首页

> 学术发表知识库

首页 学术发表知识库 问题

电动机检测类论文

发布时间:

电动机检测类论文

异步电动机的电气装置保护【论文摘要】 介绍了异步电动机的保护与控制关系,从电动机损坏的主要原因入手,介绍了电动机保护的两大装置类型(电流检测、温度检测) 以及如何使电动机和电气保护装置的协调配合以达到电气装置和机械设备可靠正常运转。关键字:异步电动机 电气装置 保护异步电动机的保护是个复杂的问题。在实际使用中,应按照电动机的容量、型式、控制方式和配电设备等不同来选择相适应的保护装置及起动设备。电动机的保护与控制关系电动机的保护往往与其控制方式有一定关系,即保护中有控制,控制中有保护。如电动机直接起动时,往往产生4—7倍额定电流的起动电流。若由接触器或断路器来控制,则电器的触头应能承受起动电流的接通和分断考核,即使是可频繁操作的接触器也会引起触头磨损加剧,以致损坏电器;对塑料外壳式断路器,即使是不频繁操作,也很难达到要求。因此,使用中往往与起动器串联在主回路中一起使用,此时由起动器中的接触器来承载接通起动电流的考核,而其他电器只承载通常运转中出现的电动机过载电流分断的考核,至于保护功能,由配套的保护装置来完成。此外,对电动机的控制还可以采用无触点方式,即采用软起动控制系统。电动机主回路由晶闸管来接通和分断。有的为了避免在这些元件上的持续损耗,正常运行中采用真空接触器承载主回路(并联在晶闸管上)负载。这种控制有程控或非程控;近控或远控;慢速起动或快速起动等多种方式。另外,依赖电子线路,很容易做到如电子式继电器那样的各种保护功能。电动机保护装置电动机的损坏主要是绕组过热或绝缘性能降低引起的,而绕组的过热往往是流经绕组的电流过大引起的。对电动机的保护主要有电流、温度检测两大类型。下面结合产品作些介绍。1.电流检测型保护装置(1)热继电器利用负载电流流过经校准的电阻元件,使双金属热元件加热后产生弯曲,从而使继电器的触点在电动机绕组烧坏以前动作。其动作特性与电动机绕组的允许过载特性接近。热继电器虽则动作时间准确性一般,但对电动机可以实现有效的过载保护。随着结构设计的不断完善和改进,除有温度补偿外,它还具有断相保护及负载不平衡保护功能等。例如从ABB公司引进的T系列双金属片式热过载继电器;从西门子引进的3UA5、3UA6系列双金属片式热过载继电器;JR20型、JR36型热过载继电器,其中Jn36型为二次开发产品,可取代淘汰产品JRl6型。(2)带有热—磁脱扣的电动机保护用断路器热式作过载保护用,结构及动作原理同热继电器,其双金属热元件弯曲后有的直接顶脱扣装置,有的使触点接通,最后导致断路器断开。电磁铁的整定值较高,仅在短路时动作。其结构简单、体积小、价格低、动作特性符合现行标准、保护可靠,故日前仍被大量采用.特别是小容量断路器尤为显著。例如从ABB公司引进的M611型电动机保护用断路器,国产DWl5低压万能断路器(200—630A)、S系列塑壳断路器(100、200、400入)。(3)电子式过电流继电器通过内部各相电流互感器检测故障电流信号,经电子电路处理后执行相应的动作。电子电路变化灵活,动作功能多样,能广泛满足各种类型的电动机的保护。其特点是看

电动机故障诊断技术的应用分析论文

无论是在学习还是在工作中,大家一定都接触过论文吧,论文一般由题名、作者、摘要、关键词、正文、参考文献和附录等部分组成。相信写论文是一个让许多人都头痛的问题,下面是我收集整理的电动机故障诊断技术的应用分析论文,欢迎阅读与收藏。

摘要:

当前,大型机械设备中安装电动机是非常普遍的,是辅助机械设备生产功能的一种手段,然而电动机在长期不间断工作,在电能转化为机械能的过程中造成温度持续上升、电动机性能降低、工作效率低下、电动机出现故障的情况,因此故障诊断技术的快速发展是延长电动机使用寿命的关键。本文立足于现实角度,针对现阶段电动机容易出现故障的类型,维修管理中应用的故障诊断技术的如何应用进行分析。希望通过本次研究,来探讨故障诊断技术在电动机维修管理上的应用情况,从而对相关专业知识有更深层次的理解。

关键词:

故障诊断技术,电动机,维修管理,技术

引言:

电动机的出现可以追溯到上个世纪初,随着二次工业革命的快速发展,电动机发挥了巨大的作用。随着我国科学技术、生产技术的突飞猛进,电动机在制造业、工业、农业中发挥了巨大的作用。然而长时间通过工程机械高频率使用电动机,很容易造成电动机故障。因此,故障诊断技术也顺势而生,当前电动机的故障主要包括四种类型,然而该如何进行故障诊断,从而对症下药,是当前专家学者与技术人员共同重视的问题,也是需要持续研究的课题。

1、电动机出现的故障类型分析

1.1转子故障

转子故障主要是因为电动机在长期运行的过程中,由于转子长期处于机械制动的高频率里,所以很容易存在转子故障。电动机转子也包括两个板块:定位轴承、非定位轴承。定位轴承主要是承担转子在高速运转过程中承担负荷力度。在电动机运行的过程中为了避免其他外部作用力造成的损害电动机的情况,还需要安装非定位轴承。

因此,定位轴承与非定位轴承都可能因为电动机遭受了各种作用力造成损害或者损毁的情况,最终导致电动机出现转子故障,这种故障出现是电动机的常见故障之一,也是电动机无法持续运转的关键因素,最终形成断条。

1.2定子故障

定子故障的产生很大程度是因为电动机的外部绝缘体受到了损害导致的;还有一种可能是由于电动机在使用的过程中出现了匝间短路故障。一旦出现了匝间短路则匝间绝缘需要承担暂态过电压。出现这种情况很大程度上是由于电动机长期处于较差环境中,并且持进行高速作业,造成的短路故障、绝缘变形、绝缘损坏的情况下出现的定子故障。

定子故障的产生也是非常常见的,维修人员可以通过故障检修技术来探讨电动机的使用状况、预计电动机的未来使用寿命。定子故障的产生也说明电动机的各个零部件、线路的性能出现了问题。

1.3气隙偏心故障

气隙偏心故障的产生是由于电动机在组装过程中产生零部件、线路出现偏差。出现这种故障一般情况下是由于组装问题、组装人员专业素质导致的。

出现气隙偏心故障的另一原因就是电动机长期作业,在不断震动和高频度使用的过程中造成了零部件松动、轴承故障,或者是因为定子铁芯内径的椭圆度不符合电动机的长期作业指标,从而导致的气隙偏心故障。一旦出现这种故障,很容易产生连锁效应,导致电动机无法正常运作,最终导致定子、转子之间出现了间隙。当电动机无法正常运转时,自然对工程机械的使用造成了困难。

1.4轴承故障

轴承故障的产生原因与气隙偏心故障有相似之处,也是由于零部件长期作业的过程中出现了松动、间隙之后产生的问题。由于轴承承担着电动机运转的多方力量,所以在实际运作的过程中很容易出现温度升高的情况。当温度不断升高,则轴承的径杆因热量影响,产生胀力,从而使轴承松动。电动机的轴承受到转子重力的影响,也必然会导致轴承径杆的表面因为长时间的旋转导致了磨损的情况。再加上轴承圈和轴表面在长期的旋转中呈现机械摩擦,最终导致电动机内部出现热量,最终对轴承造成破坏,导致电动机无法正常、持续的运转。

2、电动机故障诊断技术的应用分析

2.1神经网络诊断

神经网络诊断的方法是目前使用较多的一种诊断方法。神经网络诊断是模仿人类大脑神经元结构,将电动机内部作为大脑结构,从而建立起非线性动力学网络系统,最终由各个单元进行集成式扫描处理,高度并联。

通过互联网数学模拟的能力,进行电动机的故障诊断工作。神经网络诊断方法与传统的计算机诊断方法有所不同。只需要通过软件编制相应的程序,以软件编制任务为基础,高度实行诊断指令,感知与处理电动机内部各个零部件的参数、具体数据,并对比故障之前的.电动机各项零部件的参数,从而扫描出高故障的零部件样本。

通过这种方法,能够更强的感知到电动机内部故障,判断是定子故障还是转子故障,并判断什么区域的零部件出现了松动、磨损的情况。因此,可以看出神经网络诊断主要是将电动机内部各项参数提前掌握,最终实现运算、对比、扫描工作来确诊。

2.2专家系统诊断

专家系统故障诊断与神经网络诊断有相似之处,前者是依靠互联网数字技术,而专家系统诊断则是依靠了人工智能技术。该技术是综合了电动机故障检修相关专家的意见,并结合智能技术检测电动机各项参数,最终进行综合判断。

在使用专家系统诊断时,工程师需要根据自身知识素养来建立诊断模型,通过模型对比,逐一排查的方式,对电动机故障确诊。这种方法是目前较为新颖的检测技术,在建立模型、与专家系统诊断结合的过程中,能够对应解决故障,针对性延长电动机使用寿命,而且综合判断的准确率很高,在快速检测中实现全面排查工作,还能够对电动机有更加系统的诊断报告,帮助相关人员了解与判断电动机状态、未来预计使用寿命。

2.3信号处理诊断

信号处理诊断技术是针对电动机发生故障后发出信号、指令来判断故障情况。除了一些先进的电动机机器设备外,一些企业会在电动机的绝缘设备上安装诊断用信号处理装置,通过安装这种装置,能够完全对应信息处理要求。而维修人员、工程师则根据信号处理诊断技术,对电动机发出的信号时域、时频来进行分析(分析内容是信号的时域、频域、频率分量的变化、信号非平稳时的时变函数判断),从而对相关设备发出的故障进行计算、参数对比,信号处理方式。

2.4混合诊断方法

混合诊断方法也是常见的故障诊断技术,是结合以往的应急型故障诊断方法(该方法需要综合素质较高的工程师、检修工人来进行,结合仪器检测来综合判断电动机故障原因,但由于是肉眼检测和主观判断检测,所以准确率不高)的基础上,结合电动机维修管理工作,实施定期维护、管理工作,来进一步获取电动机内部定子、转子、各项零部件的数据参数,从而避免一旦出现故障会出现明显的数据误差,不利于判断重点损坏区域。当前,这种故障诊断技术随着互联网技术、数字技术的推进,也逐渐走向智能化,方便检修人员实时进行参数对比,方便预判电动机的状态,制定故障维修方案。

3、结束语

本文主要分析的是故障诊断技术在电动机维修管理中的应用,针对目前电动机故障类型进行系统分析与探讨,并针对故障诊断技术的分别具体应用进行详细的探讨,希望通过本文的分析,能够对相关专业知识有更深层次的了解。电动机是工程机械运行的重要组成部分,因此了解故障诊断技术的基础上,能够对相关专业研究有一定的引导作用。

参考文献

[1]刘迎春.故障诊断技术在煤矿机电设备维修中的运用探讨[J].现代工业经济和信息化,2019,9(02):111-113.

[2]王镇林.“电动机故障诊断”实训教学中任务驱动教学法的“微课”应用[J].科技创新导报,2018,15(31):144,146.

[3]孙慧影,林中鹏,刘银丽,李萌.基于随机游走蜂群算法优化的RBF神经网络电动机故障诊断研究[J].水电能源科学,2017,35(08):165-168.

检测机动车论文

汽车检测论文

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。下面是我为大家精心推荐的汽车检测技术论文,希望能够对您有所帮助。

国内汽车检测技术概况

[摘 要] 本文通过了解我国国内汽车检测技术的概念及其分类,介绍了我国一些先进前沿的汽车检测技术,阐述了我国汽车检测技术的发展概况,针对我国汽车检测技术中的不足之处,结合我国汽车检测技术的具体发展形势,提出了我国汽车检测技术的发展方向,这对我国汽车检测技术的发展具有一定的现实指导意义。

[关键词] 汽车检测;检测技术;国内现状;发展概况

1.汽车检测的概念

汽车检测是指为了确定汽车技术状况是否达到标准或工作能力是否正常而进行的检查和测量。汽车检测技术则是指在汽车检测这一过程中所有与之相关的检测硬件和检测软件的研发和使用技术。

2.汽车检测技术的分类

2.1 安全环保检测

安全环保检测主要是针对汽车的安全运行和环境保护方面的检测,这种检测又分为定期检测和不定期检测。该检测的目的是为了确定车辆是否具备符合要求的外观容貌以及良好的安全性能,同时对汽车的环境污染程度进行有效控制。在汽车不解体的情况下,对汽车建立安全监控体系,确保汽车能高效、安全和低污染的运行。

2.2 综合性能检测

综合性能检测是指对汽车的综合性能实行定期或者不定期的'检测。该检测的目的是为了确定汽车是否具有良好的动力性、可靠性、安全性、噪声污染性以及排气净化性。该检测主要针对汽车的故障及其原因或隐患部位实行质量监督和检测,从而建立汽车质量监控体系,来达到该检测技术的目的。

3.国内汽车检测技术的发展情况

3.1 国内汽车检测技术的发展历程

(1)20世纪60年代,我国汽车检测技术处于起步阶段。我国开始研究汽车检测技术开始于20世纪60年代,为了满足当时的汽车维修需要,我国交通部门研究和开发了发动机汽缸漏气量检测仪以及点火正时灯等一些基本的检测仪器。

(2)20世纪70年代,我国汽车检测技术进入发力发展阶段。随着我国汽车生产技术以及人们汽车使用率的飞速增长,我国交通部门开始进入大力发展汽车检测技术的阶段。汽车检测的仪器设备增多,检测项目增多,检测标准和规则也得到进一步的完善,建立了汽车性能综合检验台。

(3)20世纪80年代,我国汽车检测技术进入快速发展阶段。随着我国科学技术和国民经济的飞速发展,我国汽车制造业和交通运输业也得到了飞速发展。因此,对汽车检测技术和设备的需求也日益增涨。我国汽车检测技术因此进入其发展的蓬勃向上时期。

(4)20世纪90年代至今,我国汽车检测技术已经发展相对成熟。迈入90年代后,我国汽车检测技术从其设备的研制、开发以及生产都有了自身的一套运作体系。90年代是我国汽车检测技术的发展高潮时期。虽然目前我国的汽车检测技术与外国仍存在一定的差距,其发展的过程中也存在有一些问题和不足,但我国汽车检测技术也在不断的吸收借鉴完善自己,保证自身良好的发展态势,努力为其创造广阔的发展前景。

