首页

> 学术发表知识库

首页 学术发表知识库 问题

从现在数学看中学数学论文

发布时间:

从现在数学看中学数学论文

数学论文 一、数学技能的含义及作用 技能是顺利完成某种任务的一种动作或心智活动方式。它是一种接近自动化的、复杂而较为完善的动作系统,是通过有目的、有计划的练习而形成的。数学技能是顺利完成某种数学任务的动作或心智活动方式。它通常表现为完成某一数学任务时所必需的一系列动作的协调和活动方式的自动化。这种协调的动作和自动化的活动方式是在已有数学知识经验基础上经过反复练习而形成的。如学习有关乘数是两位数的乘法计算技能,就是在掌握其运算法则的基础上通过多次的实际计算而形成的。数学技能与数学知识和数学能力既有密切的联系,又有本质上的区别。它们的区别主要表现为:技能是对动作和动作方式的概括,它反映的是动作本身和活动方式的熟练程度;知识是对经验的概括,它反映的是人们对事物和事物之间相互联系的规律性的认识;能力是对保证活动顺利完成的某些稳定的心理特征的概括,它所体现的是学习者在数学学习活动中反映出来的个体特征。三者之间的联系,可以比较清楚地从数学技能的作用中反映出来。 数学技能在数学学习中的作用可概括为以下几个方面: 第一,数学技能的形成有助于数学知识的理解和掌握; 第二,数学技能的形成可以进一步巩固数学知识; 第三,数学技能的形成有助于数学问题的解决; 第四,数学技能的形成可以促进数学能力的发展; 第五,数学技能的形成有助于激发学生的学习兴趣; 第六,调动他们的学习积极性。 二、数学技能的分类 小学生的数学技能,按照其本身的性质和特点,可以分为操作技能(又叫做动作技能)和心智技能(也叫做智力技能)两种类型。 l.数学操作技能。操作技能是指实现数学任务活动方式的动作主要是通过外部机体运动或操作去完成的技能。它是一种由各个局部动作按照一定的程序连贯而成的外部操作活动方式。如学生在利用测量工具测量角的度数、测量物体的长度,用作图工具画几何图形等活动中所形成的技能就是这种外部操作技能。操作技能具有有别于心智技能的一些比较明显的特点:一是外显性,即操作技能是一种外显的活动方式;二是客观性,是指操作技能活动的对象是物质性的客体或肌肉;王是非简约性,就动作的结构而言,操作技能的每个动作都必须实施,不能省略和合并,是一种展开性的活动程序。如用圆规画圆,确定半径、确定圆心、圆规一脚绕圆心旋转一周等步骤,既不能省略也不能合并,必须详尽地展开才能完成的任务。 2.数学心智技能。数学心智技能是指顺利完成数学任务的心智活动方式。它是一种借助于内部言语进行的认知活动,包括感知、记忆、思维和想象等心理成分,并且以思维为其主要活动成分。如小学生在口算、笔算、解方程和解答应用题等活动中形成的技能更多地是一些数学心智技能。数学心智技能同样是经过后天的学习和训练而形成的,它不同于人的本能。另外,数学心智技能是一种合乎法则的心智活动方式,“所谓合乎法则的活动方式是指活动的动作构成要素及其次序应体现活动本身的客观法则的要求,而不是任意的”。这些特性,反映了数学心智技能和数学操作技能的共性。数学心智技能作为一种以思维为主要活动成分的认知活动方式,它也有着区别于数学操作技能的个性特征,这些特征主要反映在以下三个方面。 第一,动作对象的观念性。数学心智技能的直接对象不是具有物质形式的客体本身,而是这种客体在人们头脑里的主观映象。如20以内退位减法的口算,其心智活动的直接对象是“想加法算减法”或其他计算方法的观念,而非某种物质化的客体。 第二,动作实施过程的内隐性。数学心智技能的动作是借助内部言语完成的,其动作的执行是在头脑内部进行的,主体的变化具有很强的内隐性,很难从外部直接观测到。如口算,我们能够直接了解到的是通过学生的外部语言所反映出来的计算结果,学生计算时的内部心智活动动作是无法看到的。 第三,动作结构的简缩性。数学心智技能的动作不像操作活动那样必须把每一个动作都完整地做出来,也不像外部言语那样对每一个动作都完整地说出来,它的活动过程是一种高度压缩和简化的自动化过程。因此,数学心智技能中的动作成分是可以合并、省略和简化的。如20以内进位加法的口算,学生熟练以后计算时根本没有去意识“看大数”、“想凑数”、“分小数”、“凑十”等动作,整个计算过程被压缩成一种脱口而出的简略性过程。 三、数学技能的形成过程 1.数学操作技能的形成过程。 数学操作技能作为一种外显的操作活动方式,它的形成大致要经过以下四个基本阶段。 (1)动作的定向阶段。这是操作技能形成的起始阶段,主要是学习者在头脑里建立起完成某项数学任务的操作活动的定向映象。包括明确学习目标,激起学习动机,了解与数学技能有关的知识,知道技能的操作程序和动作要领以及活动的最后结果等内容。概括起来讲,这一阶段主要是了解“做什么”和“怎样做”两方面的内容。如画角,这一阶段主要是了解需画一个多少度的角(即知道做什么)和画角的步骤(即怎么做),以此给画角的操作活动作出具体的定向。动作定向的作用是在头脑里初步建立起操作的自我调节机制;通过对“做什么”和“怎么做”的了解而明确实施数学活动的程序与步骤,从而保证在操作中更好地掌握其动作的活动方式。 (2)动作的分解阶段。这是操作技能进入实际学习的最初阶段,其作法是把某项数学技能的全套动作分解成若干个单项动作,在老师的示范下学生依次模仿练习,从而掌握局部动作的活动方式。如用圆规按照给定的半径画圆,在这一阶段就可把整个操作程序分解成三个局部动作:①把圆规的两脚张开,按照给定的半径定好两脚间的距离;②把有针尖的一脚固定在一点上,确定出圆心;③将有铅笔尖的一脚绕圆心旋转一周,画出圆。通过对这三个具有连续性的局部动作的依次练习,即可掌握画圆的要领。学生在这一阶段学习的方式主要是模仿,一方面根据老师的示范进行模仿;另一方面也可以根据有关操作规则的文字描述进行模仿,如根据几何作图规则对各个动作活动方式的表述进行模仿。模仿不一定都是被动的和机械的,“模仿可以是有意的和无意的;可以是再造性的,也可以是创造性的。”②模仿是数学操作技能形成的一个不可缺少的条件。 (3)动作的整合阶段。在这一阶段,把前面所掌握的各个局部动作按照一定的顺序连接起来,使其形成一个连贯而协调的操作程序,并固定下来。如画圆,在这一阶段就可将三个步骤综合起来形成一体化的操作系统。这时由于局部动作之间尚处在衔接阶段,所以动作还难以维持稳定性和精确性,动作系统中的某些环节在衔接时甚至还会出现停顿现象。不过,总的来讲这一阶段动作之间的相互干扰逐步得到排除,操作过程中的多余动作也明显减少,已形成完整而有序的动作系统。 (4)动作的熟练阶段。这是操作技能形成的最后阶段,在这一阶段通过练习而形成的数学活动方式能适应各种变化情况,其操作表现出高度完善化的特点。