学的课堂效果发生了明显的改变,学生的学习积极性显著提高了,课堂氛围更加活跃,学生课堂参与性更强。因此,在小学教育阶段,尤其是四年级数学的课堂教学中,教师角色的转换体现了素质教育要“以学生为本”的教育原则,是切实符合新课改要求和改革理念的。

(二)积极培养学生的数学逻辑思维

著名教育家赞可夫曾指出:“在数学教学中要始终注意培养学生的逻辑思维能力,培养学生的思维灵活性和创造性。”培养学生的逻辑思维能力是义务教育中的一项基本和重要任务,也是提升课堂教学效果的重要前提之一。数学逻辑思维能力的培养要从小就开始,具体而言,可以从以下方面着手培养学生的数学逻辑思维能力。一是思维能力的培养要贯穿于各年级的数学教学中。小学数学教师要明确各年级阶段都担负着学生思维能力培养的任务,尤其是作为承上启下的四年级,数学思维能力的培训更显重要。数学思维能力的培养要从一开始就有意识的进行,例如培养学生比较能力,可以从认识物体大小、长短、多少等方面着手;培养学生抽象、概括能力则可以从学习十以内数的加、减着手等等。数学教师在教学活动中,需要引导学生通过实际操作、观察等方式,逐步进行比较、分析、综合、抽象、概括,培养相应的思维能力。二是学生数学思维能力的培养要贯穿于每一堂课的学习中。数学思维能力时时刻刻都需要进行有意识的培养,不管是在开始的复习中,还是在教学新知识的过程中,或是在组织学生练习习题中,都要结合具体教授的内容有意识地进行培养。在教学新知识时,要引导学生去分析、推理,最后归纳出正确的结论或计算法则,这是比单纯得出答案更为重要的教学方法。三是要在数学各部分内容的教学中贯穿思维能力培养。具体来说,就是要在教学数学概念、计算法则、解答应用题或操作技能等内容时,都要注意培养学生的思维能力。因为从数学教学角度来讲,任何一个数学概念,都是对客观事物的数量关系或空间形式进行抽象、概括的结果。在教授每一个数学概念时,都要注重通过实例或者实物引导学生分析、比较并寻找出共同点、不同点,揭示概念的本质特征,进而做出正确的判断。

总的来说,数学思维能力的培养是一个长期的过程,但在小学四年级的教学中,又显得极为重要。思维能力一旦较好的建立起来,对学生今后更进一步的学习是大有裨益的。

(三)注重培养学生的实践操作能力

实践活动是学生学习成长的重要途径之一,也是学生形成实践能力的载体。针对四年级学生的年龄特点,在数学教学中应当注重通过实践操作的方式,培养学生的动手能力、主动参与意识和勇于创新的学习能力。通过实践能力的培养,使学生在亲自动手的实践体验中领悟数学,学会想象和创造,有力地摆脱了数学的枯燥乏味,培养了学习数学的兴趣,提高了学生的学习积极性。

参考文献

[1]丁始,马玲译.教师角色[M].北京:中国轻工业出版社.2002

[2]姚艳琼.激活课堂教学提高学习兴趣[J].课程教材教学研究:教育研究版,2007(4)

[3]周洪伟.提高初中数学复习课有效教学的若干策略[J].成功:教育,2010(8)

【摘 要】作为新课程改革所提倡的重要 学习方法 之一,合作学习方法被越来越多的教师应用在课堂上,在发挥积极作用的同时,存在着形式化、泛化的倾向,因此,对小学四年级数学课堂合作学习有效性进行研究具有重要的意义。本文首先提出了合作学习的概念,阐述了合作学习的意义,小学数学合作学习应具备的条件及小学数学合作学习有效发挥的制约因素,最后提出了提高小学四年级数学课堂合作学习有效性的策略。

【关键词】小学数学;合作学习;有效性

作为一种重要的学习方法,合作学习应用于所有学科的教学活动中,数学具有抽象性、严谨性和广泛应用性的特点,给合作学习提供了广泛的应用空间。目前,新课程改革所倡导的合作学习方法已广泛应用于小学数学教学中,但教师在实际应用过程中,还不能发挥合作学习的最大功效,仅流于形式,如何理解合作学习的真正含义,使合作学习发挥最大功效,本文结合现状对小学四年级数学课堂合作学习有效性问题进行初步探讨。

