对于一般的比较简单的矩阵可以先分别求出他们的代数余子式的行列式的值,然后将值写出来就好了,注意代数余子式的值要和以前的行列对换,就是说一行二列的代数余子式的值应该放在二行一列的位置上
讨论矩阵的秩,设A是n阶方阵, 若A*为伴随矩阵,则当 r(A) = n 时, r(A*) = n当 r(A) = n-1 时, r(A*) = 1当 r(A) < n-1 时, r(A*) = 0所以,当原矩阵有可逆矩阵时,伴随矩阵也可逆;当原矩阵不可逆,行列式等于零,伴随矩阵也不可逆,行列式也等于零;当可逆时,原矩阵、逆矩阵、伴随矩阵满足关系AA* = |A|E,两边同时左乘A^-1可得A*=|A|A^-1,可根据条件灵活运用;当r 在线性代数中,一个方形矩阵的伴随矩阵是一个类似于逆矩阵的概念。如果矩阵可逆,那么它的逆矩阵和它的伴随矩阵之间只差一个系数。然而,伴随矩阵对不可逆的矩阵也有定义,并且不需要用到除法。 A的伴随矩阵可按如下步骤定义:把D的各个元素都换成它相应的代数余子式,伴随矩阵(代数余子式定义:在一个n级行列式A中,把元所在的第行和第列划去后,留下来的阶行列式叫做元的余子式,记着。 将所得到的矩阵转置便得到A的伴随矩阵,(实际求解伴随矩阵即A*=aij(A):去除 A的行列式D中 元素对应的第行和第列得到的新行列式D1代替 aij,这样就不用转置了)。 1、正交矩阵:正交变换e在规范正交基下的矩阵是正交矩阵,满足U*U’=U’*U=I2、实对称矩阵:对称变换e在规范正交基下的矩阵是对称矩阵,满足A’=A 实对称矩阵:如果有n阶矩阵A,其矩阵的元素都为实数,且矩阵A的转置等于其本身(aij=aji)(i,j为元素的脚标),则称A为实对称矩阵。 主要性质: 1.实对称矩阵A的不同特征值对应的特征向量是正交的。 2.实对称矩阵A的特征值都是实数,特征向量都是实向量。 3.n阶实对称矩阵A必可对角化,且相似对角阵上的元素即为矩阵本身特征值。 4.若λ0具有k重特征值必有k个线性无关的特征向量,或者说必有秩r(λ0E-A)=n-k,其中E为单位矩阵。 扩展资料: 对称矩阵性质: 1.对于任何方形矩阵X,X+XT是对称矩阵。 2.A为方形矩阵是A为对称矩阵的必要条件。 3.对角矩阵都是对称矩阵。 4.两个对称矩阵的积是对称矩阵,当且仅当两者的乘法可交换。两个实对称矩阵乘法可交换当且仅当两者的特征空间相同。 5.用<,>表示 上的内积。n×n的实矩阵A是对称的,当且仅当对于所有X, Y∈ , 。 6.任何方形矩阵X,如果它的元素属于一个特征值不为2的域(例如实数),可以用刚好一种方法写成一个对称矩阵和一个斜对称矩阵之和: 7.每个实方形矩阵都可写作两个实对称矩阵的积,每个复方形矩阵都可写作两个复对称矩阵的积。 8.若对称矩阵A的每个元素均为实数,A是Hermite矩阵。 9.一个矩阵同时为对称矩阵及斜对称矩阵当且仅当所有元素都是零的时候成立。 10.如果A是对称矩阵,那么AXAT也是对称矩阵。 11.n阶实对称矩阵,是n维欧式空间V(R)的对称变换在单位正交基下所对应的矩阵。 参考资料:百度百科----实对称矩阵 一. 定义 因为正定二次型与正定矩阵有密切的联系,所以在定义正定矩阵之前,让我们先定义正定二次型: 设有二次型 ,如果对任何x 0都有f(x)>0( 0) ,则称f(x) 为正定(半正定)二次型。 相应的,正定(半正定)矩阵和负定(半负定)矩阵的定义为: 令A为 阶对称矩阵,若对任意n 维向量 x 0都有 >0(≥0)则称A正定(半正定)矩阵;反之,令A为n 阶对称矩阵,若对任意 n 维向量 x≠0 ,都有 <0(≤ 0), 则称A负定(半负定)矩阵。 例如,单位矩阵E 就是正定矩阵。 二. 正定矩阵的一些判别方法 由正定矩阵的概念可知,判别正定矩阵有如下方法: 1.n阶对称矩阵A正定的充分必要条件是A的 n 个特征值全是正数。 证明:若 , 则有 ∴λ>0 反之,必存在U使 即 有 这就证明了A正定。 