3.2 目前国内具有代表性的先进前沿的汽车检测技术

(1)虚拟仪器检测技术

虚拟仪器检测技术是指通过自由增减测试系统配置,利用系统配置单元器件,按照每一个项目测试的要求标准,可以直观和有效的得出监测结果,从而提高测试技术的效率。

(2)将GPS技术与车辆检测相结合

该技术主要是利用了能够接受卫星定位信号的GPS系统,将其与汽车检测技术系统相结合,从而达到快捷有效的检测过程。

(3)利用汽车四轮定位进行检测

四轮定位仪主要是依据车轮定位得到检测数据,它利用图像显示并记录汽车四轮的运作情况,与汽车检测数据结果分析相结合,从而达到检测目的。

4.国内汽车检测技术发展过程中存在的问题

4.1 国内汽车检测站的经营管理过程中存在行政干预问题

在我国,安全检测是由公安部门来建立管理的。因此我国的综合性能检测站都由交通部门直接建立并管理或者由地方企业建立但仍由交通部门管理。这种行政管理形式,往往造成了检测结果的不真实、检测过程的不规范或者检测项目不完善的情况,甚至是伪造一些监测数据。

4.2 我国汽车检测存在重复检测的问题

目前,我国有权对汽车进行检测的机构至少有三种,即安检站、机动车尾气排放检测站以及汽车综合性能检测站。这三个机构又分别归隶属于公安、环保、和交通管理部门。这些部门从各自的职能要求出发对车辆进行必要的检查和监测,容易造成车辆的重复检查,在加大汽车检测工作量的同时,给车主也带来不便。

4.3 检测技术有待进一步完善

目前,我国的进口汽车检测标准体系主要依赖于外国检测标准,因此针对我国汽车具体发展情况,我国的汽车检测技术有待进一步提高和完善。例如,我国目前的技术可以对车辆的正面、侧面、追尾等事故进行检测,但对侧面碰撞、追尾碰撞等事故却缺乏相关的检测标准。这也急需我国汽车检测技术的提高和完善。

4.4 我国汽车检测人员的整体专业能力和专业素质有待提高

一方面,我国的汽车检测人员的专业检测能力有待提高。一些检测人员本身缺乏基本的汽车知识,检测操作不规范,对检测结果的分析能力不够,不能很好的判断汽车是否达到检测标准。另一方面,我国汽车检测人员的自身素质不够,一些检测人员故意抬高检测收费标准,为了个人利益不顾集体利益,甚至为一些没有达到标准的车辆伪造数据。这些都是造成安全隐患的个人因素,也不利于我国检测技术的研发和推广。

5.解决国内汽车检测技术发展过程中的问题的有效措施

5.1 汽车检测技术基础实现规范化

在我国汽车检测技术的发展过程中,汽车检测的硬件技术一直以来都比汽车检测技术中的软件技术更受重视。这种想法往往会导致对一些基础性技术研究的忽略。因此,我国汽车检测技术的发展方向应该注重与硬件配套的软件检测技术的完善和提高。这方面主要做到三点:一,制定并完善汽车检测项目的限值标准和检测方法;二,完善汽车技术状况检测的评定细则,将全国各地的检测要求和具体操作技术进行统一和规范化;三,严格执行综合性能检测站对大型检测设备的认证规则,确保综合性能检测站有能力胜任并履行其检测职责。

5.2 汽车检测设备实现智能化

虽然目前我国的汽车检测技术以及检测设备的智能化与国外的检测存在一定的差距,但是我国汽车检测设备正积极学习并通过进口一些外国先进检测设备来提高并完善我国汽车检测设备的智能化。检测设备的智能化使检测设备具有专家检测和诊断系统以及智能化的功能,可以在较短时间较快较准确的对汽车状况进行检测,并诊断出汽车发生故障的部位以及故障原因,从而让维修人员能够迅速解除故障。节约了劳动成本,提高了劳动效率。

5.3 汽车检测管理实现网络化

随着计算机和网络技术的飞速发展,我国各个行业都在逐步实现其管理的网络化,汽车检测行业也不例外。目前,虽然我国的部分汽车综合性能检测站已经实现了计算机管理系统检测,但计算机监控系统并不完善,而且各个检测站之间采用的计算机检测方式也都一致。为了逐步实现我国汽车检测管理的一致性和有效性,我国汽车检测应该积极推进其管理的网络化。

6.总结

随着我国经济和社会的进步以及汽车工业的发展,我国汽车检测技术也必须不断的提高和完善。为了使汽车维修人员的工作越来越轻松,提高汽车检测结果准确性,我国汽车检测技术的发展越来越趋向于自动化、网络化和智能化。汽车检测技术的完善和提高有利于我国交通事业以及环保事业的发展,从而为我国经济和社会的发展提供良好的外在环境。

参考文献

[1] 初君浩;浅析汽车检测技术的发展[J];科技致富向导;2014(08)25.

[2] 王洪亮;汽车检测技术的若干问题的思考[J];无线互联科技;2013(12)15.

作者简介

张彦(1975-)女,汉族,山东菏泽人,助理工程师,大学学历,毕业于山东省委党校经济管理专业,研究方向为车辆检测、维修。

1、加强对防抱死性能的校验汽车产生侧滑、冲出路面等危险状况的原因是车轮在制动过程中发生抱死的现象,这个时候,车轮与路面的相对运动不再是滚动,而是滑动,路面对车轮的摩擦力变得很小,路面越滑,车轮越容易发生抱死。汽车制动时车轮发生抱死,就会产生以下不良后果:首先是方向失去控制,出现侧滑和甩尾的情况,甚至有可能翻车;其次是制动效率下降,制动距离延长;再次是轮胎由于过度磨损,会使轮胎形状不规则,甚至爆胎。而ABS防抱死制动技术就是为了防止上述恶果的发生,它具有以下几个优点:增加制动过程的稳定性,防止方向失控、侧滑和甩尾;提高制动效率,缩短刹车距离,当然松软的沙石路面要排除在外;减少轮胎的磨损,防止车辆爆胎。ABS防抱死制动系统的第一个优点是增加了汽车制动的稳定性,汽车制动时,每个车轮上的制动力是不同的,车轮抱死情况就会有差别,如果汽车的前轮抱死,驾驶员就不能控制车辆的行驶方向,只能“随波逐流”,这是非常危险的情况;如果汽车的后轮抱死,就会出现侧滑、甩尾的现象,甚至使车辆整个掉头、翻滚等严重事故。ABS防抱死制动系统的第二个优点是缩短制动距离。这是因为在同样紧急制动的情况下,ABS防抱死制动系统可以将汽车的滑移率控制在20%左右,即能够获得最大的纵向制动力。ABS防抱死制动系统的第三个优点是减小了轮胎的磨损状况,防止出现爆胎。事实上,车轮抱死会造成轮胎小平面磨损,轮胎表面的损耗会不均匀,使轮胎磨损增加,严重时还会出现爆胎,从而影响车辆的行车安全。因此,汽车装有ABS防抱死制动系统具有一定的经济效益和安全保障。2、检测部门强化检测的职能机动车制动性能的日常检验和校准是必不可少的环节,通过检验能够掌握机动车运行的参数和性能,及时找出其中的问题,进而采取防范措施,避免安全事故的发生,机动车的校验环节要注意以下几点:一是要检查制动设备的运行参数,例如制动设备检测工具所反映的刹车反应灵敏度等参数,如果机动车出现一些小的故障,设备的仪表会有所反应,数值会有明显的变化,通过这些数值就能判断机动车的制动器是否有问题的,进而可以采取进一步的检查措施。二是对各个机动车进行细致的检查,检查机动车是否存在异响、有没有泄露的情况、有没有出现破损等,尤其是传动设备、动力设备等对机动车非常重要的设备,一定要每天进行检验,每个机动车都要检查并做好检查记录,当发现机动车制动性能出现问题时,一定要通知驾驶人员,立即采取相应的解决措施,停止驾驶行为,安排专业人员进行维修。三是对每个机动车做好运行记录,虽然这项工作看起来比较繁琐,但是却具有实际意义,如果将每一个机动车的运行状况、有无故障、检修等内容全部记录在册,就能形成一套非常健全的检验机制,这样能够通过记录的数值和状态判断出机动车的运行规律,当某一次的数值出现较大的差异时,可以尽早的作出判断,对该机动车制动性能进行深入的检验,将故障隐患及时排除。四是开展状态监测,在某些情况下,当检查机动车制动器没有发现问题时,也并不能放松警惕,检测单位应当每季度或者每半年进行一次状态监测,状态监测的过程要用到一些先进的仪器,例如超声波测量仪等,通过这些设备能够发现人工监测不到的细小问题,监测的效率得到极大的提高,进而可以判定机动车的状态是否合规,并定位损坏的区域。2、驾驶人员要加强机动车制动器的维修保养机动车结构较为复杂,这也给维护和维修工作带来了极大的困难,但是,对机动车制动器进行维护和维修是一项比较简单的工作,驾驶人员能够自己完成,因此,驾驶员要引起足够的重视,认识到机动车制动器校验的重要性,驾驶员如果认为自身没有检验的能力,可以将检验的过程委托给专门的检测机构,实现专业化的管理。

发动机动力性检测论文

对于汽车来讲,发动机是核心部件,关系到汽车的整体性能,在汽车组成上非常关键。下面是我为大家精心推荐的汽车发动机的检测与维修技术论文,希望能够对您有所帮助。

汽车发动机的检测与维修

【摘要】对于汽车来讲,发动机是核心部件,关系到汽车的整体性能,在汽车组成上非常关键。为了保证汽车的正常行驶,我们要对汽车发动进行正常的维护和保养,在出现故障的时候要及时进行检测和维修。通过研究发现,在目前汽车发动机的检测与维修中,大部分故障主要表现为七个部分,分别为:曲柄连杆机构故障、配气机构故障、化油器式燃料供给系故障、电控燃油喷射系统故障、柴油机燃料供给系故障、润滑系故障、冷却系故障。这七个部分的故障属于发动机在运行过程中常见的故障,我们在汽车发动机的检测与维修中,要重视对这些故障的分析和判断,并制定详细的维修方案,保证汽车发动机故障得到妥善处理。

【关键词】汽车 发动机 检测 维修

1汽车发动机的整体结构分析

对于汽车发动机来讲,整体结构分为两个主要机构和五个子系统。其中两个机构主要是指曲柄连杆机构和配气机构,五个子系统主要是指燃料供给系统、点火系统、冷却系统、润滑系统、启动系统。

曲柄连杆机构不但是实现热能转换的核心,也是发动机的装配基础。曲柄连杆机构在做功行程时,将燃料燃烧以后产生的气体压力,经过活塞、连杆转变为曲轴旋转的转矩,然后,利用飞轮的惯性完成进气、压缩、排气3个辅助行程。曲柄连杆机构由气缸曲轴箱组、活塞连杆组和曲轴飞轮组3部分组成。

配气机构作用是根据发动机的工作顺序和各缸工作循环的要求,及时地开启和关闭进、排气门,使可燃混合气(汽油发动机)或新鲜空气(柴油发动机)进入气缸,并将废气排入大气。

汽油机燃料供给系统的作用在于根据发动机不同工作情况的需要,将纯净的空气和汽油配制成适当比例的可燃混合气,送入各个气缸进行燃烧后将所产生的废气排入大气中。柴油机燃料供给系的作用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

点火系统主要指在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内,能够按时在火花塞电极间产生电火花的全部设备。

冷却系统的功能在于将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。

润滑系统的功能是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦、减小摩擦阻力、减轻机件的磨损。并对零件表面进行清洗和冷却。

曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。

2对汽车发动机进行定期检测的必要性

由于汽车发动机在运行的时候处于高温高压状态,运行工况比较恶劣,在这种状态下长期运行之后,发动机的各个机构和系统,难免会有所损伤。因此出于保护发动机配件,延长发动机寿命的原因,我们必须对汽车发动机进行定期的检测,其必要性主要表现在以下几个方面:

2.1汽车发动机的整体结构决定了必须进行定期检测

由于汽车发动机的整体结构比较复杂,主要分为两大机构和五个子系统,在运行的过程中,这些机构是相互连接共同作用,任何一个机构或系统如果出现故障,都会引起发动机的瘫痪,造成发动机无法正常使用。因此,为了保证汽车发动机能够保持正常运行状态,就需要定期对发动机进行检测,用来检测其主要机构和系统是否存在故障和安全隐患。

2.2汽车发动机的运行条件决定了必须进行定期检测

在汽车发动机中,两大机构和五个子系统在运行的过程中,处于高温高压的状态之下,运行条件十分恶劣,对机构和配件的磨损也是比较大的。在这种状态之下,如果不对汽车发动机进行定期检修,则无法及时发现机构和配件的薄弱之处,将会诱发发动机运行故障,进而损伤发动机的整体寿命。所以,我们要采取定期检测的方式,对发动机进行检测和维修。

2.3汽车发动机的寿命需要决定了必须进行定期检测

汽车发动机在运行过程当中,为了保证正常运行并适当延长其寿命,需要我们按照保养要求和使用需要,对其进行定期的检测。在汽车发动机的使用过程中,有时候忽略了定期的检测和维修,导致了汽车发动机机构和配件损坏,影响了发动机的整体使用寿命,对发动机造成了永久的伤害。因此,为延长发动机寿命的实际需要,我们要对发动机进行定期的检测。

3汽车发动机常见故障分类

通过对汽车发动机的实际检测和维修发现,其常见故障主要分为以下几种:

3.1发动机敲缸以及内部出现异响

发动机敲缸是比较常见的故障,主要原因是其中曲柄机构发生了故障引起的,主要是曲柄机构中的配件在运行的过程中变形或者移位,导致了敲缸和内部异响的出现。

3.2气门有漏气现象,气门出现异响

气门出现漏气或者异响,证明气门封闭不严,或者气门系统的配件发生了故障,对于这种故障我们可以通过定期检测排查出来,做到提前发现提前解决。

3.3怠速运转不良

发动机在启动之后处于怠速状态,我们通过对怠速状态的观察,可以很好的了解发动机的运行状态。通常怠速运转不良都是发动机整体故障的前兆。

3.4发动机不能启动,加速不良

正常状态下发动机应该能够正常启动,并且保持持续的线性加速。但是由于内部启动机构的损坏,会导致不能正常启动,这时我们就要对启动系统进行仔细检查。

3.5机油压力异常,消耗异常

发动机在正常状态下,所消耗的机油和燃油维持在固定的水平,如果出现烧机油和燃料消耗异常的情况,则表明发动机润滑效果不好,内部机构出现了严重的磨损。

3.6发动机过热或过冷,有漏水现象

发动机要想保持平稳运行,其缸体温度是比较固定的。如果发动机出现过热或者过冷的情况,并伴有漏水的现象,我们就必须及时对发动机进行开缸检修了。 3.7发动机启动困难,发动机动力不足,怠速不稳

发动机如果出现启动困难,并且伴有怠速不稳,进而整体动力不足的情况,则表明发动机的启动系统和运行系统出现了问题,我们要针对启动系统进行重点检修。

3.8排气管出现噪声,有漏气现象

发动机正常运行的时候,排气管是没有噪音的,所排出的尾气也达到排放标准。如果排气管出现噪声并伴有漏气现象,证明排气系统出现故障,我们要对排气系统进行检修。

4汽车发动机典型故障维修方案分析

(1)发动机敲缸故障现象:主要的故障表现是发动机在怠速状态下出现强烈的敲击声音。在发动机冷启动的时候敲击声音比较明显,在发动机热车以后,响声逐渐消失,在发动机熄火之后敲击声彻底消失。故障原因分析:之所以会出现敲击声,主要原因在于缸体内的活塞与气缸存在一定的间隙,或者是由于活塞销子与连杆衬套过紧导致的,最终引起连杆变形而引起缸体敲击声的出现。

故障排除办法:利用气缸专用听诊器听取敲击声音,并调整活塞与气缸缸体的间隙,或者调整活塞销子与连杆衬套的松紧度。

(2)活塞销出现异响的故障现象:活塞销异响主要是指在发动机怠速和中速运行的过程中,随着转速的增加出现嗒、嗒的杂音,发动机温度升高之后响声随之消失。对其原因进行分析后发现,主要原因在于活塞销与连杆衬套太过松散,没有实现与活塞销座孔的紧密配合。

故障排除办法:利用听诊器判断声音位置,并适当调整活塞销与其他部件的孔距。

(3)连杆轴承部位出现异响的故障现象:发动机在平稳运行的时候一切正常,只有在突然加速的过程中,会出现连续的敲击声,如果发动机熄火,则敲击声随之消失。对其原因进行分析后可知:造成此种异响的原因主要是连杆轴承盖的位置螺栓出现了松动,造成了连杆轴承与轴颈出现磨损,进而影响轴承的润滑,最终导致轴承合金脱落。

故障诊断与排除:利用听诊器判断声音位置,进而对所在位置的连杆及配套件进行维修。

(4)主轴承异响故障现象的发生:主要是指发动机在急加速的时候轴承部位出现敲击声,整个发动机发生较大震动,异响随着转速的加大而变大。其根本原因在于轴颈与轴承过度磨损导致了间隙较大,造成了主轴承盖螺栓松动。

故障诊断与排除:利用听诊器直接听气缸的下半部,找出异响位置,更换配件。

5结语

通过本文的分析可知,对于汽车发动机而言,要想保证其正常使用,并有效延长寿命,就要定期的对其进行检测与维修,同时积极采取维修措施,对发生的故障进行检测和维修,保证发动机能够正常使用。通过本文故障排除方法的介绍,让我们对汽车发动机的检测与维修有了更深的认识。

参考文献:

[1]刘志忠.自动变速器故障的系统分析诊断法[J].河北交通科技,2005年03期.