一、合作学习的基本概况

(一)合作学习的概念

相关文献表明,合作学习按照主要取向归结为四类:师生互动、师师互动、生生互动和全员互动。以生生互动为特征的数学合作学习是指在既定的教学内容下,课堂上遵循合作学习的基本原理和基本方法,学生在小组中通过互动等方式,共同学习,最终实现学生认知、情感等全面发展的一种教学活动。

数学合作学习有效性是指:从结果上看,通过合作学习,取得了明显的效果,学生学习成绩显著进步;从过程上看,通过合作学习,学生提高了学习效率,教师提高了教学效率;从长远影响上看,通过合作学习,学生提高了学习数学的兴趣,掌握了学习数学的方法,学生的内在潜能和创新能力得到全面发展。

(二)开展合作学习的意义

美国当代著名教育评论家埃利斯和福茨说过:合作学习如果不是当代最大的教学改革的话,那么它至少也是其中最大的一个。他充分肯定了实施合作学习的意义:一是学生通过合作学习,互 相学 习、互相帮助,在共同完成学习任务的同时,培养了学生的合作意识和合作精神,为学生以后融入社会打下良好的基础;二是以小组合作学习这种方式,给学生营造一个轻松的学生氛围,学生可以充分发表自己的看法,能够激发学生的积极主动性,展现学生的个性,体现学生在课堂上的主体地位。

(三)小学数学课堂合作学习应具备的条件

并不是所有的合作学习都是有效的,只有具备一定的条件,合作学习才是有效的。首先要具备良好的教学环境,包括科学合理的座位安排及和谐的学生氛围等,一般情况下,合作学习都是根据座位进行分组的,教师在座位安排时要充分考虑学生的知识结构、文化背景、性格差异等,同时,小组成员之间建立起良好的关系,给学生营造一种融洽、和谐的氛围。选择合适的教学内容是合作学习有效的基础,不是说所有的教学内容都适合使用合作学习的方法,合作学习的内容要综合考虑课程类型、所涉及知识领域及学生当时的学习氛围等因素。学生独立思考是合作学习有效的关键,合作学习的过程是学生进行独立思考后,通过互相讨论实现再认识、再提高的过程,如果没有独立思考,就不能真正参与其中,不能实现个人的发展,因此,合作学习需要学生独立进行思考。

(四)小学数学课堂合作学习有效发挥的制约因素

部分教师对合作学习的概念理解不到位,把合作学习简单的看成是小组学习,使合作学习流于形式,不能真正发挥作用。在小组合作学习过程中,有些教师没有找准定位,要么是过多干预,影响了学生的独立思考,要么是不给予适当的指导,导致部分小组讨论偏离主题、效率不高。此外,学生的年龄、心理特征、合作意识及合作技巧的掌握也是影响合作学习有效开展的制约因素。

二、提高小学四年级数学课堂合作学习有效性的策略

(一)为合作学习创设良好的环境

合作学习要想有效的开展,要保障有良好的环境,包括开展合作学习所取得的认可和课堂上合作学习的氛围。为合作学习创设良好的环境,需要有学校、家长及社会的支持,学校和社会要为合作学习投入一些教学设备,保障物质需求,家长要与教师积极配合,完成学生合作学习的预习及复习任务。

(二)教师和学生都要掌握一定的合作技巧

教师在明确教学任务的基础上,通过提出具有指向性的问题,把握合作学习的方向和进度,具备课堂组织和调控能力。教师在进行教学设计时,要充分考虑课程目标、学生特点、分组策略等因素。学生要想在合作学习中充分发挥主体作用,要进行 课前预习 ,搜集相关资料,提前思考,对问题有自己独立的见解,在课堂合作学习过程中,学生要具备倾听、思考、质疑的能力。

(三)处理好独立思考与合作学习的关系

教学中缺少必要的独立思考的合作学习将成为“无源之水,无本之木”。学生只有进行了独立的思考,才能融入讨论,参与合作探究,才能发表自己独特的见解,最终通过合作学习,达到一点即通、恍然大悟的效果。学生只有真正的独立思考,才能出现观点的针锋相对,才能找到问题的最佳答案,从而实现共享成果、共同进步、共同发展。