动作之间相互干扰和不协调的现象完全消除,动作具有高度的正确性和稳定性,并且不管在什么条件下全套动作都能流畅地完成。如这时的画圆,不需要意志控制就能顺利地完成全套动作,并且能充分保证其正确性。上述分析表明,数学操作技能的形成要经过“定向→分解→整合→熟练”的发展过程。在这一过程中每一个发展阶段都有自己的任务:定向阶段的主要任务是掌握操作的结构系统和每一个步骤操作的要领;分解阶段的主要任务是对活动的操作系列进行分解,并逐一模仿练习;整合阶段的主要任务是在动作之间建立联系,使活动协调一体化;熟练阶段的任务则主要是使整个操作过程高度完善化和自动化。 2.数学心智技能的形成过程。 关于数学心智技能形成过程的研究,人们比较普遍地采用了原苏联心理学家加里培林的研究成果。加里培林认为,心智活动是一个从外部的物质活动到内部心智活动的转化过程,既内化的过程。据此,在这里我们把小学生数学心智技能的形成过程概括为以下四个阶段。 (1)活动的认知阶段。这是数学心智活动的认知准备阶段,主要是让学生了解并记住与活动任务有关的知识,明确活动的过程和结果,在头脑里形成活动本身及其结果的表象。如学习除数是小数的除法计算技能,在这一步就是让学生回忆并记住除法商不变性质和除数是整数的小数除法法则等知识,在此基础上明确计算的程序和每一步计算的具体方法,以此在头脑里形成除数是小数除法计算过程的表象。认知阶段实际上也是一种心智活动的定向阶段,通过这一阶段,学习者可以建立起进行数学心智活动的初步自我调节机制,为后面顺利进行认知活动提供内部控制条件。这一阶段的主要任务是在头脑里确定心智技能的活动程序,并让这种程序的动作结构在头脑里得到清晰的反映。 (2)示范模仿阶段。这是数学心智活动方式进入具体执行过程的开始,这一阶段学生把在头脑里已初步建立起来的活动程序计划以外显的操作方式付诸执行。不过,这种执行通常是在老师指导示范下进行的,老师的示范通常是采用语言指导和操作提示相结合的方式进行的,即在言语指导的同时呈现活动过程中的某些步骤。如计算乘数是两位数的乘法时,一方面根据运算法则指导运算步骤;另一方面在表述运算规定的同时重点示范用乘数十位上的数去乘被乘数所得的部分积的对位,以此让学生在老师的帮助、指导下顺利地掌握两位数乘多位数计算的活动方式。在这一阶段,学生活动的执行水平还比较低,通常停留在物质活动和物质化活动的水平上。“所谓物质活动是指动作的客体是实际事物,所谓物质化活动是指活动不是借助于实际事物本身,而是以它的代替物如模拟的教具、学具,乃至图画、图解、言语等进行的”。③如解答复合应用题,在这一步学生通常就是借助线段图进行分析题中数量关系的智力活动的。 (3)有意识的言语阶段。这一阶段的智力活动离开了活动的物质和物质化的客体而逐步转向头脑内部,学生通过自己的言语指导而进行智力活动,通常表现为一边操作一边口中念念有词。如两位数加两位数的笔算,在这一步学生往往是一边计算,口中一边念:相同数位对位,从个位加起,个位满十向十位进1。很明显,这时的计算过程是伴随着对法则运算规定的复述进行的。在这一阶段,学生出声的外部言语活动还会逐步向不出声的外部言语活动过渡,如两位数加两位数的笔算,在本阶段的后期学生往往是通过默想法则规定的运算步骤进行计算的。这一活动水平的出现,标志着学生的活动已开始向智力活动水平转化。 (4)无意识的内部言语阶段。这是数学心智技能形成的最后的一个阶段,在这一阶段学生的智力活动过程有了高度的压缩和简化,整个活动过程达到了完全自动化的水平,无需去注意活动的操作规则就能比较流畅地完成其操作程序。如用简便方法计算45+99×99+54,在这一阶段学生无需去回忆加法交换律和结合律、乘法分配律等运算定律,就能直接先合并45和54两个加数,然后利用乘法分配律进行计算,即原式=(45+54)+99×99=99×(1+99)=99×100=9900,整个计算过程完全是一种流畅的自动化演算过程。在这一阶段,学生的活动完全是根据自己的内部言语进行思考的,并且总是用非常简缩的形式进行思考的,活动的中间过程往往简约得连自己也察觉不到了,整个活动过程基本上是一种自动化的过程。 四、数学技能的学习方法 1.数学操作技能的学习方法。学习数学操作技能的基本方法是模仿练习法和程序练习法。前者是指学生在学习中根据老师的示范动作或教材中的示意图进行模仿练习,以掌握操作的基本要领,在头脑里形成操作过程的动作表象的一种学习方法。用工具度量角的大小、测量物体的长短、几何图形的作图、几何图形面积和体积计算公式推导过程中的图形转化等技能一般都可以通过模仿练习法去掌握。如推导平行四边形面积计算公式时,把平行四边形转化成长方形的操作技能就可模仿(人教版)教材插图(如图所示)的操作过程去练习和掌握。小学生的学习更多的是模仿老师的示范动作,所以老师的示范对小学生数学动作技能的形成尤为重要。教师要充分运用示范与讲解相结合、整体示范与分步示范相结合等措施,让学生准确无误地掌握操作要领,形成正确的动作表象。所谓程序练习法,就是运用程序教学的原理将所要学习的数学动作技能按活动程序分解成若干局部的动作先逐一练习,最后将这些局部的动作综合成整体形成程序化的活动过程。如用量角器量角的度数、用三角板画垂线和平行线、画长方形等技能的学习都可以采用这种方法。用这种方法学习数学动作技能,分解动作时注意突出重点,重点解决那些难以掌握的局部动作,这样可以有效地提高学习效率。 2.数学心智技能的学习方法。学生的心智技能主要是通过范例学习法和尝试学习法去获得的。范例学习法是指学习时按照课本提供的范例,将数学技能的思维操作程序一步一步地展现出来,然后根据这种程序逐步掌握技能的心智活动方式。整数、小数、分数的四则计算,课本几乎都提供了计算的范例,学习时只需要根据范例有序地进行计算即可掌握计算方法。如被除数和除数末尾都有0的除法的简便算法,课本安排了如下范例,学习时只需要明确范例所反映的计算程序和方法,并按照这种程序和方法进行计算即可掌握被除数和除数末尾都有0的除法简便计算的技能。尝试学习法是指在学习中主要由学生自己去尝试探索问题解决的方法和途径,并在不断修正错误的过程中找出解决问题的操作程序,进而获得数学技能。这是一种探究式的发现学习法,总结运算规律和性质并运用它们进行简便计算、解答复合应用题、求某些比较复杂的组合图形的面积或体积等技能都可以运用这种学习方法去掌握。这种方法较多地运用于题目本身具有较强探究性的变式问题解决的学习,如用简便方法计算1001÷12.5,由于学生在前面已经掌握除法商不变性质,练习时就可通过将除数和被除数部乘以8使除数变成100的途径去实现计算的简便。尝试学习法虽然有利于培养学生的探索精神和解决问题的能力,但耗时太多,学习时最好是将它和范例学习法结合起来,两种学习方法互为补充,这样数学技能的学习就会更加富有成效。