[2]翁荣伟.浅谈汽车发动机故障诊断专家系统[J].科技资讯,2007年15期.

[3]刁一峰,唐进,刘红武.数控机床FANUC伺服系统故障诊断与排除方法[J].电气技术;2008年10期.

[4]苟新超,唐世应,唐咏,周川.滑动轴承故障诊断案例[J].冶金动力,2008年06期.

[5]冯志鹏.计算智能在机械设备诊断中的应用研究[D].大连理工大学,2003年.

[6]苗海滨,任新广.尖峰能量谱技术用于滚动轴承故障诊断[J].设备管理与维修,2008年05期.

点击下页还有更多>>>汽车发动机的检测与维修技术论文

汽车维修技师论文(部分题目)桑塔纳2000型轿车行驶跑偏故障排除奥迪A61.8T轿车高速收油熄火故障排除从故障实例谈富康轿车空调系统的维护广州本田雅阁轿车abs系统的原理及检修广州本田雅阁轿车安全气囊故障码的清除方法奥迪A6 2.8L轿车二次空气喷射故障检修实例塞纳轿车组合仪表及其故障诊断一汽马自达M6轿车CAN系统故障诊断与检修桑塔纳2000GSi轿车不能起动故障排除佳美轿车起动困难故障排除与分析别克君威轿车无法起动故障帕萨特B5轿车常见故障排除实例宝来轿车自动变速器结构和故障诊断分析富康轿车温控器故障诊断广州本田雅阁轿车VTEC系统故障诊断与检修电喷汽车电器检修的一般方法三菱帕杰罗越野汽车液压助力转向器的正确维修故障电脑诊断仪在车辆维修中的应用数据流功能在电控汽车故障诊断中的应用试述利用电脑诊断现代轿车故障的方法汽车故障电脑诊断仪在电喷车中的应用正确认识和使用汽车故障电脑诊断仪桑塔纳牌2000轿车充电指示灯故障的排除快速判断汽车点火模块和信号发生器故障汽车电子点火系统故障检测汽车电源与起动系统故障现象及可能原因表解本田雅阁轿车机油报警灯特殊故障的排除桑塔纳轿车机油报警灯报警浅析柴油车尾气烟度过高原因及预防机油报警灯闪亮的8种原因奔驰300SEL机油压力报警灯亮 桑塔纳时代超人轿车机油报警灯点亮故障排除别克新世纪机油压力报警灯常亮桑塔纳轿车无怠速故障的排除汽车空调不制冷故障排除桑塔纳轿车电子点火系故障的检修桑塔纳轿车雨刮器搭铁故障斯太尔王系列载货汽车空调系统结构与维修汽车遥控防盗报警系统的检修汽车防盗系统的维修汽车防盗系统的结构与维修汽车喷漆中漆膜缺陷的处理汽车喷漆作业常见问题及处理方法汽车整体式交流发电机及充电系统故障检修桑塔纳2000GLI型轿车氧传感器故障浅析上海汽车转向灯故障1例三菱帕杰罗汽车底盘漏油故障排除凌志汽车自动变速器故障析因EQ1090型汽车制动系统气压不稳故障的原因及排除方法依维柯汽车喷油器故障两例汽车液压动力转向系统的故障诊断与排除汽车万向传动装置故障诊断与排除离合器的故障分析与排除方法汽车离合器常见故障的检修离合器的故障分析及排除方法奥迪A6自动变速器离合器打滑故障汽车型怠速发抖故障诊断汽车不能起动故障排除汽车机油压力指示系统控制特点及故障诊断汽车发电机故障及其维修技巧2003款日产阳光轿车气囊故障码无法清除桑塔纳2000型轿车行驶跑偏故障排除凯迪拉克轿车自行熄火故障一例奥迪A61.8T轿车高速收油熄火故障排除奥迪6A轿车故障排除2例赛欧轿车熄火故障诊断一例桑塔纳2000Gsi轿车电控发动机结构及检修红旗轿车电控门窗故障1例宝来轿车故障实例汇编捷达轿车故障三例奥迪A6轿车发动机故障2例桑塔纳2000GSi轿车不能起动故障排除千里马轿车行驶无力故障一例东风悦达千里马自动变速器故障排除日产千里马(3.0L)冷却风扇常转东风悦达起亚千里马轿车电子控制系统检测日产千里马无快怠速东风悦达·起亚-千里马发动机电控系统线束和传感器的检修日产千里马轿车发动机的检查和试验日产千里马发动机节气门位置传感器工作不良的检测日产千里马无法启动故障维修千里马轿车发动机故障三例千里马轿车不能着车故障1例“千里马”前轮伤胎日产(NISSAN)千里马(MAXIMA)电喷系统空气流量计故障诊断日产千里马自动变速器电控系统的诊断功能日产千里马轿车巡航(定速)控制系统的路试和检修佳美轿车起动困难故障排除与分析丰田轿车故障两例别克君威轿车无法起动故障帕萨特B5轿车常见故障排除实例轿车底盘故障的排除方法汽车自动变速箱的常见故障别克自动变速箱故障21例丰田佳美自动变速箱锁挡故障的排除赛欧自动变速箱故障灯闪亮2003款广本自动变速箱的故障诊断奇瑞自动变速器的结构与检修丰田皇冠3.0自动变速器故障一例如何清洗保养自动变速箱宝来(Bora)轿车01M型自动变速器结构和故障诊断分析富康轿车温控器故障诊断汽车电器引起的疑难故障实例汽车底盘及电器突发故障的应急处理汽车运行中10种电器故障的急救方法汽车电器故障的基本检修方法电喷汽车电器检修的一般方法汽车电器接触不良造成的故障维修谈汽车电器线路的烧损与检修汽车配件行业管理措施的探讨浅谈汽车配件市场管理的几点看法柴油机燃料供给系故障的诊断与应急修理车用柴油机飞车的原因及应急方法柴油机产生气阻的原因及处理6135型柴油机使用与维修注意事项柴油机转速不稳的故障原因及排除柴油机机油压力异常故障的判断与排除6110系列增压柴油机特征及使用维修注意事项康明斯NH系列柴油机PT燃油系统常见故障排除康明斯柴油机进气预热器的使用与维修柴油机涡轮增压器的正确使用与维修柴油机喷油器故障现象及排除方法宝来(Bora)轿车01M型自动变速器结构和故障诊断分析宝马E60 GA6HP19Z自动变速器结构与检修皇冠3.0轿车自动变速器故障2例富勒(Fuller)变速器的常见故障及排除自动变速器电控系统特殊故障分析与检修自动变速器无法自动换挡的故障分析与判断81-40LE型自动变速器结构与维修富勒变速器RT11509C气路故障判断后桥壳主差速器连接孔内螺纹扩孔后的修复丰田陆地巡洋舰差速器故障一例导球式限滑差速器结构及工作原理奔驰W140自动锁止差速器系统的检修差速器行星齿轮损坏引起的故障现代KM175自动变速箱变矩器脱出丰田佳美自动变速箱锁挡故障的排除奔驰140底盘系列电控变速箱(EGS)故障维修EQ1090变速箱中间轴磨损的修理方法发动机润滑系的故障分析康明斯NT855型发动机润滑系的合理使用柴油机润滑系几种常见故障分析两例节气门位置传感器引起的故障节气门位置传感器的故障表现丰田皇冠轿车节气门位置传感器的故障排除红旗488电喷发动机清洗节气门后怠速过高华泰吉田发动机故障检修华泰吉田空气流量计烧蚀后桥壳主差速器连接孔内螺纹扩孔后的修复差速器行星齿轮损坏引起的故障夏利轿车发动机故障二例TJ7101U夏利轿车发动机三种故障排除夏利轿车发动机启动困难故障的检修实践斯太尔系列汽车底盘的润滑维护如何处理汽车底盘及电器常见的突发故障柴油汽车发动机和底盘常见故障排除柴油汽车油路故障二例柴油汽车行走乏力的原因浅析五十铃TD型柴油汽车机油温度高于水温故障的检修NHR54ELW五十铃柴油汽车交流发电机的检修新型柴油车发动机冷却液的使用注意要点东风系列柴油车排气制动装置的使用与维护柴油车发动机飞车故障的诊断与排除陕汽SX2190型柴油车变速器故障及原因分析车用柴油发动机常见故障诊断解放CA1121J柴油车发动机不能起动故障一例SX2190型柴油车无高挡故障排除柴油车油路故障诊断与排除二则CA1121J型柴油车发动机不能起动析因车用柴油喷油器常见故障的原因及排除方法本田ACCORD2.2型轿车发动机加速怠速故障原因与排除奥迪A6轿车发动机控制单元故障一例乙醇柴油对发动机燃油供油系统磨损的影响柴油发动机常见异响的诊断柴油发动机新技术及维修培训综述一汽大众宝来ATD柴油发动机电路图柴油发动机保养时应注意的几个方面康明斯柴油发动机增压器使用与维护NAVISTAR DT466E电控柴油发动机电子油门系统故障诊断汽/柴油发动机电控燃油喷射系统的对比分析柴油/乙醇双燃料发动机燃料混合比的控制 判断柴油发动机工作温度过高的方法延安2190型牵引车柴油发动机部分垫圈的正确安装东风EQ1108柴油车发动机废气涡轮增压器的检修与使用增压柴油发动机与整车的匹配柴油发动机缸套的穴蚀原因与预防柴油/汽油双燃料发动机排放性能的研究柴油发动机“飞车”的应急处理与诊断发展中的柴油发动机燃烧系统技术柴油发动机“窜机油”故障检修 柴油车发动机不能起动的故障排除方法柴油发动机超速故障浅析解放CA1121J柴油车发动机不能起动故障一例柴油发动机涡轮增压器损坏原因及预防谈柴油发动机喷油嘴针阀烧结卡死柴油发动机故障应急处理九法柴油发动机排气冒黑烟、白烟、蓝烟的原因及排除方法如何延长柴油发动机使用寿命CNG/柴油双燃料车用发动机排放特性研究CA1121J型柴油车发动机不能起动析因东风八平柴油车发动机不能熄火析因柴油发动机运动副卡滞故障剖析495柴油发动机特殊故障柴油/乙醇混合燃料的性质及对发动机性能的影响车用柴油发动机的发展趋势柴油车发动机飞车故障的诊断与排除康明斯柴油发动机增压器的使用与保养柴油发动机“游车”故障的排除浅析新型柴油发动机润滑油的使用柴油车发动机“飞车”的原因及故障排除柴油发动机常见异响的诊断与排除新型柴油发动机冷却液的使用注意要点柴油发动机燃油系统故障排除两则汽车制动系统的故障原因及诊断EQ1090型汽车制动系统气压不稳故障的原因及排除方法汽车制动系统常见故障及检修方法 斯太尔91系列汽车制动系统常见故障分析判断汽车制动系统的故障鉴定汽车制动系统故障的诊断与排除重型汽车制动系统常见故障解放汽车制动系统故障二例汽车制动系统的养护汽车制动系统的常见故障与排除方法浅谈电喷发动机加速滞后的故障与排除电喷发动机怠速控制原理分析与检测电喷发动机燃油系统和进气系统免拆清洗原因分析和效果判断轿车电喷发动机故障检修实例如何对电喷发动机进行免拆清洗?真空测量在电喷发动机故障诊断中的应用如何解决电喷发动机运行熄火现象电喷发动机怠速游车的故障分析电喷发动机怠速游车故障分析与检测电喷发动机典型故障的检修AFE型电喷发动机怠速不稳典型案例电喷发动机主要部件故障对发动机及车辆运行的影响进气管真空度检测在电喷发动机故障诊断中的应用电喷发动机常见故障部位分析浅谈电喷发动机的维护LPG在电喷发动机上的研究电喷发动机使用维修经验谈红旗轿车电喷发动机故障在电喷发动机上燃用LPG的试验研究中比例乙醇汽油对电喷发动机性能影响的研究电喷发动机进气管的设计与开发摩托罗拉多点电喷发动机双怠速排放超标问题研究维修电喷发动机的注意事项通俗解读电喷发动机维修电喷发动机进气歧管设计开发新方法利用进气真空度诊断电喷发动机故障电喷发动机燃油系的保养振动导致电喷发动机故障两例维修电喷发动机要注意哪些事项轿车电喷发动机故障检修实例AFE型电喷发动机怠速不稳典型故障分析电喷发动机非正常熄火故障的诊断维修电喷发动机注意事项汽车诊断技术在电喷发动机中的应用 凯迪拉克CTS胎压监测系统及故障诊断汽修技师论文变速器后体总成滑套重复损坏故障特例电控发动机故障诊断技巧及注意事项汽修技师论文华泰特拉卡汽车常见故障的诊断与排除浅谈车身修复过程中的形状与功能恢复发动机动力性就车检测的常用方法汽修技师论文重型汽车跑偏及侧滑的排除和预防汽修技师论文提高汽车制动性能检测质量的措施汽修技师论文发动机高温故障的原因分析汽车维修技师论文柴油机燃油系统故障诊断及排除方法汽修技师论文RED IV型电子调速器的结构及故障诊断一汽丰田锐志轿车ABS系统原理与检修汽修技师论文POLO轿车水泵常见故障判断汽车维修技师论文汽车空调的维护与机械故障检修汽车维修技师论文捷达轿车怠速不稳故障诊断与分析汽修技师论文浅谈汽车空调诊断思路和技巧汽车维修技师论文事故车辆故障诊断与排除汽车维修技师论文长安微车点火系统原理及故障检修汽修技师论文LPG公交车发动机仓温度过高的改进措施维修M5610AR型变速器应注意的问题汽修技师论文排放分析法诊断电喷发动机故障的实用性分析电喷发动机传感器的工作原理与检修电喷发动机热车起动难故障2例RBF网络在电喷发动机故障诊断中的应用丰田1JZ-GE电喷发动机实验台的研究上海赛欧轿车电喷发动机控制电路分析电喷发动机怠速不稳故障原因及排除电喷发动机蓄电池连接线拆卸的误区压力检查是维修电喷发动机的钥匙威姿轿车电喷发动机燃油系统检修用数据流诊断电喷发动机的特殊故障大众系列电喷发动机霍尔传感器的作用原理及故障判断电喷发动机燃油供给系统及喷油器测试汽车电喷发动机故障的诊断技巧电喷发动机传感器单体故障分析电喷发动机油路故障分析浅析电喷发动机故障诊断与排除电喷发动机“游车”故障诊修技巧奇瑞摩托罗拉多点电喷发动机系统及其检修电喷发动机常见怠速故障分析电喷发动机供油系统的故障与保养电喷发动机维修经验谈真空表在电喷发动机维修中的应用捷达2V电喷发动机载荷不确定的故障分析电喷发动机喷油器喷油量多通道检测仪的研制电喷发动机8种游车故障原因分析及故障排除真空表在电喷发动机故障诊断中的应用汽车异响与故障诊断79例奥迪A61.8T轿车高速收油熄火故障排除从故障实例谈富康轿车空调系统的维护奥迪A6 