(四)关注合作学习小组的每一个成员,防止“搭车”现象

合作学习要让每一位学生都参与进来,感受集体的智慧和成功的喜悦。教师在进行分组时就要充分考虑小组成员的能力、个性、背景等差异,努力做到组内异质、组间同质,小组内成员优势互补,小组之间实力相当,这样既有利于学生之间互相帮助、互相学习,还能形成良好的竞争氛围。在进行合作学习的过程中,教师要有一定的指导和操控能力,小组讨论气氛不热烈时,及时予以指导,发现有“搭车”的成员,及时给予个别帮助,小组讨论气氛过于热烈时,及时予以提醒,使合作学习达到最佳的效果。

三、结论

综上所述,创设良好的环境,教师和学生具备一定的合作技巧,学生能够独立进行思考,并关注合作学习小组的每一个成员,防止“搭车”现象的出现,一定能够提高小学四年级数学课堂合作学习的有效性。本文对小学四年级数学课堂合作学习有效性的阐述还不够成熟,需要在以后的教学实践中不断完善。

【参考文献】

[1]朱智贤主编.心理学大词典[M].北京:北京师范大学出版社,1988:156.

[2]王坦.合作学习的理念与实施[M].北京:中国人事出版社,2003:2.

[3]杜和春.课堂教学中学生的独立思考与合作学习[J].教育艺术,2007(6):68.

【内容摘要】培养学生的数学学习兴趣是小学数学教育的重要任务之一,对提高学生学习数学的主动性和积极性有着极为重要的意义。本文以小学四年级为例,就如何提高学生的数学学习兴趣进行了探讨。

【关键词】小学数学 四年级 学习兴趣 数学教育

1 引言

兴趣是学生学习的源动力,是学生终身学习的支点,是影响学生注意力的重要因素,是建立和谐师生关系的楔合点。但如何培养学生的学习兴趣,如何让学生的学习兴趣得以保持,却一直是众多教师所面临的难点问题。小学四年级学生活泼好动,注意力不容易集中,开始产生逆反心理,小学四年级数学是一个重要的转折点,在内容量和难度上都有所增加,极容易影响学生的学习兴趣,因此必须注意学生学习兴趣的提高,帮助学生培养起可持续学习的动力,促进学生主动积极的参与学习,为学生的全面发展打下坚实的基础。下面,本文针对小学四年级数学教学,就如何提高学生的学习兴趣进行浅要的探讨。

2 小学四年级数学教材特点和学生年龄特点

2.1 小学四年级数学教材特点

相对于小学1~3年级的数学教材来说,四年级的数学教材在编写上,其内容更为丰富,更为注重算法的多样化,更侧重于培养学生灵活解决问题的能力,关注了学生学习方式的培养,注重学生自身的学习体验。丰富、系统、逻辑严密的数学知道需要学生有更好的知识基础与 抽象思维 能力,要求学生能举一反三的通过迁移类推来探索新的知识,逐步完成学生的知识体系结构。同时,小学四年级数学教材加强了数学知识同学生实际生活之间的联系,以帮助学生借助于实际活动和生活情境来理解、感受数学知识,在实践中探索数学知识,以培养学生灵活活的计算能力和解题能力。第八册教材,则将小数的相关知识作为了重点,逐步引起入四则混合运算,进一步提高学生的数感和计算理解能力,整体来看困难程度与复杂程度都有所提高,需要不断提高学生的思维方法与判断能力。

2.2 小学四年级学生年龄特点

从年龄特征来看,小学四年级学生是个性差别最大的时期,在这一阶段的学生生理方面出现了较大的差异,一部分学生身体发育已经接近中学生指标,一部分学生则还稍显迟缓同一二年级学生相当。在生理方面,由于家庭环境、教育引导等方面的原因,一部分学生心理发育较快开始变得老成,其视野更为开阔,思想更为成熟,已经开始阅读成人书籍,而一部分学生在心理上还明显落后。这种生理和心理方面的差异,给教师的教学带来了极大的影响。此外,小学四年级学生的自主意识呈现整体增强趋势,开始根据自己的 兴趣 爱好 做出自主的选择,独立自主能力更强,但其爱好还不够稳定,并不如成人一样具有稳定的自主选择能力。