由上面的判别正定性的方法,不难得到A为半正定矩阵的充要条件是:A的特征值全部非负。 2.n阶对称矩阵A正定的充分必要条件是A合同于单位矩阵E。 证明:A正定 二次型 正定 A的正惯性指数为n 3.n阶对称矩阵A正定(半正定)的充分必要条件是存在 n阶可逆矩阵U使 ;进一步有 (B为正定(半正定)矩阵)。 证明:n阶对称矩阵A正定,则存在可逆矩阵U使 令 则 令 则 反之, ∴A正定。 同理可证A为半正定时的情况。 4.n阶对称矩阵A正定,则A的主对角线元素 ,且 。 证明:(1)∵n阶对称矩阵A正定 ∴ 是正定二次型 现取一组不全为0 的数0,…,0,1,0…0(其中第I个数为1)代入,有 ∴ ∴A正定 ∴存在可逆矩阵C ,使 5.n阶对称矩阵A正定的充分必要条件是:A的 n 个顺序主子式全大于零。 证明:必要性: 设二次型 是正定的 对每个k,k=1,2,…,n,令 , 现证 是一个k元二次型。 ∵对任意k个不全为零的实数 ,有 ∴ 是正定的 ∴ 的矩阵 是正定矩阵 即 即A的顺序主子式全大于零。 充分性: 对n作数学归纳法 当n=1时, ∵ , 显然 是正定的。 假设对n-1元实二次型结论成立,现在证明n元的情形。 令 , , ∴A可分块写成 ∵A的顺序主子式全大于零 ∴ 的顺序主子式也全大于零 由归纳假设, 是正定矩阵即,存在n-1阶可逆矩阵Q使 令 ∴ 再令 , 有 令 , 就有 两边取行列式,则 由条件 得a>0 显然 即A合同于E , ∴A是正定的。 三. 负定矩阵的一些判别方法 1.n阶对称矩阵A是负定矩阵的充分必要条件是A的负惯性指数为n。 2.n阶对称矩阵A是负定矩阵的充分必要条件是A的特征值全小于零。 3.n阶对称矩阵A是负定矩阵的充分必要条件是A的顺序主子式 满足 , 即奇数阶顺序主子式全小于零,偶数阶顺序主子式全大于零。 由于A是负定的当且仅当-A是正定的,所以上叙结论不难从正定性的有关结论直接得出,故证明略。 四.半正定矩阵的一些判别方法 1. n阶对称矩阵A是半正定矩阵的充分必要条件是A的正惯性指数等于它的秩。 2. n阶对称矩阵A是半正定矩阵的充分必要条件是A的特征值全大于等于零,但至少有一个特征值等于零。 3. n阶对称矩阵A是负定矩阵的充分必要条件是A的各阶主子式全大于等于零,但至少有一个主子式等于零。 注:3中指的是主子式而不是顺序主子式,实际上,只有顺序主子式大于等于零并不能保证A是半正定的,例如: 矩阵 的顺序主子式 , , , 但A并不是半正定的。 关于半负定也有类似的定理,这里不再写出。 不同特征值的特征向量两两正交 还有三个月就是毕业生们答辩的时间了,但是很多毕业生们目前连选题都还没有选好。时间紧迫,我立马为大家精心整理了一些大学数学系本科毕业论文题目,供毕业生们参考! 1、导数在不等式证明中的应用 2、导数在不等式证明中的应用 3、导数在不等式证明中的应用 4、等价无穷小在求函数极限中的应用及推广 5、迪克斯特拉(Dijkstra)算法及其改进 6、第二积分中值定理“中间点”的性态 7、对均值不等式的探讨 8、对数学教学中开放题的探讨 9、对数学教学中开放题使用的几点思考 10、对现行较普遍的彩票发行方案的讨论 11、对一定理证明过程的感想 12、对一类递推数列收敛性的讨论 13、多扇图和多轮图的生成树计数 14、多维背包问题的扰动修复 15、多项式不可约的判别方法及应用 16、多元函数的极值 17、多元函数的极值及其应用 18、多元函数的极值及其应用 19、多元函数的极值问题 20、多元函数极值问题 21、二次曲线方程的化简 22、二元函数的单调性及其应用 23、二元函数的极值存在的判别方法 24、二元函数极限不存在性之研究 25、反对称矩阵与正交矩阵、对角形矩阵的关系 26、反循环矩阵和分块对称反循环矩阵 27、范德蒙行列式的一些应用 28、方阵A的伴随矩阵 29、放缩法及其应用 30、分块矩阵的应用 31、分块矩阵行列式计算的若干方法 32、辅助函数在数学分析中的应用 