高等数学的基础性、工具性和广泛应用性已被许多人公认。一切事物都离不开“数”和“形”,因此,高等数学早就成为物理学、力学、化学、天文学、生物学等学科的基础。数学为它们提供了描述大自然的语言和探索大自然奥秘的工具。正如伟大科学家伽俐略所说,“自然界这部伟大的书是用数学写成的。”从历史上看,众多的天文、物理的重大发现无不与数学的进展有关。如牛顿的万有引力定律的发现依赖于微积分;爱因斯坦的相对论与黎曼几何有关;特别微积分的诞生,则开创了科学的新纪元。高等数学不仅是自然科学的基础,还是一切重大技术革命的基础。在现代社会里,高等数学不仅对科技进步发挥着基础性的作用,而且已成为一种普遍适用的技术和工具。如离散数学、概率论与数理统计、计算数学、拓扑学在齿轮设计、冷轧钢板的焊接、海堤安全高度的计算、计算机的发明与发展等等方面都提供了有效且便利的方法。事实上,从医疗上的CT技术到中文印刷排版的自动化,从飞行器的模拟设计到指纹的识别,从石油勘探的数据处理到信息安全技术,无不是高等数学在其中起着重要作用。高等数学作为工具,在经济理论研究,财政和金融活动中也有重要作用。用数学模型研究宏观经济与微观经济,用数学手段进行市场调查与预测,进行风险分析,指导金融投资等已很普遍。纵观上两届诺贝尔经济学奖获得者,都是以数学方法在经济中的运用而驰名中外的。高等数学的应用越来越广泛,连一些过去与高等数学无关的领域,如考古学、语言学、心理学等也都成为了高等数学大显身手的地方。数学方法也深刻地影响着历史学的研究,能帮助历史学家作出更可靠、更令人信服的结论。艺术大师和科学巨匠达芬奇不仅认为绘画科学的基础是数学,而且强调任何人类的探索活动只有通过数学表达方式和数学证明为自己开辟道路,才能真正成为科学。在知识经济时代,高等数学正在从幕后走向前台。揭示高等数学的基础性、工具性和广泛应用性,可以大大拓展学生的知识领域,让他们在掌握高等数学这一有力的工具来解决问题并为现实服务时,激发对数学的兴趣,树立科学的世界观和方法论;同时也明确高等数学与社会进步的关系,充分认识到学好高等数学的重要性,为今后的学习、发展、研究奠定良好的基础。(二)高等数学的人文价值高等数学不仅具有重要的科学价值,还具有丰富的人文价值,也是人类文化的重要组成部分。首先,高等数学是人类认识自然的中介。笛卡尔认为,“现实世界就是数学定律表现物体在时空中运动的总和,而整个宇宙则是一个以数学定律构成的庞大而协调的机器。”正是数学方法为人类开辟了一条获得自然规律的道路。随着科学与数学的进一步发展,高等数学的推测与实际观测的吻合,使人们从信仰宗教转向信仰自然,坚信自然规律就是数学规律,一切注意力都集中在探索宇宙的数学规律上。从古希腊到现在,人们一直在探索数学与自然的关系。科学史的大量资料显示出数学的巨大力量。在人类的创造中,数学是最强大的方法,高等数学使我们对形形色色的自然现象取得了确定的认识。可见,高等数学是人类认识自然必不可少的中介。其次,数学是人类文化的重要组成部分。高等数学作为数学的重要组成部分,一方面,它是人类认识自然的中介,是自然科学的工具,是思想方法体系;另一方面,它也是思维的工具,数学活动是一种创造与发现活动,同时又是一种艺术。因此,它是人类文化的重要组成部分,它在创造、保存、传递、交流发展人类的文化中充当重要角色,发挥着巨大的作用。高等数学能促进人类文化的不断进步,促进人类文化不断迈向更高阶段,数学精神是人类文化精神的最高代表。从系统论的观点来看,数学文化可以表述为以数学科学为核心,以高等数学的思想、精神、方法、技术、理论等所辐射的相关文化领域为有机组成部分的一个具有强大功能的动态系统。高等数学的文化价值还体现在它是一种语言、一种文字文化、量的文化和计算机文化。此外,它还是一种理性精神,能促进人类文明的不断进步,促进人类智能的不断发展。因此,在高等数学传授时要加强文化的渗透与教育。此外,高等数学的人文价值还体现在强大的育人功能,它是大学生发展的必要食粮。正如著名数学家M.克莱茵所说,“数学是人类最高超的智力成就,也是人类心灵最独特的创作。音乐能激发或抚慰情怀,绘画能使人赏心悦目,诗歌能动人心弦,哲学能使人获得智慧,科学可改变物质生活,但数学能给予以上的一切。”高等数学的教育功能由此可见一斑。(三)高等数学的育人价值由于高等数学的基础性、工具性作用日趋明显,应用越来越广泛,再加上丰富的人文价值,它对大学生成长的各个方面都将起到重要的教育作用,主要体现在以下几个方面:1.有助于为大学生的专业发展奠定基础。高等数学作为一门基础课程,它不仅能丰富和拓宽学生的数学理论知识、思维方法,为学生学习专业知识奠定基础,为他们在今后的科研、工作中继续学习,不断更新知识结构,自我发展、自我提高保持后劲,更重要的是贯穿在高等数学中一系列的精神、思想、方法对培养学生良好的数学素养有直接或间接的影响。这种影响在学生今后的工作中会长期稳定地显示其作用。学会用数学思维处理问题、解决问题,学会用数学方法进行科学研究,学会用数学的思想进行创新改革,这些都将成为大学生成长的不竭动力。2.有助于大学生的思维能力和创新能力的培养。数学是思维的体操,是创新的工具。作为变量数学的高等数学,蕴含着丰富的辨证思想,其内容的辨证性体现得非常典型和深刻。在高等数学中,矛盾对立统一的观点,普遍联系的观点,否定之否定、量变到质变的辨证规律随处可见。集中地反映了辨证法在数学中的应用,因此,它是培养学生辨证思维能力的最优载体。高等数学的学习和认识还是一种再创造、重新发展的过程。通过观察、实验、归纳、模拟、猜想、验证等活动,概括出数学概念,提出数学命题,通过建立数学模型,解决实际问题等活动,也能极大提高大学生的创新能力。(四)高等数学的个性优化价值高等数学不仅是培养创新思维的好材料,也是完善学生人格的好材料。它对人格的培养主要依赖于自身的人文价值。高等数学是一门理论严谨,逻辑缜密的学科,其一切结论都有依据,并经过了严格的逻辑论证。这种科学的实事求是精神,可以培养学生严谨治学的态度,使学生养成尊重客观事实,不固执不偏激,既敢于坚持真理,又勇于修正错误的品格。高等数学的高度抽象性以及知识间一环扣一环、系统性强的特点,决定了学好这门课必须有不畏艰难、坚持不懈的精神。所以,学习高等数学,可以磨练和培养学生的顽强意志与坚强毅力。同时,在解题中又能经常受到“以退求进”、“逐步调整”等方法策略的影响,潜移默化地培养自己“能进能退”的开阔胸怀。通过数学史选讲、文化价值的体现,能够丰富学生的数学史料,体会高等数学在人类文化发展中的重要价值,焕发他们的民族自尊心和自豪感。同时,古今中外数学家们在事业上的志坚如磐,严肃认真;在品格上刚正不阿,诲人不倦等,都会在不同程度和角度上唤起学生崇高的奉献精神。高等数学中潜隐着大量美的信息。抽象美、和谐美、结构美;美的数、式、形、符号以及美的结构体系、理论、方法等比比皆是。教师有责任去揭开美的面纱,展示数学美的风采,让学生在这种熏陶中增长知识、能力。以利于培养他们的审美意识,形成良好的情商,完善心理结构。综上所述,重视高等数学的课程价值,能够充分发挥高等数学的育人价值,是高等数学课程改革的重要内容,意义十分重大,也将成为广大高数教师追求的目标。参考文献:[1]M.克莱因.古今数学思想[M].上海:上海科学技术出版社,1979. [2]林崇德.数学的智慧[M].北京:开明出版社,1996.