3 如何提高学生的学习兴趣

针对小学四年级数学教材的特点和学生生理与心理发展的特点,小学四年级数学要提高学生的学习兴趣,可以从以下几个方面入手进行:

3.1 环境改善培养学生学习兴趣

良好的学习环境对学生的学习兴趣有着直接的影响,在小学四年级数学教学中,为学生营造一个良好的学习环境,对生理与心理日渐成熟的孩子们来说更是如此。要营造出良好的学习环境,必须注意多从平等、民主、和谐方面下功夫,一方面注意教师与学生的关系,改变传统的高高在上的教师教育观,让自己从神坛上走下来,与学生做朋友,真正的让学生成为学习的主体,创建和谐的师生关系。另一方面注意学生与学生之间的关系,多设计数学活动,包括如制作班级学习报、组织数学兴趣小组、让优生帮助差生等,促使学生与学生之间的关系更为和谐。其次,要从整个学习氛围上下功夫,多对学生进行思想教育,让学生认识到数学的重要性,认识到学习的重要性,但注意思想教育不是讲大道理,只有学生能听懂、能理解、能接受的道理,才会真正对学生思想造成影响。

3.2 情境创设激发学生学习兴趣

相对于语文学科来说,数学学科的知识显得较为枯燥泛味,极容易使学生失去兴趣,尤其是小学四年级数学在内容、难度等方面都有所提高,使得学生学习压力更大,更容易失去兴趣。要让数学课堂变得更为生动有趣,情境创设极为重要。在教学过程中,教师应当改变过去传授知识的不良习性,变为引导学生探索知识,在设计教学时就充分考虑,如何为学生创造出一个探索性的学习情境,让学生在探索性的学习情境中去主动、积极的发现问题、思考问题、解决问题,最终获得知识,而不是在教师枯燥单调的讲解中去接受知识。此外,将数学知识与实践活动进行联系,让学生在可操作、熟悉的情境下去学习数学知识,让学生去动手测量、亲自演示,在数学游戏中激发学生的求知欲望,也可以极好的调动学生的学习兴趣。

3.3 促进成功壮大学生学习兴趣

每个人都希望成功,都希望得到别人的认可和赞同,小学四年级学生更是如此。这一阶段的学生开始有了较强的自主独立意识,竞争心理不断加强,充分利用这一点给予学生成功的机会,让学生获得更多成功的体验,能极好的壮大学生的学习兴趣。让学生获得成功的体验,可以多组织各类竞赛、活动等,让学生在竞争环境中主动积极的投入最后获得成功的体验,也可以是在课堂上多发现学生的闪光点,从各个角度去鼓励学生让学生获得成功,也可以通过降低难度、区别对待的方法让学生获得成功体验。

4 结束语

兴趣对学生的学习极为重要,其影响不仅是在校期间,还影响着学生参加工作以后的终身学习,因此在教学中要注意学生学习兴趣的培养。对于小学四年级学生来说,要培养他们数学学习兴趣,教师必须深入的把握小学四年级数学教材的特点,深入的分析这一阶段学生的心理和生理特点,为学生创造一个良好的学习环境,从多个方面去培养并壮大学生的学习兴趣,使学生受益终身。

【参考文献】

[1] 王莹.小学数学学习兴趣的培养之我见[J].现代教育教学导刊,2012(09)

[2] 张飞飞.浅谈小学数学教学中学生学习兴趣的培养[J].新课程,2011(06)

[3] 秦福秀.对小学生数学教学的几点探讨[J].学苑教育,2011(05)

1. 数学小论文范文

2. 数学小论文的范文

3. 小学生数学日记优秀范文 四年级

4. 小学生数学教学小论文范文

5. 一年级数学小论文范文

小学全科型教师论文参考文献有小学数学课程与教学,小学数学教学论,数学教学论。1、杨庆余,小学数学课程与教学,高等教育出版社,2004年。2、马云鹏,小学数学教学论,人民教育出版社,2003年。3、罗增儒,李文铭,数学教学论,陕西师范大学出版社,2003年。

相关百科

热门百科

首页
发表服务