2.8L轿车二次空气喷射故障检修实例塞纳轿车组合仪表及其故障诊断富康轿车温控器故障诊断电喷汽车电器检修的一般方法三菱帕杰罗越野汽车液压助力转向器的正确维修汽车空调的常见故障与维修长丰猎豹汽车发电机的维修汽车防滑制动系统ABS/ASR的诊断与维修技术别克凯越轿车发动机水温过高故障排除一汽MAZDA6轿车导航系统故障诊断与检修桑塔纳2000轿车冷车不易起动故障别克凯越轿车故障排除4例奔驰W140自动锁止差速器系统的检修桑塔纳2000型轿车燃油泵继电器故障排除谈谈起动机的故障现象和保养凌志300发动机热车启动难现象及排除JFTl06型电压调节器故障的就车检查浅谈汽车电子故障的常见成因现代轿车电喷发动机常见故障诊断电喷发动机在特定温度环境下启动困难故障的诊断处理清洗电喷发动机喷油器的简易方法电喷发动机疑难故障的类型与检测桑塔纳AJR电喷发动机氧传感器的检修电喷发动机电路系统使用维护注意事项电喷发动机的免拆清洗电喷发动机燃油泵控制电路的原理及检修基于循环控制的LPG电喷发动机冷起动初探电喷发动机急加速滞后浅析电喷发动机起动困难故障分析红旗488电喷发动机清洗节气门后怠速过高电喷发动机怠速控制原理分析与检测电喷发动机检测活塞位置的方法及应用如何解决电喷发动机运行熄火现象电喷发动机空气供给系统故障的就车检查法排放分析在电喷发动机起动故障诊断中的应用EQ491电喷发动机点火控制系统的结构原理及故障诊断轿车电喷发动机故障检修方法与实例汽车电喷发动机常见故障诊断分析电喷发动机喷油器的检修电喷发动机进气流量的测定方式电喷发动机汽油喷嘴易损故障的诊断与排除电喷发动机使用与维修通过手脚感觉判断底盘故障汽车底盘机件损坏的急救方法汽车底盘故障的应急处理富康轿车底盘故障检修6例农用运输车底盘故障的诊治汽车底盘故障的几种检修方法浅谈起重机底盘常见故障与排除汽车底盘故障的应急修理利用滑行距离评价底盘技术状况汽车底盘故障的应急处理富康轿车底盘故障的检修汽车底盘及电器突发故障的应急处理利用方向盘手感判别底盘故障富康轿车底盘故障检修三例底盘故障排除经验3则丰田佳美底盘异响故障排除利用方向盘手感判别底盘故障奔驰140底盘系列电控变速箱(EGS)故障维修三轮农用车底盘常见故障及排除方法汽车底盘机件损坏急救有方如何处理汽车底盘及电器常见的突发故障都市先锋底盘异响燕京6500GD型客车底盘异响故障的判断水平定向钻机底盘故障的探讨斯太尔系列汽车底盘的润滑维护车辆底盘自动集中润滑系统的控制方法及技术通过手脚感觉判断底盘故障轿车底盘故障的排除方法上海—50型拖拉机底盘易损部位的检修三菱帕杰罗汽车底盘漏油故障排除一起车辆底盘异响故障排除上海别克凯越轿车刮水系统原理及故障诊断别克荣御ESP系统及其检修上海别克轿车电控燃油喷射系统原理与检测别克轿车遥控门锁系统的设定与故障诊断康明斯蓄压共轨供油系统及常见故障分析商用车气制动abs系统常见故障排除及使用维护长丰猎豹CFA2030汽车abs故障诊断与检修风神蓝鸟轿车abs结构原理及故障诊断捷达轿车MK20-Ⅰ型abs系统的结构、工作原理及检修上海桑塔纳2000GSi型轿车abs故障诊断捷达轿车abs系统故障的快速诊断防抱死制动系统的原理与检修汽车制动防抱死系统(abs)的使用和检修要点沃尔沃汽车abs系统故障诊断与维修广州本田雅阁轿车abs系统构造原理及故障诊断雷克萨斯ES300 abs的结构原理及故障检修广本奥德赛abs系统自诊断与故障排除广州本田雅阁轿车abs系统的原理及检修奥迪轿车防抱死制动系统的原理及故障诊断上海帕萨特轿车abs的结构、工作原理及检修矿用汽车制动系故障的原因及安全措施气压制动系常见故障的诊断与排除东风车气压制动系制动力不足和制动干涉分析汽车制动系可靠性分析液压制动系制动力不足或制动失灵分析五十铃载货车制动系常见故障诊断与排除长安奥拓制动系维修中的特殊事例液压制动系产生气阻的原因及对策摩托车制动系故障诊断与排除诊断北京切诺基制动系三轮农用运输车制动系的调整与使用制动系故障排除中容易被忽视的10个问题液压制动系制动力不足或制动失灵浅析拖拉机转向与制动系故障排除轿车制动系常见故障及诊断方法制动系故障与排除拖拉机制动系的正确使用与维护制动报警与制动系特殊故障汽车制动系的常见故障和日常维护基于神经网络的汽车制动系可靠性分析富康ZX型轿车制动系常见故障与排除通过手(脚)感判断底盘故障德特-75拖拉机变速箱、底盘的故障及其排除国产全道路车自动变速箱的档位分析汽车自动变速箱的常见故障别克自动变速箱故障21例在双层客车上使用ZF自动变速箱的初步经验福特AXOD-E型自动变速箱电子控制系统及故障诊断宝马325自动变速箱恶性漏油奔驰600自动变速箱故障广州本田自动变速箱倒挡无力2003款广本自动变速箱的故障诊断丰田佳美自动变速箱锁挡故障的排除赛欧自动变速箱故障灯闪亮宝马自动变速箱锁挡故障桑塔纳2000型轿车行驶跑偏故障排除广州本田雅阁轿车abs系统的原理及检修上海别克轿车EGR系统的故障诊断别克轿车遥控门锁系统的设定与故障诊断上海别克凯越轿车刮水系统原理及故障诊断别克新世纪轿车自动变速器无超速档故障排除丰田佳美轿车换档故障排除康明斯NH系列柴油机PT燃油系统常见故障排除宝来轿车01M型自动变速器结构和故障诊断分析电喷发动机传感器故障的检测与诊断CA7220AE型轿车发动机故障排除通用汽车电控发动机间歇性故障的诊断桑塔纳轿车起动机故障捷达轿车间歇性熄火故障的排除奇瑞东方之子轿车加速不良故障排除帕萨特B5轿车冷车起动困难故障排除飞度轿车发动机防起动系统原理与故障检修发动机排烟异常故障的检查技巧汽车搭铁故障的检修技巧马自达6轿车ABS故障诊断别克轿车空气质量流量传感器故障诊断与分析解放西北王左门窗电路控制原理与故障排除皇冠3.0轿车高速惰车故障排除奔驰轿车空气流量传感器的故障检修桑塔纳2000型轿车行驶跑偏故障排除广州本田雅阁轿车abs系统的原理及检修上海别克轿车EGR系统的故障诊断长城赛弗SUV汽车车身抖动故障排除中通客车无法起动故障排除汽车空调电控单元的维修奔驰W220系列底盘车型安全气囊系统故障排除蒙迪欧轿车发动机防盗系统工作原理新自动变速器及无级变速器常见故障剖析长安福特福克斯4F27E自动变速器结构与维修博世KTS650故障诊断仪在实际检测中的应用丰田锐志电动助力转向系统原理与检修发动机怠速不稳原因及诊断大众POLO车载网络系统的原理与检修皇冠3.0轿车中高速加速无力故障排除红旗轿车突然熄火故障检修一汽丰田花冠轿车电控系统故障检测与诊断飞度轿车安全气囊系统的维修电子节气门体常见故障分析红旗世纪星VG20E发动机电脑维修技术解析2001款帕萨特B5轿车门锁故障的排除与分析风度A32轿车起动困难故障排除铃木雨燕车身控制系统故障码的人工读取与清除奥迪200 1.8T轿车涡轮增压系统故障实例丰田佳美轿车ABS的结构原理与故障检修5L40E型自动变速器结构与维修一汽丰田锐志防盗和门锁系统组成与检修东风雪铁龙凯旋保养归零及电控系统初始化宝马E60主动转向系统结构与检修奥迪A6L车载MMI系统结构原理与检测维修广本车系发动机连杆断裂原因分析氧传感器故障分析与检修通用汽车电控发动机间歇性故障的诊断帕萨特B5轿车冷车起动困难故障排除奇瑞东方之子轿车加速不良故障排除捷达轿车间歇性熄火故障的排除东南得利卡面包车怠速“游车”故障排除飞度轿车发动机防起动系统原理与故障检修发动机排烟异常故障的检查技巧长安福特嘉年华防盗系统结构与检修桑塔纳2000GLi轿车怠速异常故障东风EQ1290型汽车离合器打滑故障的排除爱丽舍轿车空调系统常见故障与排除A342E型自动变速器工作原理与检修汽车空调压缩机常见故障及排除方法2005款帕萨特领驭轿车发动机异响柴油车变速箱同步器的检修水温传感器故障排除与分析如何处理汽车底盘及电器常见的突发故障车用柴油发动机常见故障诊断车用柴油喷油器常见故障的原因及排除方法汽车电器接触不良造成的故障维修谈汽车电器线路的烧损与检修浅析汽车电子控制器工作及使用维修须知瑞典绅宝(SAAB)9000汽车怠速故障的排除谈东风汽车发电机故障的排除方法奥迪A6事故修复后跑偏现象的排除汽车跑偏故障判断与排除涡轮增压器异常振动及异常噪声故障的分析排除浅析汽车仪表故障的检查方法起动机常见故障的检修排除与预防检修轿车充电系统不充电故障汽车故障诊断与应急处理的基本方法长城赛弗SUV汽车车身抖动故障排除5L40E型自动变速器结构与维修车用柴油发动机排气支管排机油的故障诊断电控燃油喷射系统故障的主要原因皇冠3.0轿车中高速加速无力故障排除飞度轿车安全气囊系统的维修红旗轿车突然熄火故障检修一汽丰田花冠轿车电控系统故障检测与诊断EQ1108G系列车行驶跑偏故障诊断分析柴油机喷油器故障解析与排除汽车空调故障的检查与判断大众轿车无分电器点火系统故障诊断与检修ESD5600型外摆门泵工作原理及故障检查别克君威散热器风扇控制电路故障的排除电装空调旁通电路工作原理及故障排除桑塔纳2000GSi型轿车氧传感器故障诊断氧传感器故障分析与检修CA7220AE型轿车发动机故障排除飞度轿车发动机防起动系统原理与故障检修汽车搭铁故障的检修技巧马自达6轿车ABS故障诊断威姿ISZ-FE发动机点火系统故障检测与排除汽车空调压缩机常见故障及排除方法通用4T60E自动变速器疑难故障排除EQ1141G型汽车尾灯故障指示灯故障诊断长城赛弗发动机怠速过高故障检修丰田佳美发动机点火系统原理与故障检修实例汽车交流发电机充电电压过高的故障排除EQ1118GA型汽车传动轴异响故障排除日产蓝鸟U12型轿车怠速抖动故障排除奥迪轿车ABS控制原理及故障检修别克赛欧SGM7160轿车发动机防盗系统原理与故障诊断丰田A140E型自动变速器档位变异故障排除爱丽舍轿车发动机MP5.2电控系统的故障诊断柴油机的排烟异常分析及故障诊断电喷发动机非电控故障的检查与调整桑塔纳2000GSi轿车ABS系统故障检修实例制动熄火的深层原因探析上汽通用景程防盗系统及故障诊断气缸盖变形和缸体渗漏故障检修新车蓄电池常见故障形成原因及维护保养尼桑无限车发动机加速无力尼桑轿车启动系统控制组件故障诊断与维修尼桑越野车ABS故障指示灯常亮UD63型尼桑汽车起动和充电系控制电路及故障排除尼桑吉普车全自动玻璃窗控制器的修复汽车跑偏故障判断与排除涡轮增压器异常振动及异常噪声故障的分析排除浅析汽车仪表故障的检查方法起动机常见故障的检修排除与预防检修轿车充电系统不充电故障汽车故障诊断与应急处理的基本方法长城赛弗SUV汽车车身抖动故障排除5L40E型自动变速器结构与维修车用柴油发动机排气支管排机油的故障诊断电控燃油喷射系统故障的主要原因皇冠3.0轿车中高速加速无力故障排除飞度轿车安全气囊系统的维修红旗轿车突然熄火故障检修一汽丰田花冠轿车电控系统故障检测与诊断EQ1108G系列车行驶跑偏故障诊断分析柴油机喷油器故障解析与排除汽车空调故障的检查与判断丰田佳美轿车ABS的结构原理与故障检修风神蓝鸟轿车ABS故障检测与诊断发动机电控系统线路断路和接触不良故障分析在汽车电脑维修中信号发生器的应用上海大众波罗轿车仪表故障灯常亮轿车漆膜缩孔缺陷分析及预防措施桑塔纳3000制动片安装与注意事项奥迪A6轿车编码引起的故障实例帕萨特轿车起步异常故障排除现代汽车故障分析的思维方式关于汽车电控系统基本设定的若干问题