33、复合函数的可测性 34、概率方法在其他数学问题中的应用 35、概率论的发展简介及其在生活中的若干应用 36、概率论在彩票中的应用 37、概率统计在彩票中的应用 38、概率统计在实际生活中的应用 39、概率在点名机制中的应用 40、高阶等差数列的通项,前n项和公式的探讨及应用 41、给定点集最小覆盖快速近似算法的进一步研究及其应用 42、关联矩阵的一些性质及其应用 43、关于Gauss整数环及其推广 44、关于g-循环矩阵的逆矩阵 45、关于二重极限的若干计算方法 46、关于反函数问题的讨论 47、关于非线性方程问题的求解 48、关于函数一致连续性的几点注记 49、关于矩阵的秩的讨论 _ 50、关于两个特殊不等式的推广及应用 51、关于幂指函数的极限求法 52、关于扫雪问题的数学模型 53、关于实数完备性及其应用 54、关于数列通项公式问题探讨 55、关于椭圆性质及其应用地探究、推广 56、关于线性方程组的迭代法求解 57、关于一类非开非闭的商映射的构造 58、关于一类生态数学模型的几点思考 59、关于圆锥曲线中若干定值问题的求解初探 60、关于置信区间与假设检验的研究 61、关于周期函数的探讨 62、函数的一致连续性及其应用 63、函数定义的发展 64、函数级数在复分析中与在实分析中的关系 65、函数极值的求法 66、函数幂级数的展开和应用 67、函数项级数的收敛判别法的推广和应用 68、函数项级数一致收敛的判别 69、函数最值问题解法的探讨 70、蝴蝶定理的推广及应用 71、化归中的矛盾分析法研究 72、环上矩阵广义逆的若干性质 73、积分中值定理的再讨论 74、积分中值定理正反问题‘中间点’的渐近性 75、基于高中新教材的概率学习 76、基于最优生成树的'海底油气集输管网策略分析 77、级数求和的常用方法与几个特殊级数和 78、级数求和问题的几个转化 79、级数在求极限中的应用 80、极限的求法与技巧 81、极值的分析和运用 82、极值思想在图论中的应用 83、几个广义正定矩阵的内在联系及其区别 84、几个特殊不等式的巧妙证法及其推广应用 85、几个重要不等式的证明及应用 86、几个重要不等式在数学竞赛中的应用 87、几种特殊矩阵的逆矩阵求法 矩阵的秩是反映矩阵固有特性的一个重要概念。计算矩阵的秩的一个有用应用是计算线性方程组解的数目。如果系数矩阵的秩等于增广矩阵的秩,则方程组只要有一个解。在这种情况下,它有精确的一个解,如果它的秩等于方程的数目。如果增广矩阵的秩大于系数矩阵的秩,则通解有 k 个自由参量,这里的 k 是在方程的数目和秩的差。否则方程组是不一致的。在控制论中,矩阵的秩可以用来确定线性系统是否为可控制的,或可观察的。 我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业 随机环境中经济增长模型研究广义生产函数假设下的经济增长模型分析考虑市场预期的供求关系模型基于Matlab的离散事件模拟用风险预算进行资产配置有向图上的PAR贯序模拟系统单圈图的一般Randic指标的极值问题模糊数学在公平评奖问题中的应用模糊矩阵在环境评估中的初步应用模糊评判在电脑中的初步应用数学家的数学思想Riemann积分定义的网收敛表述微积分思想在不等式证明中的应用用有限的尺度标量无限的过程-略论极限ε语言在微积分及现代数学中的位置及意义微积分思想在几何问题中的应用齐次平衡法求KdV-Burgers方程的Backlund变换Painleve分析法判定MKdV-Burgers方程的可积性直接法求KdV-Burgers方程的对称及精确解行波求解KdV-Burgers方程因子有向图的矩阵刻划简单图上的lit-only