高等数学在中学数学中的应用论文

毕业论文主要目的是培养学生综合运用所学知识和技能,理论联系实际,独立分析,解决实际问题的能力,你知道本科数学论文题目都有哪些吗?接下来我为你推荐本科数学毕业论文题目,仅供参考。

本科数学毕业论文题目

★浅谈奥数竟赛的利与弊

★浅谈中学数学中数形结合的思想

★浅谈高等数学与中学数学的联系,如何运用高等数学于中学数学教学中 ★浅谈中学数学中不等式的教学

★中数教学研究

★XXX课程网上教学系统分析与设计

★数学CAI课件开发研究

★中等职业学校数学教学改革研究与探讨

★中等职业学校数学教学设计研究

★中等职业学校中外数学教学的比较研究

★中等职业学校数学教材研究

★关于数学学科案例教学法的探讨

★中外著名数学家学术思想探讨

★试论数学美

★数学中的研究性学习

★数字危机

★中学数学中的化归方法

★高斯分布的启示

★a二+b二≧二ab的变形推广及应用

★网络优化

★泰勒公式及其应用

★浅谈中学数学中的反证法

★数学选择题的利和弊

★浅谈计算机辅助数学教学

★论研究性学习

★浅谈发展数学思维的学习方法

★关于整系数多项式有理根的几个定理及求解方法

★数学教学中课堂提问的误区与对策

★怎样发掘数学题中的隐含条件

★数学概念探索式教学

★从一个实际问题谈概率统计教学

★教学媒体在数学教学中的作用

★数学问题解决及其教学

★数学概念课的特征及教学原则

★数学美与解题

★创造性思维能力的培养和数学教学

★教材顺序的教学过程设计创新

★排列组合问题的探讨

★浅谈初中数学教材的思考

★整除在数学应用中的探索

★浅谈协作机制在数学教学中的运用

★课堂标准与数学课堂教学的研究与实践

★浅谈研究性学习在数学教学中的渗透与实践

★关于现代中学数学教育的思考

★在中学数学教学中教材的使用

★情境教学的认识与实践

★浅谈初中代数中的二次函数

★略论数学教育创新与数学素质提高

★高中数学“分层教学”的初探与实践

★在中学数学课堂教学中如何培养学生的创新思维

★中小学数学的教学衔接与教法初探

★如何在初中数学教学中进行思想方法的渗透

★培养学生创新思维全面推进课程改革

★数学问题解决活动中的反思

★数学:让我们合理猜想

★如何优化数学课堂教学

★中学数学教学中的创造性思维的培养

★浅谈数学教学中的“问题情境”

★市场经济中的蛛网模型

★中学数学教学设计前期分析的研究

★数学课堂差异教学

★一种函数方程的解法

★浅析数学教学与创新教育

★数学文化的核心—数学思想与数学方法

★漫话探究性问题之解法

★浅论数学教学的策略

★当前初中数学教学存在的问题及其对策

★例谈用“构造法”证明不等式

★数学研究性学习的探索与实践

★数学教学中创新思维的培养

★数学教育中的科学人文精神

★教学媒体在数学教学中的应用

★“三角形的积化和差”课例大家评

★谈谈类比法

★直觉思维在解题中的应用

★数学几种课型的问题设计

★数学教学中的情境创设

★在探索中发展学生的创新思维

★精心设计习题提高教学质量

★对数学教育现状的分析与建议

★创设情景教学生猜想

★反思教学中的一题多解

★在不等式教学中培养学生的探究思维能力

★浅谈数学学法指导

★中学生数学能力的培养

★数学探究性活动的内容形式及教学设计

★浅谈数学学习兴趣的培养

★浅谈课堂教学的师生互动

★新世纪对初中数学的教材的思考

★数学教学的现代研究

★关于学生数学能力培养的几点设想

★在数学教学中培养学生创新能力的尝试

★积分中值定理的再讨论

★二阶变系数齐次微分方程的求解问题

★浅谈培养学生的空间想象能力

★培养数学能力的重要性和基本途径 ★课堂改革与数学中的创新教育

★如何实施中学数学教学中的素质教育 ★数学思想方法在初中数学教学中的渗透 ★浅谈数学课程的设计

★培养学生学习数学的兴趣

★课堂教学与素质教育探讨

★数学教学要着重培养学生的读书能力 ★数学基础知识的教学和基本能力的培养 ★初中数学创新教育的实施

★浅谈数学教学中培养学生的数学思维能力 ★谈数学教学中差生的转化问题

★谈中学数学概念教学中如何实施探索式教学 ★把握学生心理激发数学学习兴趣

★数学教学中探究性学习策略

★论数学课堂教学的语言艺术

★数学概念的教与学

★优化课堂教学推进素质教育

★数学教学中的情商因素

★浅谈创新教育

★培养学生的数学兴趣的实施途径

★论数学学法指导

★学生能力在数学教学中的培养

★浅论数学直觉思维及培养

★论数学学法指导

★优化课堂教学焕发课堂活力

★浅谈高初中数学教学衔接

★如何搞好数学教育教学研究

★浅谈线性变换的对角化问题

本科数学毕业论文范文:高等数学教学中体现数学建模思想的方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,以下是我搜集整理的一篇探究高等数学教学中体现数学建模思想的方法的范文,欢迎阅读参考。

1数学建模在煤矿安全生产中的意义

在瓦斯系统的研究过程中,应用数学建模的手段为矿井瓦斯构建数学模型,可以为采煤方案的设计和通风系统的建设提供很大的帮助;尤其是对于我国众多的中小型煤矿而言,因为资金有限而导致安全设施不完善,有的更是没有安全项目的投入,仅仅建设了极为少量的给风设备,通风系统并不完善。这些煤矿试图依靠通风量来对瓦斯体积分数进行调控,这是十分困难的,对瓦斯体积分数进行预测更是不可能的。很多小煤矿使用的仍旧是十分原始的采煤方法,没有相关的规划;当瓦斯等有害气体体积分数升高之后就停止挖掘,体积分数下降之后又继续进行开采。这种开采方式的工作效率十分低下。

只要设计一个充分合理的通风系统的通风量,与采煤速度处于一个动态的平衡状态,就可以在不延误煤炭开采的同时将矿井内的瓦斯气体体积分数控制在一个安全的范围之内。这样不仅可以保障工人的安全,还可以保证煤炭的开采效率,每个矿井都会存在着这样的一个平衡点,这就对矿井瓦斯涌出量判断的准确性提出更高的要求。

2煤矿生产计划的优化方法

生产计划是对生产全过程进行合理规划的有效手段,是一个十分繁复的过程,涉及到的约束因素很多,条理性很差。为了成功解决这个复杂的问题,现将常用的生产计划分为两个大类。

2.1基于数学模型的方法

(1)数学规划方法这个规划方法设计了很多种各具特点的手段,根据生产计划做出一个虚拟的模型,在这里主要讨论的是处于静止状态下所产生的问题。从目前取得的效果来看,研究的方向正在逐渐从小系统向大系统推进,从过去的单个层次转换到多个层次。

(2)最优控制方法这种方式应用理论上的控制方法对生产计划进行了研究,而在这里主要是针对其在动态情况下的问题进行探讨。

2.2基于人工智能方法

(1)专家系统方法专家系统是一种将知识作为基础的为计算机编程的系统,对于某个领域的繁复问题给出一个专家级别的解决方案。而建立一个专家系统的关键之处在于,要预先将相关专家的知识等组成一个资料库。其由专家系统知识库、数据库和推理机制构成。

(2)专家系统与数学模型相结合的方法常见的有以下几种类型:①根据不同情况建立不同的数学模型,而后由专家系统来进行求解;②将复杂的问题拆分为多个简单的子问题,而后针对建模的子问题进行建模,对于难以进行建模的问题则使用专家系统来进行处理。在整体系统中两者可以进行串行工作。

3煤矿安全生产中数学模型的优化建立

根据相关数据资料来进行模拟,而后再使用系统分析来得出适合建立哪种数学模型。取几个具有明显特征的采矿点进行研究。在煤矿挖掘的过程中瓦斯体积分数每时每刻都在变化,可以通过通风量以及煤炭采集速度来保证矿中瓦斯体积分数处在一个安全的范围之内。假设矿井分为地面、地下一层与地下二层工作面,取地下一层两个矿井分别为矿井A、矿井B,地下二层分别为矿井C、矿井D.然后对其进行分析。

