首页

> 学术发表知识库

首页 学术发表知识库 问题

矩阵毕业论文开题报告范文

发布时间:

矩阵毕业论文开题报告范文

可以给你帮助.

毕业论文开题报告模板范文如下:

模板范文一:

1、选题目的及意义。

演员创作角色时心理活动的正确把握,能让演员更好的掌握角色,帮助演员更深刻的进入所演角色的内心,从而更生活,更直观,更真实的创造角色,从整体上提高作品的审美价值及现实意义。在创作角色时充分把握角色的心理并控制自己的心理活动,这样就能够自然而然地、直觉地、有机地抓住角色的情感,激起正确的体验。

演员创作角色时的心理活动是通过演员的神情、肢体、语言等外部行动体现出来的,之所以探讨演员在创作角色时心理活动的重要性,一方面是因为创作角色时心理活动是表演“艺术中的灵魂”,另外一方面,演员在创作角色时心理活动的重要性这一课题,能够使表演者在实践领域里有着十分重要的指导意义。

2、选题背景。

3、选题的研究现状。

4、结语。

5、可行性分析。

6、重点与难点分析。

7、时间进度安排。

模板范文二:

1、课题背景及现状。

项目位于南阳市宛城区人民路中段,占地11.4公顷,建成已50多年,是该市城区唯―一座大型综合公园。鉴于现状设施老化、景观落伍等问题,同时适应全国农运会.宜居城市对景观环境的需要,要求对其进行重新规划设计,通过设计使之成为集休闲、娱乐、观光、游玩、服务为一体的综合城市公园。

2、目标。

通过本课题的学习,培养学生综合运用前四年半所学的各类基础知识和专业理论知识,专业设计技能,专业调查与实践方法,在原有基础上进一步培养和提高知识综合运用能力,理论分析应用能力,组织和独立开展工作的能力以及文字、图纸、口头表达能力,充实并完善毕业生的整体知识结构和社会工作体验。

通过本方案的各个环节的训练,掌握城市综合公园规划设计的相关原理、规划的相关法律法规,进而了解景观规划的有关知识和设计手法以及景观设计相关问题的研究,培养解决环境复杂地块问题的能力。

3、任务及途径。

学生根据提供的课题任务书,结合导师的时间安排按步骤进行设计,平时注意和导师及时沟通和交流,课下也可以根据课题的需要独立进行调研和资料的收集,前期注意详细分析基地情况,收集相关资料,综合加以分析,提出自己的方案构思,并根据构思进行方案的设计,最后提供一套完整的方案图纸和一份相关的设计说明书。

4、时间安排。

寒假期间完成实习及调研工作,还需完成实习报告、文献综述、文献翻译等设计准备工作。

第1~2周:收集相关文献资料;调研资料整理(文字、图纸),完成开题报告。

第3~4周:功能分区、空间结构等的多向求解,完成方案一草。

模板范文三:

有关治理的理论和实践目前在发达国家极其受到重视,尤其在医疗、公共安全、教育、基础设施等公共事务领域,发达国家普遍调整政府在提供这些公共物品中的传统定位,积极寻求政府和私人机构、非政府组织、社群、公民合作,以各种创新型制度安排,共同承担提供公共物品的新的“治理”模式。

本项研究首次将治理理论引进到图书馆界,旨在系统探究包括政府在内的多种利益主体在建设、维持和发展图书馆,提供和生产图书馆服务这种公共物品中的职麦及其实现。本项研究系统引进治理理论作为理论基础和总的研究框架,以图书馆治理模式为研究对象,突出比较研究方法。

1、比较不同的图书馆治理模式在资源配置机制和效率上的差异。

2、比较不同的图书馆类型、规模,所处国别以及历史发展阶段等具体情境下图书馆治理模式的取向及其之间的内在相关性。

3、比较不同的图书馆治理模式所赖以形成和维持的法律、制度、组织和技术因素及其组合。最终,在理论上解释存在不同的图书馆治理模式及(至少在实证上)资源配置效率差异的原因;在实践上弄清各种利益主体(政府、社会组织、公民)应该以何种制度安排支持和发展图书馆,以及这样一种宏观层面的制度安排如何体现为微观层面图书馆监管体制的设计。

本项研究系应用性基础研究,研究价值体现在:

相关成果可提交给国家决策机构、图书馆主管部门和图书馆,作为制定和实施有关图书馆事业和机构改革发展的立法、政策和策略时参考。

拓宽治理理论的应用范围,形成一个比较完整的图书馆治理理论体系,促进图书馆学研究对象。范围的扩展和研究方法的丰富。

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

所以你写完了吗?能不能给我参考参考

矩阵毕业论文开题报告

1 相关定义 定义1 设A∈,若对≠ x∈,都有AX > 0,则称A为正定矩阵,记为A∈. 记={A|≠ x∈,使AX > 0}. 定义2设A∈,如果对≠X∈,都有正对角矩阵D=> 0,使得AX > 0,则称A为广义正定矩阵,记为A∈,若D=与x无关,则记为A∈。记={A∈|≠X]正对角矩阵D,使DAX > 0}.定义3 设A∈,若=A,对≠ x∈ ,都有AX > 0,则称A为实对称正定矩阵,记为A ∈ S+. 记={A∈|≠x,=A,使AX > 0}.定义4 设A∈,如果对≠X,都有S=∈使得DAX > 0,则称A为广义正定矩阵,记为A∈,若S=与x无关,则记为A∈.记={A∈|≠X,S=,使DAX > 0}.定义5设A∈,如果对≠ X∈,都有S=.s+,使得AX > 0,则称A为广义正定矩阵,记为A∈.若S=与x无关,则记为A∈

推荐你去淘宝的:翰林书店,这个店铺应该能下载到这类论文。我去下过,很及时的

怎么写开题报告呢?首先要把在准备工作当中搜集的资料整理出来,包括课题名称、课题内容、课题的理论依据、参加人员、组织安排和分工、大概需要的时间、经费的估算等等。第一是标题的拟定。课题在准备工作中已经确立了,所以开题报告的标题是不成问题的,把你研究的课题直接写上就行了。比如我曾指导过一组同学对伦教的文化诸如“伦教糕”、伦教木工机械、伦教文物等进行研究,拟定的标题就是“伦教文化研究”。第二就是内容的撰写。开题报告的主要内容包括以下几个部分:一、课题研究的背景。 所谓课题背景,主要指的是为什么要对这个课题进行研究,所以有的课题干脆把这一部分称为“问题的提出”,意思就是说为什么要提出这个问题,或者说提出这个课题。比如我曾指导的一个课题“伦教文化研究”,背景说明部分里就是说在改革开放的浪潮中,伦教作为珠江三角洲一角,在经济迅速发展的同时,她的文化发展怎么样,有哪些成就,对居民有什么影响,有哪些还要改进的。当然背景所叙述的内容还有很多,既可以是社会背景,也可以是自然背景。关键在于我们所确定的课题是什么。二、课题研究的内容。课题研究的内容,顾名思义,就是我们的课题要研究的是什么。比如我校黄姝老师的指导的课题“佛山新八景”,课题研究的内容就是:“以佛山新八景为重点,考察佛山历史文化沉淀的昨天、今天、明天,结合佛山经济发展的趋势,拟定开发具有新佛山、新八景、新气象的文化旅游的可行性报告及开发方案。”三、课题研究的目的和意义。课题研究的目的,应该叙述自己在这次研究中想要达到的境地或想要得到的结果。比如我校叶少珍老师指导的“重走长征路”研究课题,在其研究目标一栏中就是这样叙述的:1、通过再现长征历程,追忆红军战士的丰功伟绩,对长征概况、长征途中遇到了哪些艰难险阻、什么是长征精神,有更深刻的了解和感悟。2、通过小组同学间的分工合作、交流、展示、解说,培养合作参与精神和自我展示能力。3、通过本次活动,使同学的信息技术得到提高,进一步提高信息素养。四、课题研究的方法。在“课题研究的方法”这一部分,应该提出本课题组关于解决本课题问题的门路或者说程序等。一般来说,研究性学习的课题研究方法有:实地调查考察法(通过组织学生到所研究的处所实地调查,从而得出结论的方法)、问卷调查法(根据本课题的情况和自己要了解的内容设置一些问题,以问卷的形式向相关人员调查的方法)、人物采访法(直接向有关人员采访,以掌握第一手材料的方法)、文献法(通过查阅各类资料、图表等,分析、比较得出结论)等等。在课题研究中,应该根据自己课题的实际情况提出相关的课题研究方法,不一定面面俱到,只要实用就行。五、课题研究的步骤。课题研究的步骤,当然就是说本课题准备通过哪几步程序来达到研究的目的。所以在这一部分里应该着重思考的问题就是自己的课题大概准备分几步来完成。一般来说课题研究的基本步骤不外乎是以下几个方面:准备阶段、查阅资料阶段、实地考察阶段、问卷调查阶段、采访阶段、资料的分析整理阶段、对本课题的总结与反思阶段等。六、课题参与人员及组织分工。这属于对本课题研究的管理范畴,但也不可忽视。因为管理不到位,学生不能明确自己的职责,有时就会偷懒或者互相推诿,有时就会做重复劳动。因此课题参与人员的组织分工是不可少的。最好是把所有的参与研究的学生分成几个小组,每个小组通过民主选举的方式推选出小组长,由小组长负责本小组的任务分派和落实。然后根据本课题的情况,把相关的研究任务分割成几大部分,一个小组负责一个部分。最后由小组长组织人员汇总和整理。七、课题的经费估算。一个课题要开展,必然需要一些经费来启动,所以最后还应该大概地估算一下本课题所需要 的资金是多少,比如搜集资料需要多少钱,实地调查的外出经费,问卷调查的印刷和分发的费用,课题组所要占用的场地费,有些课题还需要购买一些相关的材料,结题报告等资料的印刷费等等。所谓“大军未动,粮草先行”,没有足够的资金作后盾,课题研究势必举步维艰,捉襟见肘,甚至于半途而废。因此,课题的经费也必须在开题之初就估算好,未雨绸缪,才能真正把本课题的研究做到最好。