随着汽车行业技术的不断发展,汽车发动机技术也在不断的提高。下面是我为大家精心推荐的汽车发动机技术论文 范文 ,希望能对大家有所帮助。汽车发动机技术论文范文篇一:《试谈汽车发动机的可变气门技术》 摘要:汽车发动机可变气门技术是当今汽车发动机普遍配置的设备系统。该系统可以对发动机凸轮的相位或者气门的升程进行有效的调节,从而使汽车发动机的配气过程得到优化。因为汽车发动机在高转速和低转速状态下,气门的正时角对发动机的经济性以及动力有所影响,从而提高进气量以及扫气效率,如今的汽车发动机普遍应用这项技术。 关键词:汽车发动机;可变气门技术;气门正时技术;气门升程技术;配气过程 在汽车发动机的运行过程中,如果发动机在运行过程中,随着发动机气门数量的增多和发动机转速的提高,气门正时和气门升程不能随之改变,那么当汽车发动机处于转速过低、转速过高或者功率输出的状况下,就很难保证燃油的消耗问题。如果汽车发动机使用的是单个气门,在对燃油供给方进行控制时,对这个问题解决起来就会很难。但是如果换一种方式,如使用“可变性能”对其进行“综合处理”,那么这样的问题就很容易被解决。 1 气门正时技术 气门正时也就是汽车发动机在运转过程中气门打开的时间。其功能是活塞运动到一定位置时,对气门的开启和关闭时间进行控制。一般情况下,发动机进气门的活塞运动程序应当从下向上,当气门开始排气时,气门打开;当活塞到达气门的上止点时,一个排气运动周期完成,气门关闭。这个过程中,因为运动的空气存在惯性,因此需要一定的时间进行反应。进行排气的过程中,为了让更多的空气进入气缸,更多的废气排出气缸,就要在活塞到达之前打开,并且在活塞运动到下止点之下关闭;发动机的排气门运用同样的原理,排气门应该在活塞开始向下运动之前打开,在活塞运动到下止点之后再关闭。在活塞运动的过程中,排气门和进气门可能会在一定的时间范围内同时打开,这叫做气门叠加,在气门叠加现象产生时,曲轴会产生一定角度的转动,这个角度是气门叠加角,图1是汽车发动机气门配气相关结构图。 发动机的转速处于不同状态时,对于气门叠加角的要求也有所不同,在发动机低转速时,其气门叠加角就越小,发送机转速高,所产生的气门叠加角就会越大。如汽车发动机没有运用气门正时技术,这两个要求就很难同时得到满足,传统的汽车发动机工作原理主要是:当汽车发动机处于低速转动状态时,其中凸轮的转速也非常慢,因此气门的进气速度也随之减慢,当气门打开时,需要的时间较长,但是气门的开度很小。如果汽车行驶的速度达到120km/h时,发动机的转速一般为3000~4000rpm,有可能会达到更高水平,此时汽车发动机气门的开启和关闭速度加快,气缸空气进入的速度开始加快,在这一运动过程中,虽然其进气量很大,但是发动机气门的开启时间非常短,这会在一定程度上降低氧气含量,导致燃油燃烧所需氧气不足,从而使燃油燃烧不够充分。因此可以在这样的发动机上引入可变气门技术,这一技术可以有效解决以上提到的问题,从而大大改善发动机的燃油效率。在运行过程中,对凸轮进行改造,并且对相关的传感信号进行充分收集,汽车发动机如果处于转速非常低的情况下,这时发动机中正时技术就可以对其进行很好的控制;当汽车发动机处于高速运转状态时,可以对气门的开度进行较为科学的调整。 2 气门升程技术 气门升程技术指的是对气门开启的开度大小进行控制的技术。当发动机在运行过程中,气门行程较远的情况下,所进气截面的面积就会随之增大,因此对进气产生的阻力会降低,从而使得气缸的进气更加通畅,这样的运行状态比较适合汽车在高速行驶的状态下。如果在汽车行驶速度较慢的情况下,就会导致进气时达不到要求的负压,从而导致汽车处于低速形式的状态下时,产生运转无力或者不够平稳的现象。如果气门很小,汽车发动机在慢速运转过程中,所需的负压会得到满足,保证氧气的充足和燃油的充分燃烧。然而当汽车处于高速行驶的状况下时,空气的流速就会加快,气阻也会增大,这些情况的出现就会导致气门在进气和排气的过程不够畅通。在汽车发动机中运用可变气门技术,就可以对这两方面的问题进行权衡。气门正时技术只能够对汽车发送机中气门开启的时间进行控制,对于气门开启的开度无法控制。因此要在汽车发动机中运用可变气门的升程技术,这样才能进一步提高汽燃油的燃耗效率,提高汽车经济性能。 3 典型的可变气门升程技术控制为主的发动机技术 3.1 本田汽车中的“VTEC”系统应用 “VTEC”可以同时对发动机气门开度和气门开启时间进行控制的系统,对“VTEC”进行控制的系统主要是“ECU”,它通过发动机中各个传感器,其中包括气缸进气压力传感器、发动机转速传感器、车辆行驶速度传感器、水温传感器等,根据其产生的信号,进行相应指令的发送,同时可以控制凸轮在特定的范围内运转,以此对气门的开闭时间和开闭开度进行合理控制。一般的汽车发动机中,每个汽缸只配备一个凸轮对其进行驱动,但是本田汽车中VTEC系统发动机内含有两个凸轮对其进行驱动,即中低速、高度运转两个组合,通过对电子系统的运用,使其自行进行操纵,从而达成自动转换目标。本田汽车发动机中利用的VTEC系统,可以同时对发动机的低速运转和高速运转中气门的开闭进行时间和开度的控制,这样就能同时达成汽车的动力性和经济性。 本田“VTEC”与其他汽车发动机不同的地方主要是凸轮和摇臂的数目和控制 方法 。其是世界上第一个能够对气门的开闭时间以及升程两个性能同时控制的气门控制系统。其系统通过计算机对气门的正时和升程进行控制,可以在很大程度上提高汽车燃油效率,本田公司几乎在所有车档中均运用了“VTEC”系统。 3.2 丰田汽车VVT-i智能可变气门系统 VVT-i系统是丰田汽车中发动机可变气门系统,当前这项技术已经在丰田汽车中普遍使用。VVT-i系统可以对发动机气门运动进行连续的正时调节,但是对气门的开度大小不能控制。这项技术的工作原理主要是:当汽车的运行速度由低到高运行时,“ECU”就会向凸轮控制下小涡轮内挤压机油,从而使小涡轮进行运转,其运转是相对凸轮进行的,这样就使得凸轮在60。范围内前后旋转,这样就会对气门的开启和闭合时间有所控制,从而实现气门的连续这时目标。这项技术的最大特点是,可以根据汽车发动机所处状态对凸轮进行合理控制,对凸轮轴的转角进行合理的调整,从而优化配气时机,保证对燃油的配气达到最佳状态,以此来帮助燃油充分燃烧,并且提高汽车扭矩,提升汽车的各项性能。 4 结语 在汽车发动机可变气门技术中,升程系统主要控制气门的开度,而正时系统是控制气门开闭的时间。它们均决定了发动机进气量的大小,同属于汽车发送机可变气门控制系统。如今可变气门技术发展得越来越快,这项技术在汽车发动机中的使用可以说是汽车领域发展的一个里程碑,可以看出未来的汽车技术将向着越来越先进的方向发展。 参考文献 [1] 邓明阳,孙旭.发动机全可变气门升程技术现状的分析与展望[J].南通航运职业技术学院学报,2011,(3). [2] 郭建,苏铁熊,王军.发动机可变配气机构的研究进展[J].内燃机与配件,2011,(12). [3] 徐涛,詹樟松,吴学松,等.可变气门升程技术现状及发展趋势[J].内燃机,2013,(6). [4] 张超.宝马第三代连续可变气门升程技术浅析[J].价值工程,2015,(3). 汽车发动机技术论文范文篇二:《浅谈汽车发动机节能技术》 摘 要:本文通过对发动机的节能原理进行分析,提出了一些节约发动机燃油消耗的 措施 ,对中国汽车节能提出了发展方向。 关键词:节能;原理;措施;发展 一、发动机节能的原理 1 提高充气效率 (1)减小进气系统的流动损失。①减小进气门处的流动损失。可通过增大进气门的直径,选择合适的排气门直径;增加气门的数目,采用小气门;改善进气门处流体动力学性能,减小气门处流动损失;采用S(活塞形成)/D(缸径)值较小的发动机等措施可以减小进气门处的流动损失。②减小整个进气管道的流动阻力。进气道应该有足够的流通截面积、表面光滑、拐弯小、多段通道连接要对中;进气管应该有足够的流通截面积、表面光洁,避免急转弯和流通截面的突然变化;空气滤清器的阻力应随结构和使用时间的延长而不同。(2)减少对新鲜充气量的加热。凡是能降低活塞、气门等热区零件的温度和减小接触面积的措施都是有利于减小对新鲜充气量的加热。(3)减小排气系统的阻力。减少排气系统中排气门座、排气道、排气管、排气消声器的阻力,对降低排气压力、减小排气损失均有利。(4)合理选择配气相位。配气相位是否合理主要根据以下几个方面来判断。①充气效率高,保证发动机的动力性能,主要由进气门迟闭角决定。②必要的燃烧室扫气,以保证降低高温零件的热负荷,使发动机运行可靠,主要由进气门迟闭角决定。③合理的排气温度,主要由排气提前角决定。④较小的换气损失、以保证发动机的经济性,主要由进排气门重叠角决定。 2 减小机械损失可从几个方面着手 (1)降低活塞、活塞环、连杆等往复运动机件的摩擦和质量。(2)降低滑动部件的滑动速度。(3)减少润滑油的搅拌阻力。(4)改良润滑油,使其低粘度化。(5)合理选择摩擦零件的材料。 二、发动机节能的措施 1 发动机稀燃技术 也叫发动机稀薄燃烧技术,指采用发动机的实际空燃比远大于理论空燃比的情况下进行的具有良好动力性、经济性和排放行的燃烧技术。 实现的技术途径:(1)实现稀燃混合气。实现稀燃混合气的措施有:使汽油充分雾化;采用结构紧凑的燃烧室;加快燃烧速度;提高点火能量;采用分层燃烧技术。(2)采用分层燃烧系统。主要有气道喷射稀燃系统和直接喷射稀燃系统。 2 发动机的增压技术 对进入气缸的空气提前进行压缩,使单位时间进入燃烧室的新鲜空气量增多,增加发动机的充气效率,提高发动机的功率。 3 燃油掺水节油技术 发动机采用掺水形成的乳化燃油,可以减少排气中的氮氧化合物等有毒成分、降低烟度减少污染,还能有效降低油耗,节约能源。 4 发动机可变气缸排量技术 发动机在中低负荷情况下,使部分气缸停止工作,增加工作气缸的负荷率,使其工作点落入低燃油消耗率和低排放工作区域内,从而改善车辆的经济性和排放性能;当发动机需要大功率时,则让全部气缸工作,体现发动机的动力性。 5 发动机可变配气正时技术 根据发动机转速和负荷的变化,适时调整配气相位和气门升程。 6 可变进气歧管技术 ECU根据发动机转速和负荷的变化而改变进气道的长度,在高转速时使进气通道变短,减少进气流动损失,提高发动机的高速功率。在低转速和低负荷及起动情况使进气通道变长,管内空气流动的动能增加,导致进气流速加快,充气效率提高,在同样的燃烧条件下会获得更大的输出功率,增加转矩。 可变进气歧管技术主要包括可变进气歧管长度和可变进气共振技术.。 7 可变压缩比技术 采用可变压缩比技术对于自然吸气发动机,在部分负荷情况下压缩比可以设计高一些;对于增压发动机在增压压力比较低的低负荷情况下,适当降低压缩比,使压缩比随发动机负荷的变化连续调节,这样可以避免爆燃,又提高了在高压缩比情况下中低负荷的工作效率,增加了动力性能,提高了济性,保证了发动机工作效率的最大化。 改变发动机压缩比的方法有改变燃烧室的容积和改变活塞行程。 8 汽油机燃油喷射与点火系统的电子控制技术 在汽油机电控燃油喷射系统中,电控单元主要根据进气量确定基本的喷油量,再根据其他传感器信号对喷油量进行修正,使发动机在各种工况下均能获得最佳浓度的混合气,从而提高发动机的动力性、经济性和排放性;汽油机电控点火系统(ESA)根据相关传感器信号,判断发动机的运行工况和运行条件,选择最佳的点火提前角点燃可燃混合气,从而改变发动机的燃烧过程,实现发动机动力性、经济性和排放性的提高。 9 柴油机燃油喷射系统的电子控制技术 在柴油机电控燃油喷射系统中,ECU主要根据发动机转速和负荷信号来确定基本供油量和供油正时,再根据其他传感器信号进行修正。 10 电子节气门技术 汽车电子节气门技术(ETC)淘汰了传统加速踏板采用拉索或杠杆机构,与发动机节气门之间进行直接的机械连接,通过增加相应的传感器和电控单元,实现精确控制节气门的开度。该技术可以实现发动机转矩和空燃比的精确控制,有助于提高汽车行驶的动力性、平稳性、经济性以及降低排放污染。 11 陶瓷发动机 为了减小发动机能量损失中占绝大部分的冷却损失和排气损失,一般采用取消或部分取消冷却系统的方法,并使用陶瓷等耐高温、耐磨损、耐腐蚀、重量轻和强度高等特点的隔热材料或其他方法减少燃烧室内热量的散失,使发动机在更高的工质温度下工作;利用排气能量。 12 EccoBoost 发动机技术 一种兼具涡轮增压技术和燃油直喷两种技术于一体的发动机技术,发动机能获得更高的动力性和经济性。 结语 根据中国的能源政策和汽车工业发展情况来看,国家首先应该大力发展柴油机技术,主要是研究电控柴油机;其次大力发展电动汽车,优先发展混合动力汽车,加大电池续航能力的研究;再次大力研发推广代用燃料车。发动机油耗的高低直接反应了我国发动机设计与制造水平,汽车发动机节能技术的推广应用,将大力推动我国汽车工业的发展。 参考文献 [1]许文靖.现代汽车节能技术探析[J],科技创新导报,2009(24). 汽车发动机技术论文范文篇三:《浅谈汽车发动机维修技术》 【摘 要】: 作为汽车的心脏部位,发动机在汽车的正常运行和操作中其中至关重要的作用。因此,平时需要加强对发动机的维修和保养。而针对汽车发电机的维修,其需要比较全面的技术知识和实践操作能力。因此,汽车发动机的维修可以说是一个需要技巧和技术的硬活。本文从汽车发动机检查以及汽车发动机的诊断和维修两个方面出发,具体阐述其相关的维修技术,希望对学习汽车发动机维修的人员有所帮助。 【关键词】: 汽车;发动机;维修;技术 1 传统的发动机维修工艺 发动机的内部零部件的检查: 由于汽车发动机内部的曲轴和活塞往往是比较容易出故障的地方,如汽车突然无法启动等,很可能是因为汽车发动机内部活塞不能运作造成的。因此当汽车发动机出现故障需要维修的情况下,可以先对其曲轴和活塞进行检查,其具体步骤如下: 1.1 曲轴的检查 对于曲轴容易出现的故障,主要有轴颈处容易磨损,容易出现扭曲变形或者疲劳裂纹,因此需要进行重点检查。1)裂纹的检查:对于曲轴裂纹的检查,其相应的检查方法有超声波探伤检查,浸油敲击法检查,磁力探伤检测仪进行检查和X光探伤检查。在用浸油敲击法对曲轴进行检查时,需要先将曲轴在煤油中浸泡一段时间, 然后再将曲轴从煤油中取出来,擦干净后在曲轴上撒一些白粉,再对曲轴的不同部位进行轻敲,如有出现了比较明显的油迹,这说明曲轴的这个部位有裂纹。对于磁力探伤仪检查,其磁力线会穿透曲轴被检查的部分,如果在该部分有裂纹的话,那么这个地方的磁力线就会出现偏散,然后将磁力粉撒在该部位,从会显示出裂纹的具体大小和具体位置;2)弯曲变形的检查:针对曲轴弯曲变形的检查,可以先将整个曲轴的两个顶端用V型版块支承住,如图1所示,然后用在主轴中间用百分表的触头抵着。当曲轴转动一周后,在指针上对出角度的最小值和最大值,并且计算两者之差,这个差值就是曲轴弯曲变形的差值了,如果其值大于0.11mm, 那么曲轴弯曲的比较严重了,为了确保发动机的正常运行,需要及时更换曲轴。 1.2 活塞连杆组的检查。 对应活塞部位的检查,主要是检查其活塞销座的尺寸和裙部直径等是否发生了变化,或者是否在使用过程中发生了堵塞等。其主要的检查方法一般有两种,第一种检查方法是用千分尺进行测量,通过测量裙部直径的大小和活塞汽缸磨损部位值的大小,将这两个测得的数据相减,然后和配缸间隙值进行比较,如果差值大于0.10mm, 则说明活塞磨损比较严重,不能够再使用啦。另一种方法是塞尺进行测量,通过测量配缸间隙来判断其汽车发动机内部活塞是否可以正常使用。首先将塞尺放入安装气环的环槽内,然后以35N的拉力轻轻转动塞尺,当感到轻微的阻力时停止转动,这样就可以用塞尺测量活塞裙部和活塞侧隙差值的大小,当活塞受到磨损越多时,其相应的差值也越大,当该值超过0.12mm时,这该活塞不能再使用啦,需要为汽车发动机配备新的活塞。 2 汽车发电机的诊断和维修 2.1 发动机失速故障 发动机如果出现了失速故障,其一般表现为发动机转速一会低一会高的情况,而这种情况就是常见的发动机失速故障了。出现这种故障的原因主要是因为点火控制系统出现故障,或燃油喷盘系统出现问题,又或者是整个发动机的进气系统出现了问题等。例如,出现了燃油喷盘系统的故障,很有可能是系统线路接触不稳,油管变形或者燃油滤清器灰层太多等。针对不同的原因,可以采取不同的措施进行维修。 其相关的故障排除和维修的方法如下:1)如果是喷油系统出现问题,检查是否是线路接触不良,如果是,则可以调整线路或更换导线的方法进行维修,如果是 机油滤清器盖等太多灰层了,则可以采用清洁滤清器盖的方法进行修复;2)如果是进气管出现了问题,则仔细检查是否有各软管或者其相接的地方出现了漏气,也可以检查PVC阀管子等是否通气正常,如果不是,则可以考虑修复或替换相应的管子;3)针对点火控制系统出现的问题,则需要检查各缸火花塞是否正常工作了。例如,火花塞积累的灰层太多,引起发动机转速不正常,则可以通过彻底清洁火花塞来进行维修。 2.2 发动机怠速不良故障 发动机怠速不良故障的现象主要是发动机怠速不稳,停车易熄火。在故障诊断方面,可以先检测发动机燃油压力。将燃油压力表连接到油压检测孔上,起动发动机,油压表指示正常,压力为265kPa,拨掉油压调节器真空管,油压上升到340kPa。上述结果均在标准范围内,说明燃油管路系统无故障。然后再检查气缸压力。预热发动机,温度到85℃,打开节气门,用缸压表测量各缸压力,当压力值均为l1OOkPa左右,各缸压差小干300kPa时,上述情况表明发动机气缸密封性出现了问题。 针对该故障的维修,其方法如下:清洗怠速电动机、节气门体。将怠速电动机、节气门体拆下,彻底清洗各空气通道,并用压缩空气吹净。用万用表测量一下怠速电动机电阻值,电阻为20Ω,在18~24Ω正常范围内。测量节气门位置传感器,输出阻值呈线性变化,且在正常范围内。若发现进气总管内沉积有异物,用缠有麻布的铁线将其清理干净。为彻底根除故障,还可以对喷油器进行清洗、检测。 2.3自诊断系统可能出现以下几种情况:汽车运行时故障明显,传感器有故障而自诊断系统没有监测到。一是电控汽车控制电脑(ECU)对传感器信号进行检测时,只能接受其设定范围之内的传感器非正常信号,从而判断传感器的好与坏,记录或不记录故障代码。一旦解读故障代码故障后,只要对相应的传感器、导线连接器、导线进行检查,找到并排除短路、断路的故障即可。但是,若因某种原因致使传感器灵敏度下降、反应迟钝、输出特性偏移等,则自诊断系统就测不出来了。这时就应该依据发动机的故障征兆进行分析判断,继而传感器单体进行针对性检测,以便找到并排除传感器故障。二是由于发动机工况故障现象相似,ECU监测失误,自诊断系统可能显示错误的故障代码。例如,对于装有三元催化转化器的电控汽车,一旦使用过含铅汽油,这类故障特性有时较为明显。在汽车进行检修时,经常会发现故障代码显示的是“水温传感器断路或短路”故障,而发动机故障症状却是:无论发动机在冷车状态下或者热车状态下都不好起动,并且拌有怠速不稳和回火现象,发动机的转速绐终提不高。显然这些故障与水温传感器的关系并不十分密切,在对水温传感器进行单体测量后并未发现任何故障。 但是,当从汽车上拆下三元催化转换器并剖开后发现,三元催化转换器内部严重堵塞,因此可以断定发动机故障是由此而引起。因此当自诊断系统出现故障代码以后,还应该与发动机的实际故障症状进行分析比较,以得到正确合理的判断,不应该将故障代码当作排除故障的唯一依据。三是电控汽车使用维修不当也可能引发错误的故障代码。在对电控汽车实施维修时,由于维修人员系统输出错误的故障办法。例如,在发动机运转过程中,随意或者无意把传感器插接头拔下,每拔下一次传感器插接头,自诊断系统就会记录一次故障代码。另外,若在上一次汽车维修时,由于操作不当而未能完全清除掉旧的故障代码,那么电脑也同样将原来的旧故障代码保存其内,因此在对电控汽车维修时也要加以注意,不应造成不必要的人为故障代码。 利用常规的检查方法如“五油、三液、一媒,的检查不可忽视,即对透平油、机油、自动变速器油、转向助力油、齿轮油、制动液、冷却液,刮水清洗液以及冷媒的检查。绝大部分高级轿车上仪表灯全部用英文显示,如wash fluid灯亮,应检查清洗液和储存器内液面,添加后即可消除该警报灯亮。一辆奥迪A62.8L轿车ABS灯点亮,似乎是一个大的故障,车主急忙赶往奥迪A6维修中心检修,经检查发现就是制动液容器内的液体低于警戒线,补充完制动液后故障排徐,解决起来很简单。 通过车用零件液体的品质,来判断故障。一辆广州本田车雅阁7230轿车的自动变速器油液变紫,而且有少量的混蚀物,此时行车中动力不足,起速过慢。因此,根据油液的颜色可断定故障的原因是自动变速器的故障而不是发动机动力不足,拆油底壳,检查证明判断是正确的。 检查线路也一样重要。一辆雪铁龙轿车左前轮不升也不降,而其他三轮传动正常。检查发现该车左前空气弹簧减振器排气阀线斯开,接通线路后左前轮活动恢复正常。应该仔细看而不是走马观花的浏览,这样才能达到事半功倍的效果。 通过对油液的“闻”可知油液的品质及该系统基本的工作情况,通过对发动机的排放气体的闻,可以感觉发动机的工作情况,从而为故障判断提供指导。如一辆桑塔纳2000GSi轿车,急加速抖动严重。通过对排放气体气味的分析,认为是高压线有时断火,更换后,故障排除“闻”在维修中比其他手段用得相对较少,但并不是说它不重要,运用恰当在故障判断上可以让我们少走许多弯路。 虽然汽车发展机电一体化越来越多,汽车维修更多是靠专用的故障诊断仪器,但一些特殊故障仍然需要 经验 丰富的维修技术人员靠传统维修手段来判断故障,未来的汽车维修人员不仅仅需有外语基础,电脑常识等高科技知识,同时也应具备丰富的传统维修技术。 3 结论 从上面的分析可以看出,本文只是简单的介绍了汽车发动机比较常见的故障以及出现故障的原因和解决的方法。其实,整个汽车发动机的维修覆盖面比较广,其相应的维修技术也比较全面复杂,要熟练的掌握汽车发动机的维修技巧和相关技术,还需要学习和实践很多知识,比如电控燃油系统的检查和维修等,本文就不在此一一赘述。 参考文献: [1]朱鹦文,魏浩,章秦.探究汽车发电机维修和检测技术[J].汽车和科技,2004(1):235-248. [2]__斌,罗洛.关于汽车发电机维修技术的几点思考[J].汽车和科技,2007(2):129-137. [3]卢海.汽车发动机的维护与 修理 [J].川化,2003,(04). [4]林宝丰.汽车发动机的维护及故障排除[J].公路与汽运,2004,(05). [5]孟杰.汽车发动机的维护与保养.长春汽车工业高等专科学校,2011,6. 猜你喜欢: 1. 汽车发动机技术论文 2. 汽车的先进技术论文 3. 汽车电子技术论文范文 4. 汽车柴油机新技术论文 5. 浅谈汽车技术管理论文