3.1建立简化模型

3.1.1模型构建表达工作面A瓦斯体积分数x·1=a1x1+b1u1-c1w1-d1w2(1)式中x1---A工作面瓦斯体积分数;u1---A工作面采煤进度;w1---A矿井所对应的空气流速;w2---相邻B工作面的空气流速;a1、b1、c1、d1---未知量系数。

很明显A工作面的通风量对自身瓦斯体积分数所产生的影响要显着大于B工作面的风量,从数学模型上反映出来就是要求c1>d1.同样的B工作面(x·2)和工作面A所在的位置很相似,也就应该具有与之接近的数学关系式

式中x2---B工作面瓦斯体积分数;

u2---B工作面采煤进度;

w1---B矿井所对应的空气流速;

w2---相邻A工作面的空气流速;

a2、b2、c2、d2---未知量系数。

CD工作面(x·3、x·4)都位于B2层的位置,其工作面瓦斯体积分数不只受到自身开采进度情况的影响,还受到上层AB通风口开阔度的影响。在这里,C、D工作面瓦斯体积分数就应该和各个通风口的通风量有着密不可分的联系;于是C、D工作面瓦斯体积分数可以表示为【3】

式中x3、x4---C、D工作面的瓦斯体积分数;

e1、e2---A、B工作面的瓦斯体积分数;

a3、b3、c3、d3---未知量系数:

f1、f2---A、B工作面的瓦斯绝对涌出量。

3.1.2系统简化模型的辨识这个简化模型其实就是对于参数的最为初步的求解,也就是在一段时间内的实际测量所得数据作为流通量,对上面方程组进行求解操作。而后得到数学模型,将实际数据和预测数据进行多次较量,再加入相关人员的长期经验(经验公式)。修正之后的模型依旧使用上述的方法来进行求解,因为A、B工作面基本不会受C、D工作面的影响。

3.2模型的转型及其离散化

因为这个项目是一个矿井安全模拟系统,要对数学模型进行离散型研究,这是使用随机数字进行试数求解的关键步骤。离散化之后的模型为【1】

在使用原始数据来对数学模型进行辨识的过程中,ui表示开采进度,以t/d为单位,相关风速单位是m/s,k为工作面固定系数,h为4个工作面平均深度。为了便于将该系统转化为计算机语言,把开采进度ui从初始的0~1000t/d范围,转变为0~1,那么在数字化采煤中进度单位1即表示1000t/d,如果ui=0.5就表示每日产煤量500t.诸如此类,工作面空气流通速度wi的原始取值范围是0~4m/s,对其进行数字化,其新数值依旧是0~1,也就表示这wi取1时表示风速为4m/s,若0.5表示通风口的开通程度是0.5,也就是通风口打开一半(2m/s),wi如果取1则表示通风口开到最大。

依照上述分析来进行数字化转换,数据都会产生变化,经过计算之后可以得到新的参数数据,在计算的过程之中使用0~1的数据是为了方便和计算机语言的转换,在进行仿真录入时在0~1之间的一个有效数字就会方便很多。开采进度ui的取值范围0~1表示的是每日产煤数量区间是0~1000t,而风速wi取值0~1所表示的是风速取值在0~4m/s这个区间之内。

3.3模型的应用效果及降低瓦斯体积分数的措施

以上对煤矿生产中的常见问题进行了相关分析,发现伴随着时间的不断增长瓦斯涌体积分数等都会逐渐衰减,一段时间后就会变得微乎其微,这就表明这类资料存在着一个衰减周期,经过长期观测发现衰减周期T≈18h.而后,又研究了会对瓦斯涌出量产生影响的其他因素,发现在使用炮采这种方式时瓦斯体积分数会以几何数字的速度衰减,使用割煤手段进行采矿时瓦斯会大量涌出,其余工艺在采煤时并不会导致瓦斯体积分数产生剧烈波动。瓦斯的涌出量伴随着挖掘进度而提升,近乎于成正比,而又和通风量成反比关系。因为新矿的瓦斯体积分数比较大,所以要及时将煤运出,尽量缩短在煤矿中滞留的时间,从而减小瓦斯涌出总量。

综上所述,降低工作面瓦斯体积分数常用手段有以下几种:①将采得的煤快速运出,使其在井中停留的时间最短;②增大工作面的通风量;③控制采煤进度,同时也可以控制瓦斯的涌出量。

4结语

应用数学建模的手段对矿井在采矿过程中涌出的瓦斯体积分数进行了模拟及预测,为精确预测矿井瓦斯体积分数提供了一个新的思路,对煤矿安全高效生产提供了帮助,有着重要的现实意义。

参考文献:

[1]陈荣强,姚建辉,孟祥龙.基于芯片控制的煤矿数控液压站的设计与仿真[J].科技通报,2012,28(8):103-106.

[2]陈红,刘静,龙如银.基于行为安全的煤矿安全管理制度有效性分析[J].辽宁工程技术大学学报:自然科学版,2009,28(5):813-816.

[3]李莉娜,胡新颜,刘春峰.煤矿电网谐波分析与治理研究[J].煤矿机械,2011,32(6):235-237.

极限思想了,求最大最小值方面的问题;构造函数的思想,解决不等式方面的问题;...........

引言

一直以来,数学都被公认为是锻炼学生逻辑思考能力、分析问题能力的一门工具性极强的学科,因此,教师在高等数学的教学过程中要尤其注重对学生数学应用能力的培养,发挥数学的实用性价值。目前,国内不少高校都已将高等数学学科作为新生第一学年的基础必修课程,其目的不仅仅是为了丰富学生的专业课程学习,更重要的是培养学生的逻辑思考能力,锻炼他们独立思考的能力,学会用数学去解决更多的实际应用问题。因此大多数高校都以培养基础知识扎实,实践应用能力强的专业化人才为高等数学的教学目标。不少专家学者在关于数学应用能力各方面的分析报告中指出:阅读与建模能力、近似计算与估算能力、检验、讨论与评价能力等是影响数学能力形成的主要因素要,所以想真正实现提升学生的数学应用能力,有必要从以上各个要素上进行逐一突破。高等数学教师在平时的课程教学过程中可以根据以上影响学生数学应用能力的主要因素,结合自身的教学经验,辅以计算机网络等先进的多媒体教学技术,将数学与实际生产活动紧密联系在一起,有针对性地增强大学生的高等数学应用能力。

1 高校学生数学应用能力培养现状分析

受根深蒂固的传统教学观念影响,目前大多数的高校数学教师在高等数学的教学过程中仍然以理论性与严谨性为主,而对于应用型教学的重视程度却不够,具体体现在学分制形式的考试制度以及课时安排等方面。目前高校大多采取学分制的考试制度,即达到合格分数线便可取得学分,学生只要获取到足够的学分便可顺利毕业。在这种情况下,学生很容易对高数的学习产生懈怠心理,认为只要及格就够了,不重视高数的学习。此外,学校在制订人才培养计划时,往往将所有的基础必修课程与专业选修课程大多集中安排在第一、第二学年,以便后期安排学生的实践实习活动,加上高数对其他学科的学习奠定基础的重要性,学校往往将高数课程安排在第一学年,也是课程最多的一学年,这就导致高数课程的教学课时被安排得很紧凑,学生学习高数内容的时间有限,教师要在规定时间内讲完所有考试需要用到的知识点,并没有太多时间去培养学生的应用能力。