正交矩阵论文开题报告

要看出与内积的联系,考虑在n维实数内积空间中的关于正交基写出的向量v。v的长度的平方是vv。如果矩阵形式为Qv的线性变换保持了向量长度,则所以有限维线性等距同构,比如旋转、反射和它们的组合,都产生正交矩阵。反过来也成立: 正交矩阵蕴涵了正交变换。但是,线性代数包括了在既不是有限维的也不是同样维度的空间之间的正交变换,它们没有等价的正交矩阵。有多种原由使正交矩阵对理论和实践是重要的。n×n正交矩阵形成了一个群,即指示为O(n) 的正交群,它和它的子群广泛的用在数学和物理科学中。例如,分子的点群是O(3) 的子群。因为浮点版本的正交矩阵有有利的性质,它们是字数值线性代数中很多算法比如QR分解的关键,通过适当的规范化,离散余弦变换(用于MP3压缩)可用正交矩阵表示。

正交矩阵方程AX = B的解决方案,问度娘就好了。

幂等矩阵论文开题报告

(2021.01.17)

对称半正定方阵

对称正定方阵

矩阵 的广义逆

矩阵 的Moore-Penrose广义逆

满足 且具有最大秩的矩阵

矩阵 的秩

矩阵 的行列式

矩阵 的范数

方阵 的迹

的第 个顺序特征根

矩阵 的列向量张成的子空间

向 的正交投影变换阵

分量皆为1的列向量

将 的列向量依次排成的列向量

的上确界Supremum

的下确界Infimum

与 的Kronecher乘积

随机变量或向量的 的均值

随机变量 的方差

随机变量或向量 , 的协方差

均值为 ,协方差阵为 的随机变量

均值为 ,协方差阵为 的 维正态向量

LS估计 最小二乘估计

BLU估计 最佳线性无偏估计

MVU估计 最小方差无偏估计

MINQUE 最小范数二次无偏估计

RSS 回归平方和

SS e 残差平方和

MSE 均方误差

MSEM 均方误差矩阵

GMSE 广义均方误差

矩阵的秩 一个矩阵 的列秩是 的线性独立的纵列的极大数,表示为 。

方阵的列秩和行秩总是相等的,因此可以简单的称作矩阵 的秩。 矩阵的秩最大为 和 中的较小值,即 。有尽可能大的秩的矩阵被称为有 满秩 。

设A是一组向量,定义A的极大无关组中向量的个数为A的秩。

矩阵的迹 trace 阶方阵 的主对角线的和,称为矩阵的迹。矩阵 中在 行 列的元素是 ,迹 。

线性独立 linearly independent 向量的线性独立,指一组向量中任意一个向量都不能由其他几个向量线性表示。或这些向量的线性组合等于0时,其系数只能是0.

一组向量 ,另有一组未知的系数 。若 中的 没有非零解,则向量 线性独立。

(2021.01.21 Thur) 对称矩阵symmetric matrices 以对角线为中心,对应位置相等的矩阵,就是对称矩阵。用 表示一个矩阵的第 行第 列元素,则有

单位矩阵Identity Matrix 一个方阵的对角线都是1,其他元素是0,称为单位矩阵,用 或 表示。可记为

逆矩阵 对于n阶矩阵 存在n阶矩阵 ,使得 ,则称矩阵 可逆, 是 的逆矩阵。记为 。

转置transposition 一个矩阵的行与列调换,即 。矩阵 的转置表示为 或 。

正交矩阵 一个矩阵与其转置的积是单位阵,则该矩阵是正交矩阵。 或 。

正定矩阵positive definite matrix

半正定矩阵positive semi-definite matrix 是n阶方阵,对于任意非零向量 ,有 ,则称 是半正定矩阵。

(2021.01.23 Sat) 奇异矩阵singular matrix 奇异矩阵的条件:方阵、矩阵的行列式为0。非奇异矩阵和奇异矩阵都是方阵。

(2021.01.24 Sun) 特征值 characteristic value / eigenvalue 对一个 阶方阵 ,有一个数 和一个非零 维列向量 使关系式 成立,这样的数 称为方阵 的特征值,向量 称为方阵 对应特征值 的特征向量。表达式 的另一种表达式是 。这是一个 个未知数 个方程的齐次线性方程组,它有非零解的充要条件是行列式 。该行列式称为矩阵 的特征多项式。