sigma-game半正则图及其线图的特征多项式与谱分数有向图的代数表示WWW网络的拓扑分析作者合作网络等的拓扑分析古诺模型价格歧视用数学软件做计算微分方程的计算器用数学软件做矩阵计算的计算器弹簧-质点系统的反问题用线性代数理论做隐含语义搜索对矩阵若当标准型理论中变换阵求法的探讨对矩阵分解理论的探讨对矩阵不等式理论的探讨(1)对矩阵不等式理论的探讨(2)函数连续性概念及其在现代数学理论中的延伸从有限维空间到无限维空间Banach空间中脉冲泛函微分方程解的存在性高阶脉冲微分方程的振动性具有积分边界条件的分数阶微分方程解的存在唯一性分数阶微分方程的正则摄动一个形态形成模型的摄动解一个免疫系统常微分方程模型的渐近解前列腺肿瘤连续性激素抑制治疗的数学模型前列腺肿瘤间歇性激素抑制治疗的数学模型病毒动力学数学模型肿瘤浸润数学模型耗散热方程初边值问题解的正则性耗散波方程初边值问题解的正则性耗散Schrodinger方程初边值问题解的正则性非线性发展方程解得稳定性消费需求的鲁棒调节生产函数的计量分析企业的成本形态分析的研究分数阶Logistic方程的数值计算分数阶捕食与被捕食模型的数值计算AIDS传播模型的全局性分析HIV感染模型的全局性分析风险度量方法的比较及其应用具有区间值损益的未定权益定价分析模糊规划及其在金融分析中的应用长依赖型金融市场股票价格与长相依性分数布朗运动下的外汇期权定价不确定性与资产定价加油站点的分布与出租车行业的关系 告诉你拟就会写吗。不如我给你写得了 好写哦!科技论文,专业性这么强,写出来,也是只有专业人员才能明白。首先,序言:把矩阵的乘法原理,加以介绍、解释和说明,这些就是书上现成的东西。接着介绍其应用都有哪些,具体在哪些方面。最后说明本文主要介绍哪些方面的具体应用及事例。进入正文,集中写清楚,你要介绍的应用及事例。字数要多,就多写,写详细一些;字数一般,就写得一般,就可以啦。。。祝成功! 我的毕业论文题目是矩阵的乘法及其应用~个人感觉相当简单~我是数学与应用数学专业 在线性代数中,一个n×n矩阵A的主对角线(从左上方至右下方的对角线)上各个元素的总和被称为矩阵A的迹(或迹数),一般记作tr(A)。 性质: 设有N阶矩阵A,那么矩阵A的迹(用表示)就等于A的特征值的总和,也即矩阵A的主对角线元素的总和。 1、迹是所有对角元的和。 2、迹是所有特征值的和。 3、某些时候也利用tr(AB)=tr(BA)来求迹。 4、tr(mA+nB)=mtr(A)+ntr(B)。 扩展资料 在数值分析中,由于数值计算误差、测量误差、噪声和病态矩阵的存在,零奇异值通常表现为一个小数值。为了便于讨论和计算,把一个矩阵分解成性质上更简单或更熟悉的矩阵的组合。 由于矩阵的特征值和特征向量在矩阵的对角化中占有特殊的位置,提出了矩阵的特征值分解。虽然矩阵的特征值有很好的性质,但它们并不总是正确地表示矩阵的“大小”。 矩阵的奇异值和奇异值分解是矩阵理论和应用中非常重要的内容。它已成为多变量反馈控制系统最重要和基本的分析工具之一。它表示反馈控制系统的输出/输入增益,能反映控制系统的特性。 参考资料:百度百科-矩阵的迹 求矩阵A的迹主要用两种方法:1.迹是所有对角元的和,就是矩阵A的对角线上所有元素的和2.迹是所有特征值的和,通过求出矩阵A的所有特征值来求出它的迹。 多个矩阵相乘得到的方阵的迹,和将这些矩阵中的最后一个挪到最前面之后相乘的迹是相同的。 将一个矩阵分解为比较简单或者性质比较熟悉的矩阵之组合,方便讨论和计算。由于矩阵的特征值和特征向量在化矩阵为对角形的问题中占有特殊位置, 因此矩阵的特征值分解。 尽管矩阵的特征值具有非常好的性质,但是并不是总能正确地表示矩阵的“大小”。矩阵的奇异值和按奇异值分解是矩阵理论和应用中十分重要的内容。 扩展资料: 矩阵已成为多变量反馈控制系统最重要最基本的分析工具之一,奇异值实际上是复数标量绝对值概念的推广, 表示了反馈控制系统的输出/输入增益,能反映控制系统的特性。 某些时候也利用tr(AB)=tr(BA)来求迹,tr(mA+nB)=m tr(A)+n tr(B)奇异值分解(Singular value decomposition )。对称矩阵的性质及应用论文答辩
矩阵的秩及其应用毕业论文
矩阵的分解及应用毕业论文
矩阵的迹及其应用毕业论文