从教师自身角度而言,在如今的考试制度下,不少高等数学教师在教学过程中过于强调对计算能力、逻辑分析能力等内容的讲解,导致学生对高等数学知识内容体系的掌握变得片面化,弱化了学生的数学应用能力。此外,受教师教学方式的影响,学生在学习或者解题时也往往依赖技巧或大量背诵习题答案等方式来满足考试需求,并不能透过问题表象深入了解问题本质。此外,不少教师自身就不具备较强的数学应用能力,这也就制约了他们培养学生数学应用能力的水平,所以教师有必要先提高自身素质,进而带动学生数学实践应用能力的培养。从教材角度来看,如今大多高校使用的高等数学教材的内容大多都是以理论知识的推导为主,实际应用例题很少,不利于培养学生的应用能力,也不利于高校高等数学教学活动的长期开展。学生长期处于这样的教材环境中,很容易就丧失对数学应用能力的学习兴趣。

从学生角度而言,数学建模在培养学生数学应用能力的过程中起着至关重要的作用,学生在解决问题时,首先需要做的便是将问题进行简化抽象,使其变为我们熟知的数学模型,然而在实际教学过程中,很多学生的的动手能力欠缺,无法建立正确的教学模型,更无法提高自己的数学应用能力,进而丧失对数学应用性的探索求知欲。

2 加强学生数学应用能力培养的有效对策

2.1 加强教学内容改革

高校要想提高大学生的数学应用能力,第一步是改进现有的教学内容,从教材内容到教师的课堂教学内容都需要进行改进。在实践教学活动中,应注重更新高校数学课程的体系与内容,与实际生产活动紧密贴合。各校在编选教材时,要具体结合本校各专业的实际教学需求,以解决教学实际问题为主要目的,重点突出这些问题的实践性、趣味性及广泛性等特点。在改革高等数学的教学内容时可以适当借鉴综合课程的教学方式,例如,在讲解概念时,可以具体根据学生的专业特点,配合以适当的习题与例题帮助学生更好地掌握基本概念要点;在设置互动问题时,可选择一些开放性的话题,充分发挥学生的主观能动性,培养他们自主探究的能力;根据学生的实际需求或学习情况布置课后作业,让学生尝试着撰写数学应用小论文,引导他们在小论文中加入实际问题应用分析,可以适当借助教材中的案例,循序渐进地培养学生的创新能力与数学应用能力。

2.2 开展数学建模活动

培养学生数学应用能力是个漫长细致的过程,一方面,要让学生熟练了解高等数学的概念,并对其发展过程有所了解,从中探索出高数的思想与规律,经过经过一段时间的氛围熏陶,学生会逐渐形成数学应用的意识;另一方面,学校应开展必要的实践活动来加强学生数学技能的训练,例如数学建模活动。数学建模活动能够很好地锻炼学生的思考与语言组织能力,培养学生利用所学高数知识对复杂具体的问题进行简化抽象的'能力。高校通过开展数学建模比赛活动等形式,宣传并鼓励学生积极参与其中,既能让学生充分体验比赛的乐趣,又能有效提升他们的数学思维能力与应用能力。

2.3 结合现代化多媒体技术丰富教学手段

随着科学技术日异月新的发展,多媒体技术已在各大高校全面普及应用。数学教师应充分利用现代化的多媒体技术来辅助高等数学的课堂教学。由于高数相对其他专业课程而言是一门较为抽象枯燥的学科,学生往往缺乏学习高数的兴趣,教师在传统教学课堂中的教学效果并不是很理想。利用多媒体教学手段,教师可以将教材中抽象的思维与形象直观的内容结合在一起,帮助学生更好地消化理解一些抽象的数学知识。例如,在“不定积分”、“曲面积分”等重难点章节中,教师可以借助多媒体技术将复杂冗长的定义与概念简化,以图解、网格等直观的方式呈现在学生面前,使学生对各要素之间的关系一目了然。在这个过程中,既激发了学生的学习兴趣,帮助他们更加轻松地掌握理论知识,也提高了教师的课堂教学效率,减轻了教师的教学负担,实现资源共享与利用。

2.4 教学内容生活化和应用化

教师在培养学生数学应用能力时,应将教学重点放在回归生活实践,实现理论知识与实际生活的有机结合。就目前教材而言,高等数学的教学内容更侧重于数学类的问题,相关案例缺乏针对性,这就增加了学生学习高数的难度,削弱了学生的学习积极性,不利于培养学生的数学应用能力。因此,高数教师在课堂教学过程中,可以适当引入一些生活案例,弥补教材不足,同时也丰富了自己的教学内容,激发学生的学习兴趣。需要注意的是,面对不同专业的学生时,教师应采用不同的案例以满足学生的专业需求。例如在面对汽车学院学生时,教师可以讲解汽车刹车类的高数题目,对于化工学院的学生,则可以采用化学反应速度的模型案例,要让学生感觉到数学对他们专业学科的实际应用价值,并将其充分应用于专业知识的学习当中。

3 结束语

总的来说,目前我国高等数学教学培养学生应用能力现状中仍存在着诸多问题,制约了学生应用能力的发展。因此,高校应根据影响学生数学能力形成的各方面要素全方位地培养学生的应用能力,具体途径包括改革教学内容、创新教学方法等等。利用数学建模活动来激发学生的数学应用意识,锻炼他们的实践操作能力。教师在教学过程中,适当借助多媒体教学手段来丰富自己的课堂内容,促进学生对知识的理解与吸收,提高课堂教学效率,实现资源的共享与利用。此外,教师在培养学生应用能力时,应尽量结合实际生产活动,使其应用化与生活化,实现高等数学的最终教学目的。

1、总的来看就是研究函数图像,比方说用一阶导数研究增减性,用二阶导数研究凹凸性,了解函数的图形,求出极最值。很多实际的优化问题,不等式的证明都是通过建模或者构造定义了一个函数,研究函数的极最值就是解了。2、还有就是用定积分可以计算很多平面围成图形的面积,很多数列的求和也可以转化为定积分问题。3、在几何上的应用就是求图形的斜率,比方说在圆锥曲线方程中求圆锥曲线的斜率可以看做隐函数求导。

在生活中学数学论文

对我来说什么都可以变成数学。”数学家笛卡儿曾这样说过。“宇宙之大,粒子之微,火箭之速,化工之巧,地球之变,日用之繁,无处不用数学。”我国家喻户晓的数学家华罗庚也曾下过这样的结论。的确,正如两位前辈所说,数学与我们的生活息息相关,数学的脚步无处不在。 2006年已经接近尾声了,迎面而来的是新的一年——2007年。行走在繁华的大街上,随处可见商家打出的“满400送400”,“满300送300”的促销招牌。“这真实惠!”消费者们蜂拥而至,商场里人山人海,抢购成风。此情此景,真让人以为回到了物资短缺的年代。实际上商家心里早打好了如意算盘。俗话说:只有买亏,没有卖亏,“满400送400元券”只是商家的一种促销手段,其中暗藏着数学问题,暗藏着商业机密,暗藏着许多玄机。 去年,我们一家三口,也在新年之际在商场里“血拼”,当时是满400送400元券。我们先用980元买了一件苹果牌的皮夹克给爸爸,送来了800元购物券。我们并没有过分浪费,花了300元券买了一件298元藏青色的李宁牌棉袄,又用剩下的500元券中的488买了一件太子龙男装(由于是购物券,不设找零)。到底便宜了多少?298+488+980=1766(元)——这是原来不打折时需要花的钱。980/1776,所打的折扣大约是五五折。 我的姑姑和姑夫从前也做过服装生意,我对服装的进货成本与销售价的关系也有些了解。服装的进价一般只占建议零售价的20%~30%。随着竞争的加剧和商场促销力度越来越大,为了保持利润,商家或厂家还不断地把衣服的建议零售价标高。就如前几天在电视中看见的一位消费者所说,某一品牌同一款式的一条尼料的裤子,三年前建议零售价还只是299元,今年标价变成了999元。这么一算,进价大概只有商场里售价的10%~20%。就算打了五五折,商家还稳赚三至五成的毛利。 广告,广告,便是广而告之。许多人一窝蜂似的赶来抢购、血拼,商场的人流量多了,商品销售量也快速增长。就按人流量是平时的三倍算,这里又出现了一个数学问题。假设平时人流量少时,一件商品按8折销售。8折减去进价2折,标价部分的6成就成了毛利。虽然现在“满400送400元券”时同一件商品可能只赚三至五成,但销量起码是平时的三倍以上。就按三成毛利和三倍销量来计算,3×3=9,与平时的6成毛利相比,一天能多赚50%。虽说这样卖每件单位毛利率有所下降,毛利额却因销售量的增加而增长,更因大量销售而加快了资金周转,带来额外的收益。 商品标价和促销中有数学,购物消费中有数学,装修房子有数学,织毛衣中有数学……总而言之,数学在现实生活中无处不在!