设电控发动机检测与维修论文

发动机电控技术作为降低发动机排气污染,提高其动力性和经济性的一个重要手段,下面是我为大家精心推荐的汽车发动机电控技术论文,希望能够对您有所帮助。

汽车电控发动机故障检修

【摘要】本文就汽车电控发动机无法起动的故障进行分析,指出了故障诊断与排除的方法。

【关键词】电控发动机;故障;诊断;排除

中图分类号:F407文献标识码: A

随着电控燃油喷射技术的发展和维修认识水平的不断提高,现代轿车中在对装有电控燃油喷射发动机的汽车进行维修时,使用故障诊断仪对发动机电控单元(ECU)进行检测,并根据ECU存储的故障代码进行检修,大多数都能判明故障可能发生的原因和部位,会给维修人员的工作带来很大的方便。

运用数据流进行电控发动机故障的诊断,首先要打好理论基础,有了这些理论基础,在查找故障时就会找出问题的主要根源进行分析;然后要了解各传感器数据的表现形式。结合实际维修工作中的维修实例,谈谈运用“数据流”进行电控系统故障诊断的体会。

1.利用“静态数据流”分析故障

静态数据流是指接通点火开关,不起动发动机时,利用故障诊断仪读取的发动机电控系统的数据。例如进气压力传感器的静态数据应接近标准大气压力(100-102kPa);冷却液温度传感器的静态数据凉车时应接近环境温度等。下面是利用“静态数据流”进行诊断的一个实例:故障现象:一辆捷达王轿车,在入冬后的一天早晨无法起动。检查与判断:首先进行问诊,车主反映:前几天早晨起动很困难,有时经很长时间也能起动起来,起动后再起动就一切正常。

一开始在别的修理厂修理过,发动机的燃油压力和气缸压力、喷油嘴、配气相位、点火正时以及火花塞的跳火情况都做了检查,也没有解决问题。通过对以上项目重新进行仔细检查,同样没发现问题,发动机有油、有火,就是不能起动,到底是什么原因呢?

后来发现,虽经多次起动,可火花塞却没有被“淹”的迹象,这说明故障原因是冷起动加浓不够。如果冷起动加浓不够,又是什么原因造成的呢?冷却液温度传感器是否正常呢?

用故障诊断仪检测发动机ECU,无故障码输出。通过读取该车发动机静态数据流发现,发动机ECU输出的冷却液温度为105℃,而此时发动机的实际温度只有2-3℃,很明显,发动机ECU所收到的水温信号是错误的,说明冷却液温度传感器出现了问题。为进一步确认,用万用表测量冷却液温度传感器与电脑之间线束,既没有断路,也没有短路,电脑给冷却液温度传感器的5V参考电压也正常, 于是将冷却液温度传感器更换,再起动正常,故障排除。

1.1直接观察法

不使用工具,由维修人员凭借丰富的维修经验,通过向司机询问详细的情况,如,故障现象或症状;故障发生频率;是否进行过检修,以及发生故障时的外在环境(气候,道路情况、发动机情况等);要在检修时,启动发动机,听发动机的声音,并以此来检修判断是否存在漏气、杂音等现象,并判断检修部位的部件是否可正常运转;随后要对车辆进行基本项目的检查,以确定是否有故障原因存在,比如车辆的其他部件是否有损坏的地方,对于电气线路的连接器或接头是否有松动的地方,系统的导线是否存在短路,接错,烧焦的痕迹,在接线中管路是否存在折断的问题等;用试车的方法再现故障,以判定故障原因。

调取故障码:对检查车辆进行了解,掌握检查车辆的数据以及电控系统所有部件的准确位置。以及接线图,接线和检测的办法,包含检测仪器的使用;要操作中结合车辆要求的操作程序进入自诊断状态,在系统中获取到故障代码,根据提示,快速的找到发生故障的部位,并进一步检测来确定故障的存在点,并确定故障与前的现象的一致性,以对故障原因进行判断和确认。因此,调取故障码之前,要检查车辆发动机,通过基本检查,来对故障进行研究。由于车辆的车型并异让不同的车型的检查方法、条件和步骤都有不同的并异,因此要严格按照车辆说明书上的资料要求,检修车辆维修资料。

1.2环境模拟法

由于发动机电控系统的故障通常是发生在特定的环境中,而电控系统中的电子元件对于环境的变化较为敏感,如对于温度较高的环境、颠簸剧烈的环境、阴雨雪天的潮湿环境。对于环境因素的故障,又可采用三种环境模拟进行诊断。一是加热环境模拟法。基于发动机电控系统在热车时受热后易发生故障,如一些电子元件、导线束、传感器和执行器等,由于在热车时易受热,引发故障,因此要模拟环境再现。可在发动机启动后,使用电吹风等进行局部加热,假如加热到某一个电子元件时故障出现,则说明该部件与故障有关。注意:在加热时,温度不可高于60℃;对电子元件进行加热时,不可以直接加热ECU中的电子元件。二是采用加湿环境模拟法。当电控系统故障的出现时间是在阴雨的天气,刚可采用加湿模拟法来进行检测,以再现高湿度的环境。