特征方程 是一个 次代数方程,称为 的特征方程。特征方程的根称为矩阵 的特征根。

(2021.01.29 Fri) 矩阵分解 定理:实数构成的方阵可以对角化分解。 证明:一个 阶的矩阵 可以分解为 其中 的每一列都是特征向量, 对角线上的元素是从大到小排列的特征值。将 表示成 。根据特征值特征向量的定义,有 因此有 ,其中 是 的特征向量的集合, 是对角阵,对角线的元素是 特征值从大到小排列。 定理:实数对称方阵可正交对角化。 一个 阶的实对称矩阵 ,存在一个对称对角化分解 其中 的列是特征向量且标准正交, 是对角阵,对角元素是 的特征值由大到小排列。

设 ,矩阵 可写成

根据一个矩阵 求其正交对角阵分解的过程:

奇异值分解( 这篇文章 也有相同的内容)

(2021.01.27 Wed) 正交基和标准正交基 内积dot product/inner product: 维向量 和 的内积表示为 。 正交orthoganality:向量空间中的两个向量的内积为0,则这两个向量正交。 正交基:一个内积空间的正交基,是元素两两正交的基。 标准正交基:正交基的基向量的模长都是1,则该正交基是标准正交基。 比如, 是 的一组正交基。 是 的一组标准正交基。

(2021.02.21 Sun) 代数余子式algebraic cofactor 在 阶行列式中,将元素 所在的第 行第 列元素划去后,留下的 阶行列式 ,称为 的余子式。设 ,则 称作元素 的代数余子式。

代数余子式的大小只与元素的位置 有关系。

阶行列式 中任意选定 行 列划去,余下的元素按原来顺序组成的 阶行列式 ,称为行列式 的 阶子式 的余子式 。 的行与列在 中的标记分别为 和 ,则行列式 的 阶子式 的代数余子式是

幂等矩阵idempotent matrix 若方阵 满足 ,则称 是幂等矩阵。 投影矩阵 既是对称阵,有时幂等矩阵,即 ,则 是投影矩阵。 幂等矩阵的性质

...

(2021.04.06 Tues) 相容方程consistent system 若线性方程组 有解,则称 为相容方程组,也可以成为线性方程组 相容。若其无解则称为不相容。

幂等矩阵的主要性质:

1、幂等矩阵的特征值只可能是0,1。

2、幂等矩阵可对角化。

3、幂等矩阵的迹等于幂等矩阵的秩,即tr(A)=rank(A)。

4、可逆的幂等矩阵为E。

5、方阵零矩阵和单位矩阵都是幂等矩阵。

6、幂等矩阵A满足:A(E-A)=(E-A)A=0。

7、幂等矩阵A:Ax=x的充要条件是x∈R(A)。

扩展资料:

A是n阶实对称幂等矩阵,故A的特征值只能是0和1。所以存在正交矩阵Q,使得(Q-1)AQ=diag。

设特征值1是r重,0是n-r重,则矩阵A-2I有r重特征值1-2=-1,n-r重特征值0-2=-2;所以det(A-2I)=(-1)^n*2^(n-r)。

参考资料来源:百度百科—幂等矩阵

矩阵初等变换论文开题报告范文

初等变换:1)交换矩阵的两行(列);2)用一个不为零的数乘矩阵的某一行(列);3)用一个数乘矩阵某一行(列)加到另一行(列)上。利用矩阵初等变换,可以求行列式的值,求解线性方程组,求矩阵的秩,确定向量组向量间的线性关系等。例:

如果你感觉开题报告的格式太复杂,不想浪费太多的时间在格式上面,但是还必须要符合学校要求的标准格式,建议试一下求道无忧论文系统,3分钟搞定开题报告格式,输出标准的开题报告格式,把更多的精力放在开题报告内容上。

不可以的.矩阵的对角化不是只用初等变换把它变成对角线形式就叫对角化了,而是对角线必须为特征值.如果把它变成对角线形式就叫对角化,那可以在任一行乘个数,结果就变了,而对角形式保持不变如矩阵0 -11 0 用初等变换交换2行就成对角式了,但对角化必须是特征值正负i.当然,用初等变换当然可以实现对角化,但是只能是你知道对角化矩阵后在用初等变换往上靠

相关百科

热门百科

首页
发表服务