数学在我们的生活中可以说是无处不在,到超市买东西付钱时,测量某东西的面积时,制作平行四边形、直角形、三角形等各种形状的物品时……都是数学知识在生活中的直接运用。前几天我们家就发生了一件运用数学知识解决生活问题的事情。那天放学回家,我往小椅子上一坐,只听“嘎吱”一声,吓得我赶忙跳了起来。哈,原来是椅子的一条腿松了。“我们来修椅子怎么样”,我一时心血来潮地对爸爸妈妈说。爸爸妈妈挺支持地说“行啊”。于是全家人便开始忙碌起来,找工具的找工具,扶椅子的扶椅子,钉钉子的钉钉子。一阵“噼噼啪啪”声后,几根大钉子钉进了那条松了的椅子腿上,“嘿,总算钉好了”,我拍拍手,满意地可往上一坐。“嘎吱,嘎吱”,咦,怎么还是不对劲啊,怎么办呢?突然,我想起数学老师讲过的一句话:三角形能对物体起到稳定作用。对啊,我刚才怎么没想到呢?我马上找来了一块小木头,并根据小椅子的四条腿与椅面形成的角度,将其切削成了4块同样大小的三角形小木头,后把三角形木头分别补在椅腿与椅面的空档处,用钉子钉紧。你别说,这一下椅子坐上去可是稳稳当当的了。嘿,数字可真奇妙。看来以后我一定要更加努力地学好数学,并将数学运用到生活的一点一滴当中,去分析、解决生活中遇到的实际问题,更好地适应社会的发展和需要。让生活变得更加有意义。

切西瓜炎热的夏天,西瓜便成了一种解渴的水果.这天小明的妈妈买了一个大西瓜回家.她准备考一考小明.她问小明:“怎么样切西瓜切出9片只用4刀?”这个问题难倒了小明,他拿出一个张纸一个铅笔,画呀画,怎么也不知道怎么切.他实在想不出方法,便去问妈妈答案是什么?妈妈笑了笑说:“用井字切法呀!”说完用刀切西瓜给小明做了一个示范。 小明明白了,拿着一片大西瓜津津有味的吃了起来。这时妈妈又问:“用4刀切8片呢?”小明动了动脑筋,自豪地说用米字切法.妈妈夸他是个好学生。 只用动动脑筋,世界上没有什么事可以难住你的。

数学源于生活,又广泛用于生活。在实际生活中运用所学数学知识,处理实际问题是中学生的数学素养之一。新课程标准强调数学教学要“从学生已有的生活经验出发”,“使学生获得对数学知识的理解”。因此,在数学教学中,如何结合学生的生活实际,使学生“领悟”数学知识源于生活,又服务于生活,培养学生用数学眼光去观察生活,运用数学知识解决实际问题的素养,是每位数学教师重视的问题。1挖掘教材中的生活资源。例如,在低年级的教学中,教师可以提出这样的问题:你今年几岁啦?多高呀?身体有多重?比一比你和你的同桌谁重?……这些都是小学生经常遇到的问题,而要准确地说出结果,就需要我们量一量、称一称、算一算,这些都离不开数学。再如,像水电费收取、储蓄利息的计算、日常购物等生活中常用的各种知识均发生在身边,我们买东西、做衣服、外出旅游,也离不开数学。2指导学生观察生活中的数学。让学生观察生活中的数学,既是积累数学知识,更是培养学生学习数学兴趣的最佳途径。如在长正方形认识时,从生活中观察哪些物体的表面是长方形的,用实物的表面在黑板上画出一个长方形。学生善于发现并研究生活中的数学,本身就是最好的学习方法。学生在研究中不断思考,不断尝试,并不断地体验成功。如布置学生用硬纸板做一个长方体模型,学生要思考观察什么物体的形状是长方体,长方体有什么特征,怎样做才美观大方。第二天学生带着自己制作的长方体模型到课堂时,每个学生根据已有体验与同学交流,各抒己见,这样的课堂能不充实、活跃吗?总之,数学教学让学生的生活经验走进数学课堂,为学生提供了亲身体验和动手操作的机会,指导学生更好的学习数学。在这方面,我受益良多,通过上学期的教学实践活动,我们班的学生学习数学的兴趣非常浓厚,改变了以往数学学习的枯燥乏味,学生在思想上有了从“要我学”-----到“我要学和我喜欢学”质的飞跃,学生变的喜欢学习数学。我的教学工作也变很顺利,学生中没有了见了数学就头疼的“老大难”,工作效率有了很大的提高,学生的学习成绩有明显的进步。新《课标》也给我们明确提出:“数学教学要紧密联系学生的生活实际,从学生的生活经验和已有的知识出发,创设生动有趣的情境,引导学生开展观察、操作、猜想、推理、交流等活动。使学生通过数学活动,掌握基本的数学知识和技能,初步学会从数学角度去观察事物,思考问题。激发对学习数学的兴趣,以及学好数学的愿望,树立学好数学的自信心。

中学生数学报数学周刊

初中数学周报北师大版怎八下很好。全新正版八年级下册数学报纸,北师大版,完整连续24期报纸,含章节期中期末测试题,含期末直通车,参考答案。《数学周报》是中国教育学会中学数学教学专业委员会会报,于2004年7月正式创刊,由中国教育学会中学数学教学专业委员会和辽宁北方教育报刊出版有限公司共同主办。2015年《数学周报》获得中国百强报刊。《数学周报》邀请全国著名教研员、教师撰写同步辅导文章,同时刊登有代表性的名校试卷,中高考命题专家编制的模拟试卷,使广大师生共享优质教学资源。