2.利用“动态数据流”分析故障

动态数据流是指接通点火开关,起动发动机时,利用诊断仪读取的发动机电控系统的数据。这些数据随发动机工况的变化而不断变化,如进气压力传感器的动态数据随节气门开度的变化而变化;氧传感器的信号应在0.1-0.9V之间不断变化等。通过阅读控制单元动态数据,能够了解各传感器输送到ECU的信号值,通过与真实值的比较,能快速找出确切的故障部位。

2.1有故障码时的方法

可重点针对与故障码相关的传感器的数据进行,分析是什么导致数据的变化,以找出故障原因所在。

故障现象:一辆桑塔纳1.6i轿车(出租车),百公里油耗增加1L。检查与判断:车主反映:前几天换了火花塞,调整了点火正时,油耗还是高,通过与车主交流确认不是油品的问题。于是连接故障诊断仪,进入“发动机系统”,读取故障码为“氧传感器信号超差”,是氧传感器坏了吗?进入“读测数据块”,读取16通道“氧传感器”的数据,显示为0.01V不变。

氧传感器长时间显示低于0.45V的数值,说明两点:一是说明混合气稀,二是说明氧传感器自身信号错误。是混合气稀吗?通过发动机的动力表现来看,不应是混合气稀,那就重点检查氧传感器,方法是人为给混合气加浓(连加几脚油),同时观察氧传感器的数据变化情况。通过观察,在连加几脚油的情况下,氧传感器的数据由“0.01V”微变为“0.03V”,也就是说几乎不变,进一步检查氧传感器的加热线电压正常,说明氧传感器损坏。更换氧传感器,再用诊断仪读其数据显示0.1-0.9V变化正常,至此维修过程结束。第二天,车主反映油耗恢复正常,故障排除。这是一起典型的由氧传感器损坏引起的油耗高的故障。

2.2无故障码时的方法

通过对基本传感器信号数据的关联分析和定量对应分析来确定故障部位。

故障现象:一汽佳宝微面,加速无力、加速回火,有时急加速熄火。检查与判断:初步判定是混合气过稀,为了证明这一点,我用两个方法进行了验证。

一个方法是拆下空气滤清器,向进气道喷射化油器清洗剂,与此同时进行加速试验,明显感到加速有力,也不回火,故障现象消失,这可以证明混合气过稀的判断;另一个方法是连接诊断仪,读取故障码,显示无故障码;读取数据流,观察氧传感器的数据,显示在0.3-0.4V左右徘徊,加几脚油门,氧传感器数据立即越过0.45V上升到0.9V,然后其数据又回到0.3-0.4V左右徘徊,这说明氧传感器是好的,因为它在人为对混合气加浓后,数据反应及时,变化正常,同时也证明混合气确实是过稀。是什么原因造成混合气过稀呢?通过分析,主要考虑进气压力传感器和燃油系统油压。首先判断进气压力传感器,进入“读测数据流”,读取进气压力传感器的数据,显示:静态数据1010mbar,为大气压力,正常;怠速时为380mbar,基本正常;急加速时数据可迅速升至950mbar以上,这些数据及其变化都表明,进气压力传感器基本正常。接下来开始检测油压,但由于油压表坏了,无法测量燃油系统油压,只好直接更换油泵。更换油泵后试车,故障现象消失,故障排除。最后的结果说明故障是因为油泵的供油能力不足导致混合气过稀而造成的。

3.结束语

运用“数据流”进行故障分析,便于维修人员了解汽车的综合运行参数,可以定量分析电控发动机的故障,有目的地去检测更换有关元件,在实际维修工作中可以少走很多弯路,减少诊断时间,极大地提高工作效率。

参考文献:

[1]张龙发.汽车发动机电控技术与检修[M].北京:电子工业出版社,2007.

[2]沙莎.浅谈汽车电控发动机的维修方法[J].黑龙江科技信息,2011(28):28.

[3]刘晓明.浅谈电控发动机常见故障及检修[J].黑龙江国土资源,2011(6):51.

点击下页还有更多>>>汽车发动机电控技术论文

对于汽车来讲,发动机是核心部件,关系到汽车的整体性能,在汽车组成上非常关键。下面是我为大家精心推荐的汽车发动机的检测与维修技术论文,希望能够对您有所帮助。

汽车发动机的检测与维修

【摘要】对于汽车来讲,发动机是核心部件,关系到汽车的整体性能,在汽车组成上非常关键。为了保证汽车的正常行驶,我们要对汽车发动进行正常的维护和保养,在出现故障的时候要及时进行检测和维修。通过研究发现,在目前汽车发动机的检测与维修中,大部分故障主要表现为七个部分,分别为:曲柄连杆机构故障、配气机构故障、化油器式燃料供给系故障、电控燃油喷射系统故障、柴油机燃料供给系故障、润滑系故障、冷却系故障。这七个部分的故障属于发动机在运行过程中常见的故障,我们在汽车发动机的检测与维修中,要重视对这些故障的分析和判断,并制定详细的维修方案,保证汽车发动机故障得到妥善处理。

【关键词】汽车 发动机 检测 维修

1汽车发动机的整体结构分析

对于汽车发动机来讲,整体结构分为两个主要机构和五个子系统。其中两个机构主要是指曲柄连杆机构和配气机构,五个子系统主要是指燃料供给系统、点火系统、冷却系统、润滑系统、启动系统。

曲柄连杆机构不但是实现热能转换的核心,也是发动机的装配基础。曲柄连杆机构在做功行程时,将燃料燃烧以后产生的气体压力,经过活塞、连杆转变为曲轴旋转的转矩,然后,利用飞轮的惯性完成进气、压缩、排气3个辅助行程。曲柄连杆机构由气缸曲轴箱组、活塞连杆组和曲轴飞轮组3部分组成。

配气机构作用是根据发动机的工作顺序和各缸工作循环的要求,及时地开启和关闭进、排气门,使可燃混合气(汽油发动机)或新鲜空气(柴油发动机)进入气缸,并将废气排入大气。

汽油机燃料供给系统的作用在于根据发动机不同工作情况的需要,将纯净的空气和汽油配制成适当比例的可燃混合气,送入各个气缸进行燃烧后将所产生的废气排入大气中。柴油机燃料供给系的作用是把柴油和空气分别供入气缸,在燃烧室内形成混合气并燃烧,最后将燃烧后的废气排出。

点火系统主要指在汽油机中,气缸内的可燃混合气是靠电火花点燃的,为此在汽油机的气缸盖上装有火花塞,火花塞头部伸入燃烧室内,能够按时在火花塞电极间产生电火花的全部设备。

冷却系统的功能在于将受热零件吸收的部分热量及时散发出去,保证发动机在最适宜的温度状态下工作。

润滑系统的功能是向作相对运动的零件表面输送定量的清洁润滑油,以实现液体摩擦、减小摩擦阻力、减轻机件的磨损。并对零件表面进行清洗和冷却。

曲轴在外力作用下开始转动到发动机开始自动地怠速运转的全过程,称为发动机的起动。完成起动过程所需的装置,称为发动机的起动系统。

2对汽车发动机进行定期检测的必要性

由于汽车发动机在运行的时候处于高温高压状态,运行工况比较恶劣,在这种状态下长期运行之后,发动机的各个机构和系统,难免会有所损伤。因此出于保护发动机配件,延长发动机寿命的原因,我们必须对汽车发动机进行定期的检测,其必要性主要表现在以下几个方面:

2.1汽车发动机的整体结构决定了必须进行定期检测

由于汽车发动机的整体结构比较复杂,主要分为两大机构和五个子系统,在运行的过程中,这些机构是相互连接共同作用,任何一个机构或系统如果出现故障,都会引起发动机的瘫痪,造成发动机无法正常使用。因此,为了保证汽车发动机能够保持正常运行状态,就需要定期对发动机进行检测,用来检测其主要机构和系统是否存在故障和安全隐患。

2.2汽车发动机的运行条件决定了必须进行定期检测

在汽车发动机中,两大机构和五个子系统在运行的过程中,处于高温高压的状态之下,运行条件十分恶劣,对机构和配件的磨损也是比较大的。在这种状态之下,如果不对汽车发动机进行定期检修,则无法及时发现机构和配件的薄弱之处,将会诱发发动机运行故障,进而损伤发动机的整体寿命。所以,我们要采取定期检测的方式,对发动机进行检测和维修。

2.3汽车发动机的寿命需要决定了必须进行定期检测

汽车发动机在运行过程当中,为了保证正常运行并适当延长其寿命,需要我们按照保养要求和使用需要,对其进行定期的检测。在汽车发动机的使用过程中,有时候忽略了定期的检测和维修,导致了汽车发动机机构和配件损坏,影响了发动机的整体使用寿命,对发动机造成了永久的伤害。因此,为延长发动机寿命的实际需要,我们要对发动机进行定期的检测。

3汽车发动机常见故障分类

通过对汽车发动机的实际检测和维修发现,其常见故障主要分为以下几种:

3.1发动机敲缸以及内部出现异响

发动机敲缸是比较常见的故障,主要原因是其中曲柄机构发生了故障引起的,主要是曲柄机构中的配件在运行的过程中变形或者移位,导致了敲缸和内部异响的出现。

3.2气门有漏气现象,气门出现异响

气门出现漏气或者异响,证明气门封闭不严,或者气门系统的配件发生了故障,对于这种故障我们可以通过定期检测排查出来,做到提前发现提前解决。

3.3怠速运转不良

发动机在启动之后处于怠速状态,我们通过对怠速状态的观察,可以很好的了解发动机的运行状态。通常怠速运转不良都是发动机整体故障的前兆。

3.4发动机不能启动,加速不良

正常状态下发动机应该能够正常启动,并且保持持续的线性加速。但是由于内部启动机构的损坏,会导致不能正常启动,这时我们就要对启动系统进行仔细检查。

3.5机油压力异常,消耗异常

发动机在正常状态下,所消耗的机油和燃油维持在固定的水平,如果出现烧机油和燃料消耗异常的情况,则表明发动机润滑效果不好,内部机构出现了严重的磨损。

3.6发动机过热或过冷,有漏水现象

发动机要想保持平稳运行,其缸体温度是比较固定的。如果发动机出现过热或者过冷的情况,并伴有漏水的现象,我们就必须及时对发动机进行开缸检修了。 3.7发动机启动困难,发动机动力不足,怠速不稳

发动机如果出现启动困难,并且伴有怠速不稳,进而整体动力不足的情况,则表明发动机的启动系统和运行系统出现了问题,我们要针对启动系统进行重点检修。

3.8排气管出现噪声,有漏气现象

发动机正常运行的时候,排气管是没有噪音的,所排出的尾气也达到排放标准。如果排气管出现噪声并伴有漏气现象,证明排气系统出现故障,我们要对排气系统进行检修。

4汽车发动机典型故障维修方案分析

(1)发动机敲缸故障现象:主要的故障表现是发动机在怠速状态下出现强烈的敲击声音。在发动机冷启动的时候敲击声音比较明显,在发动机热车以后,响声逐渐消失,在发动机熄火之后敲击声彻底消失。故障原因分析:之所以会出现敲击声,主要原因在于缸体内的活塞与气缸存在一定的间隙,或者是由于活塞销子与连杆衬套过紧导致的,最终引起连杆变形而引起缸体敲击声的出现。

故障排除办法:利用气缸专用听诊器听取敲击声音,并调整活塞与气缸缸体的间隙,或者调整活塞销子与连杆衬套的松紧度。

(2)活塞销出现异响的故障现象:活塞销异响主要是指在发动机怠速和中速运行的过程中,随着转速的增加出现嗒、嗒的杂音,发动机温度升高之后响声随之消失。对其原因进行分析后发现,主要原因在于活塞销与连杆衬套太过松散,没有实现与活塞销座孔的紧密配合。

故障排除办法:利用听诊器判断声音位置,并适当调整活塞销与其他部件的孔距。

(3)连杆轴承部位出现异响的故障现象:发动机在平稳运行的时候一切正常,只有在突然加速的过程中,会出现连续的敲击声,如果发动机熄火,则敲击声随之消失。对其原因进行分析后可知:造成此种异响的原因主要是连杆轴承盖的位置螺栓出现了松动,造成了连杆轴承与轴颈出现磨损,进而影响轴承的润滑,最终导致轴承合金脱落。

故障诊断与排除:利用听诊器判断声音位置,进而对所在位置的连杆及配套件进行维修。

(4)主轴承异响故障现象的发生:主要是指发动机在急加速的时候轴承部位出现敲击声,整个发动机发生较大震动,异响随着转速的加大而变大。其根本原因在于轴颈与轴承过度磨损导致了间隙较大,造成了主轴承盖螺栓松动。

故障诊断与排除:利用听诊器直接听气缸的下半部,找出异响位置,更换配件。

5结语

通过本文的分析可知,对于汽车发动机而言,要想保证其正常使用,并有效延长寿命,就要定期的对其进行检测与维修,同时积极采取维修措施,对发生的故障进行检测和维修,保证发动机能够正常使用。通过本文故障排除方法的介绍,让我们对汽车发动机的检测与维修有了更深的认识。

参考文献:

[1]刘志忠.自动变速器故障的系统分析诊断法[J].河北交通科技,2005年03期.

[2]翁荣伟.浅谈汽车发动机故障诊断专家系统[J].科技资讯,2007年15期.

[3]刁一峰,唐进,刘红武.数控机床FANUC伺服系统故障诊断与排除方法[J].电气技术;2008年10期.

[4]苟新超,唐世应,唐咏,周川.滑动轴承故障诊断案例[J].冶金动力,2008年06期.

[5]冯志鹏.计算智能在机械设备诊断中的应用研究[D].大连理工大学,2003年.

[6]苗海滨,任新广.尖峰能量谱技术用于滚动轴承故障诊断[J].设备管理与维修,2008年05期.