∠AOB为100度;当∠DOE=m°时,∠AOB=2m°

没图啊,把图发上来

数学建模优秀论文在哪里看

当需要从定量的角度分析和研究一个实际问题时,人们就要在深入调查研究、了解对象信息、作出简化假设、分析内在规律等工作的基础上,用数学的符号和语言,把它表述为数学式子,也就是数学模型,然后用通过计算得到的模型结果来解释实际问题,并接受实际的检验。这个建立数学模型的全过程就称为数学建模。目录背景数学数学建模数学建模应用数学建模的意义数学建模应用数学模型过程模型准备模型假设模型建立模型求解模型分析模型检验模型应用起源进入西方国家大学在中国大学生数学建模竞赛全国大学生数学建模竞赛全国大学生数学建模竞赛章程(2008年)第四届全国大学生数学建模竞赛国际大学生数学建模竞赛数学建模资料竞赛参考书国内教材、丛书国外参考书(中译本)专业性参考书数学建模题目两项题四项题数学建模相关数学建模的意义数学建模经验和体会最新进展数学建模应当掌握的十类算法背景 数学 数学建模 数学建模应用数学建模的意义 数学建模 应用数学模型过程 模型准备 模型假设 模型建立 模型求解 模型分析 模型检验 模型应用起源 进入西方国家大学 在中国大学生数学建模竞赛 全国大学生数学建模竞赛 全国大学生数学建模竞赛章程(2008年) 第四届全国大学生数学建模竞赛 国际大学生数学建模竞赛数学建模资料 竞赛参考书 国内教材、丛书 国外参考书(中译本) 专业性参考书数学建模题目 两项题 四项题数学建模相关 数学建模的意义 数学建模经验和体会最新进展数学建模应当掌握的十类算法展开 编辑本段背景数学近半个多世纪以来,随着计算机技术的迅速发展,数学的应用不仅在工程技术、自然科学等领域发挥着越来越重要的作用,而且以空前的广度和深度向经济、金融、生物、医学、环境、地质、人口、交通等新的领域渗透,所谓数学技术已经成为当代高新技术的重要组成部分。数学建模数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。 不论是用数学方法在科技和生产领域解决哪类实际问题,还是与其它学科相结合形成交叉学科,首要的和关键的一步是建立研究对象的数学模型,并加以计算求解。数学建模和计算机技术在知识经济时代的作用可谓是如虎添翼。数学建模应用数学是研究现实世界数量关系和空间形式的科学,在它产生和发展的历史长河中,一直是和各种各样的应用问题紧密相关的。数学的特点不仅在于概念的抽象性、逻辑的严密性,结论的明确性和体系的完整性,而且在于它应用的广泛性,自从20世纪以来,随着科学技术的迅速发展和计算机的日益普及,人们对各种问题的要求越来越精确,使得数学的应用越来越广泛和深入,特别是在21世纪这个知识经济时代,数学科学的地位会发生巨大的变化,它正在从国家经济和科技的后备走到了前沿。经济发展的全球化、计算机的迅猛发展,数理论与方法的不断扩充使得数学已经成为当代高科技的一个重要组成部分和思想库,数学已经成为一种能够普遍实施的技术。培养学生应用数学的意识和能力已经成为数学教学的一个重要方面。编辑本段数学建模的意义数学建模数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。应用数学模型应用数学去解决各类实际问题时,建立数学模型是十分关键的一步,同时也是十分困难的一步。建立教学模型的过程,是把错综复杂的实际问题简化、抽象为合理的数学结构的过程。要通过调查、收集数据资料,观察和研究实际对象的固有特征和内在规律,抓住问题的主要矛盾,建立起反映实际问题的数量关系,然后利用数学的理论和方法去分析和解决问题。这就需要深厚扎实的数学基础,敏锐的洞察力和想象力,对实际问题的浓厚兴趣和广博的知识面。数学建模是联系数学与实际问题的桥梁,是数学在各个领域广泛应用的媒介,是数学科学技术转化的主要途径,数学建模在科学技术发展中的重要作用越来越受到数学界和工程界的普遍重视,它已成为现代科技工作者必备的重要能力之。为了适应科学技术发展的需要和培养高质量、高层次科技人才,数学建模已经在大学教育中逐步开展,国内外越来越多的大学正在进行数学建模课程的教学和参加开放性的数学建模竞赛,将数学建模教学和竞赛作为高等院校的教学改革和培养高层次的科技人才的一个重要方面,现在许多院校正在将数学建模与教学改革相结合,努力探索更有效的数学建模教学法和培养面向21世纪的人才的新思路,与我国高校的其它数学类课程相比,数学建模具有难度大、涉及面广、形式灵活,对教师和学生要求高等特点,数学建模的教学本身是一个不断探索、不断创新、不断完善和提高的过程。为了改变过去以教师为中心、以课堂讲授为主、以知识传授为主的传统教学模式,数学建模课程指导思想是:以实验室为基础、以学生为中心、以问题为主线、以培养能力为目标来组织教学工作。通过教学使学生了解利用数学理论和方法去分析和解决问题的全过程,提高他们分析问题和解决问题的能力;提高他们学习数学的兴趣和应用数学的意识与能力,使他们在以后的工作中能经常性地想到用数学去解决问题,提高他们尽量利用计算机软件及当代高新科技成果的意识,能将数学、计算机有机地结合起来去解决实际问题。数学建模以学生为主,教师利用一些事先设计好问题启发,引导学生主动查阅文献资料和学习新知识,鼓励学生 积极开展讨论和辩论,培养学生主动探索,努力进取的学风,培养学生从事科研工作的初步能力,培养学生团结协作的精神、形成一个生动活泼的环境和气氛,教学过程的重点是创造一个环境去诱导学生的学习欲望、培养他们的自学能力,增强他们的数学素质和创新能力,提高他们的数举素质,强调的是获取新知识的能力,是解决问题的过程,而不是知识与结果。接受参加数学建模竞赛赛前培训的同学大都需要学习诸如数理统计、最优化、图论、微分方程、计算方法、神经网络、层次分析法、模糊数学,数学软件包的使用等等“短课程”(或讲座),用的学时不多,多数是启发性的讲一些基本的概念和方法,主要是靠同学们自己去学,充分调动同学们的积极性,充分发挥同学们的潜能。培训中广泛地采用的讨论班方式,同学自己报告、讨论、辩论,教师主要起质疑、答疑、辅导的作用,竞赛中一定要使用计算机及相应的软件,如Spss,Lingo,Mapple,Mathematica,Matlab甚至排版软件等。

数学建模参考文献可以在谷歌浏览器,搜索谷歌学术进行查找。如果用不了谷歌,可以用谷歌学术镜像。

文献查找原则:

文献在精不在多。

参考文献也是论文评分依据的一项。参考文献并不是直接加载论文末尾就行了,而是要在文章中标出具体的引用位置。

评委在阅读论文时,会对比参考文献和论文中具体引用的部分,看看你们是如何应用参考文献的。

如果评委点开了参考文献,但并没有发现这个公式,或者其它队伍和你们用了同样的公式或者方法,但他们的引用是正确的,那么会严重影响到你们的论文评分。因此,没有必要为了数量而去凑参考文献。

注意文献的相关性和时效性。

从论文题目中的方法快速判断出引用文献的相关性,比如你们做了一道数据处理的题目,那么参考文献里出现“数据挖掘”、“离群点”、“矩估计”等词就是合理的。

时间越近代表使用的方法越新,建议同学们尽量引用近些年的论文,当然,某些经典方法只能引用年代久远的论文,这一点不用担心,这些经典方法的论文很出名,评委老师肯定知道。

避坑。

知网和Baidu:建议不要用,检索、阅读等功能不说,单从论文质量上看,知网上面的论文真是一言难尽,你甚至可以在上面找到只有一两页的论文!

百度检索的文章很多都是中文材料,而做美赛大家要尽量引用英文的参考文献(注意:如果不得不引用中文参考文献,务必翻译成英文)。

其次,说不定百度检索出的论文链接到了知网。

建议使用:谷歌学术,谷歌学术不仅页面简洁,而且具有非常好用的筛选功能,可以帮助我们快速检索到想要的文章。

查中国知网上的论文,可以输入关键词、篇名、检索,也可以根据检索框左边的主题条检索,但,知网中的外文文献基本都是收录的摘要,或者是高费用下载的,建议查外文文献,只需在知网查到外文文献被收录在哪个数据库,然后通过seek68文献馆进入该外文数据库,下载你需要的外文文献。如果下载中文文献,更简单,通过seek68文献馆直接进入知网下载即可。

中国知网知识发现网络平台—面向海内外读者提供中国学术文献、外文文献、学位论文、报纸、会议、年鉴、工具书等各类资源统一检索、统一导航、在线阅读和下载服务。

相关百科

热门百科

首页
发表服务