点击下页还有更多>>>汽车发动机的检测与维修技术论文

去百度文库里有我去年写的一篇论文,可以参考一下,名字是奇瑞qq3电喷系统分析,介绍的是发动机传感器的,可以下载的哦

利用尾气分析发动机的故障有一辆1995年生产的尼桑蓝鸟轿车,故障现象是冷车时挂挡后踩油门有轻微的冲击,怠速不良,做过许多检查和修理,始终不能解决问题。该车最初进厂修理是因为冲洗发动机后不能着车,拖进厂后检查发现点火系统进水,进行请洁干燥之后重新装复,车虽然着了,但是怠速有些不稳。经过检查发现高压线有漏电现象,分火头和分电器盖也有些烧蚀。征得用户同意后对上述部件进行了更换,发动机故障基本排除,但用户反映车不好用,冷车挂档后踩油门有轻微的冲击。虽然故障现象非常不明显,但用户执意要求检修,并声称如果问题不能解决,就要把前面的修理费用免掉。我接到这辆车时正是热车,由于一时不能验证故障现象,便先根据用户描述的情况进行分析,认为故障可能出在油路上。随后在热车状态下进行无负荷测试尾气,测试结果如下:怠速时HC为275ppm(标准值为220ppm),CO为0.3%(标准值为1.2%);高怠速时HC为120—150ppm,CO为0.3%一0.5%(该厂仅有一台两气废气分析仪)。测量气缸压力,各缸压力正常。进行气缸功率平衡测试,各缸工作都正常。进行断缸测试,各缸HC和CO值变化都一样。从上面的数据当中是否可以发现问题呢7当然可以。尽管两气尾气分析仪本身没有数据分析和混合比浓度测试的功能(一般四气尾气分析仪可以通过CO,、O2以及过量空气系数入直接看出混合比浓度),但通过数据可以看出,这辆车的尾气排放偏低,对于没有安装氧传感器和三元催化器的车辆来说是太低了。CO含量高一般是因为混合比偏浓,而CO含量太低的一个主要原因是混合比偏稀。根据这个思路,我将该车的尾气调高,将CO调到1.0,HC调到200ppm。当车完全冷却后再次进行检测,尾气排放没有超标,原来的故障现象也彻底消失了。各系统故障的方法,其目的是对发动机的燃烧状况进行综合评价。尾气分析的主要内容有混合气空燃比、点火正时及催化转化器转化效率等,主要的分析参数有CO、HC、CO2,和O2等的含量,还有空燃比(A/F)或过量空气系数入。尾气分析的项目如表1所示。二、尾气分析的基本规则HC和O2的读数高,是由点火系统不良或混合气过稀失火引起的。当测试的CO、HC值高,而C02、02值低时,表明发动机工作混合气很浓。如果燃烧室中没有足够的氧气保证正常燃烧,通常情况下,CO2的读数和CO的读数相反。燃烧越完全,CO2的读数就越高,其最大值在13.5%—14.8%之间,此时CO的读数应该等于或接近于0.O2的读数是最有用的诊断数据之—,02的读数和其它3个读数一起,能帮助找出故障诊断的难点。通常,装有催化转化器的汽车,O2的读数应该是1.0%—2.0%,说明发动机燃烧很好,只有少量未燃烧的02通过气缸排出。如果02的读数小于1.0%,则说明混合气太浓,不利于燃烧。如果02的读数超过2%,则说明混合气太稀。利用功率平衡试验(根据制造厂的使用说明)和四气尾气分析仪的读数,可以看出每个缸的工作状况。如果每个缸C0和C02的读数都下降,HC和C02的读数都上升,且上升和下降的量都一样,则证明每个缸都工作正常。如果只有一个缸的变化很小,其它缸都一样,则表明这个缸点火或燃烧不正常。一个调整好的闭环控制电控汽车的尾气排放中,HC的含量大约为55~100ppm,CO应低于0.5%,O2为1.0%~2.0%,C02为13.8%~15.0%。汽车尾气测试值与系统故障的判断分析如表2所示。三、几种常见的气分析仪汽车尾气分析仪有两气、四气和五气等多种类型,下面分别进行介绍。两气尾气分析仪两气尾气分析仪是用来测量汽车尾气排放中C0和HC的体积分数的。但是,如果一辆车的排气管或尾气分析仪的测量管路有泄漏,那么所检测到的就是被外部空气稀释了的尾气,C0和HC的测量值将降低,自然就不能反映尾气的真实含量。目前国内所用的两气尾气分析仪大多都不具有检查自身泄漏的功能,因此即使用两气尾气分析仪测量车辆尾气,也不能真实地反映出发动机的故障来。2.四气尾气分析仪随着装有三元催化转化器和电子控制系统汽车的增多,汽车的排放标准也更加严格,因此需要更精确地测量尾气并诊断车辆排放超标的原因。四气尾气分析仪不仅具备两气尾气分析仪的所有功能,而且还能进行故障诊断和分析,它除了能测量C0和HC外,还能测量C02和02、发动机油温、转速等,以及计算过量空气系数入和空燃比A/F等。所以四气尾气分析仪不仅可作为环保检测仪器使用,作为发动机故障检测分析的诊断工具也非常有用。对于几种尾气的分析,前面我们已经做过阐述,在这里只对过星空气系数入进行简要的说明。过星空气系数入可以直观地告诉我们空燃比的情况,从理论上讲,混合气的过星空气系数入=1最为标准,但实际上不可能没有变化,所以一般情况下入被设计为0.97—1.04(有些车有具体说明),可以看成是理想的匹配。若入大于该值,说明空燃比过大,混合气过稀;若入小于该值,则为空燃比过小,混合气过浓。四气尾气分析仪还可提供发动机转速(RPM)和发动机温度(TEMP)参数,作为故障诊断时的参考数据o五气尾气分析仪当C0和HC降低时,可能会引起尾气中的N0x浓度升高,若要监测N0x的浓度,就得使用五气尾气分析仪。而且,N0x常常是在高温大负荷的情况下产生的,若没有底盘测功机,就只能靠路试去测量。四、几个应用实例一辆捷达轿车,装备ATK新2气门发动机,配有三元催化转换器。用户反映该车发动机工作不稳,测量尾气排放严重超标。捷达新2气门ATK发动机采用电子控制多点顺序燃油喷射管理系统,该系统是一个集喷油、点火、怠速、爆震、空调、自我诊断及陂行回家等功能于一体的闭环集中控制系统。根据该车故障现象,首先检查火花塞,发现火花塞间隙偏大,更换新件后,尾气排放情况略有好转,但未得到明显改善。连接故障诊断仪V.A.G1552对发动机电控系统进行检测,调出1个故障码(氧传感器)。按故障码的提示,检查氧传感器至发动机电脑的连接线束,未发现短路、断路情况,于是将氧传感器更换。随后试车,继续测量尾气,尾气排放指标依然偏高,但发动机电控系统已无故障显示。用燃油压力表测量喷射系统压力,发动机怠速时油压为250kPa,急加速时为300kPa;关闭点火开关10min后,系统保持压力为200kPa,以上各项数据均正常。接下来拆下喷油嘴进行超声波清洗,测量其电阻值为15Ω,也符合标准。连接压力机,观察喷油嘴雾化状态良好,检查喷油嘴连接线束,也无短路、断路情况。继续检查点火系统,用万用表测量点火线圈、高压线电阻均正常。将发动机恢复后试车,故障依旧。用V.A.G1552查寻故障存储,仍没有故障码出现。在读取测量数据时,观察到氧传感器信号电压在0.2—0.8V之间变动,属正常;进气压力传感器的数据也符合标准。于是怀疑三元催化转换器有问题,将其更换后试车,尾气排放依然超标。检查配气相位,正时标记正确;怀疑汽油质量有问题,清洗油箱及管路并更换优质汽油后,情况丝毫不见好转。经仔细观察发现:如果起动发动机后怠速运转而不进行路试,尾气排放基本合格;路试约2km后尾气排放指标升高;若每次起动间隔时间超过30min,怠速测量基本合格。根据上述情况,决定更换发动机电脑,但将电脑更换了也无济于事。其它部分是否存在问题呢?于是抱着试试看的想法,拆下排气歧管进行检查,并与新的排气歧管进行比较,发现该车氧传感器的排气取样孔偏小。换上新的排气歧管进行尾气检测,各项指标显著降低。对该车进行路试,尾气排放依然合格。恢复该车所换的其它配件,继续试车,尾气排放始终未超标。由此可以断定,故障部位就在氧传感器排气取样孔。由于从气缸内排出的废气处于高速流动状态,行至氧传感器取样孔处时形成涡流,导致排出的废气不能及时在此处更新,使氧传感器不能准确地向发动机电脑反馈同步信号,造成发动机电脑不能根据实际工况对喷油脉宽进行正确修正,最终出现发动机工作异常,尾气排放严重超标的故障。有一个时期,曾有一批车出现过此类故障,都是由于进行尾气改造后,氧传感器取样孔打得不合适,导致氧传感器不能有效采集尾气,造成信号失准。一辆装备5S—FE发动机的丰田佳美轿车,发动机怠速不稳,经常熄火。该车采用TCCS发动机电子控制系统。首先调取故障代码,仪表板上的发动机故障指示灯显示为正常代码。用四气尾气分析仪进行检测,仪器显示的检测结果如表3所示。由检测结果可以看出:HC和02都较高,这是空燃比失衡的一个重要特征;C0值较低,而C02在峰值,这说明可燃混合气已充分燃烧,点火系统应该不会有什么问题;入值较高。综合分析表明,该发动机工作时的混合气偏稀,因此应从进气系统和供油系统着手进行故障检查。对车辆进行检测:真空管无漏气、错插现象;PCV阀密封良好,机油尺插口良好。起动发动机,将化油器清洗剂喷在进气管垫和EGR阀周围,发现随着转速上升,怠速逐渐稳定。取下EGR阀,发现针阀周围有少量积碳,EGR阀通道上有很多积碳,针阀不能落入阀座,致使进气歧管的混合气被废气稀释,从而怠速不稳,发动机容易熄火。对EGR阀进行彻底清洗,并换上新垫,起动发动机,一切恢复正常。再次用尾气分析仪进行检测,结果如表4所示,所有数据都在标准范围之内,故障排除。从这个故障诊断实例可以看出,在对有故障的车辆做完必要的常规检查之后,使用尾气分析仪可以很快发现故障的本质原因,缩小检修范围。一辆广东三星6510汽车,套装97款克菜斯勒道奇3.3L发动机,行驶里程为140000km。故障现象:挂档轻加油门至1200r/min时有时熄火,不熄火时怠速降至400—500r/min甚至更低;急加油门没有任何故障,熄火后起动容易。故障分析:试车过程中,没有明显的断油或断火的感觉,但总感觉进入的空气量不够用。经检查,怠速系统没有任何故障,怠速马达在其它修理厂进行过替换试验,没有问题;节气门体也进行过更换试验,没有问题;用额外补充进气量的办法(断开一个节气门体后面的真空管),同样没有解决任何问题。原地不挂档加油门试验,无论怎样试验均没有任何故障征兆,发动机转速从1200r/min到800r/min下降非常平稳。怀疑是进气压力传感器有故障,有可能缓加油门时不能很好地感知进气量,所以使用检测仪的数据流功能,对各个数据进行实时观察,没发现有错误的数据流,MAP数值正常。对供油系统和点火系统进行仔细检查和测量,均没有发现任何故障。到现在为止应该说仅是凭经验感觉一点故障线索,那就是感觉好像进气量太少。既然怀疑是因为进气量太少造成的故障,那么通过尾气检测一定可以发现一些线索,所以对尾气进行了测量,怠速时的检测结果如表5所示。通过测量结果我们可以发现,混合气偏稀(入大于1.03),燃烧比较好 (CO2较高,接近于15%)。通过上面的分析,可以间接证明该车进气或者供油系统有故障。为了检验这一分析,将所有影响进气量或感知进气量的元件一一列出,采取逐步分析排除的办法确定故障元件。这些元件有:怠速马达、节气门体及其传感器、MAP传感器、EGR阀。前几种元件已经检验和试验过, 目前只剩下EGR阀没进行过检验。EGR排气再循环阀的功用是在发动机工作过程中,将一部分废气引到吸入的新鲜空气(或混合气)中返回气缸进行再循环,以减少N0x的排放量。因为N0x主要是在高温富氧条件下生成的,废气为惰性气体,在燃烧过程中吸收热量,这样将降低最高燃烧温度,也减少了N0x的生成量。但是过度的排气再循环会影响发动机的正常运行,特别是在怠速、低速小负荷及发动机冷态运行时,参与再循环的废气会明显降低发动机的性能。因此应根据工况及工作条件的变化,自动调整参与再循环的废气量。根据发动机结构不同,进入进气歧管的废气量一般控制在6%—13%之间。在EGR系统中,通过一个特殊的通道将排气歧管与进气歧管连通,在该通道上装有EGR阀,通过控制EGR阀的开度来控制参与再循环的废气量(如图1所示)。EGR阀开启或关闭是由阀上方真空气室的真空度来控制的,而真空度则由受ECU控制的EGR真空电磁阀控制。EGR电磁阀受ECU控制,ECU根据发动机转速、空气流量、进气管压力、温度等信号控制EGR电磁线圈通电时间的长短,以此来控制进入EGR阀真空气室上方的真空度,从而控制EGR阀的开度,改变参与再循环的废气量。装有背压修正阀的EGR排气再循环系统,在EGR(真空)电磁阀与EGR阀间的真空管路中装有一个背压修正阀,其功用是根据排气歧管中的背压附加控制月F气再循环。即当发动机在小负荷工况,排气背压低时,背压修正阀保持EGR阀处于关闭状态,不进行排气再循环;只有在发动机负荷增大,排气歧管背压增大时,背压修正阀才允许EGR阀打开,进行排气再循环。排气歧管的背压通过管路作用在背压修正阀的背压气室下方,当发动机处于小负荷工况,排气背压低时,在阀门弹簧的作用下气室膜片向下移动,使修正阀门关闭真空通道,此时EGR阀在其阀门弹簧作用下保持关闭,因而不进行排气再循环;当发动机负荷增大,排气歧管背压升高时,修正阀背压气室下方的背压升高,使膜片克服阀门弹簧弹力向上运动,将修正阀门打开,由EGR电磁阀控制的真空通过背压修正阀进入EGR阀上方真空气室,将EGR阀吸开,月F气再循环通道打开,废气进行再循环。EGR电磁阀受ECU控市IJ,ECU根据转速信号、进气压力信号、水温信号、空气流量信号等,通过控制EGR电磁阀的开度来控制进入EGR阀的真空度,从而控制EGR阀的开度,改变参与再循环的废气量。通过上面的EGR阀工作原理分析可知,EGR在怠速工况和小负荷情况下是不参与工作的,否则会有一部分尾气进入燃烧室,不但会降低燃烧室的温度,还会恶化燃烧环境,阻碍新鲜空气的进入。故障排除:更换EGR阀,故障彻底消失。一辆奥迪A6轿车,装备2.8LJV6电控发动机,怠速时有轻微抖动,并且加速迟缓。故障检查:检测点火波形基本正常,但稍有不稳。测量尾气,C0为0.3%一0.5%,HC为200一500ppm,且在此范围内波动。用V.A.G1552检测仪检查,无故障代码输出。用V人.G1552故障检测仪进行数据流检测,发动机电控系统运行参数正常。检测结果分析:根据对客户的询问和加速迟缓的症状,应考虑对喷油器进行清洗;C0值正常,HC值虽然符合排放污染物的限制标准,但该车装有氧传感器和催化转化器,其C0值应低于0.5%,HC应低于100 ppm,而检测结果表明该车HC值高于此,标准且有波动,从出厂标准考虑为不正常,因此考虑发动机可能有失火现象,应进一步检查点火系统是否有轻微断路或短路,特别是短路故障。故障检修:清洗喷油器,观察各缸喷油器的雾化状况和流星的均匀性,均良好。检查点火系统,发现有一个缸的高压线有轻微短路(漏电)现象,为此更换了高压线。因火花塞间隙偏大,也同时更换了。复检发动机抖动稍有改善,但未彻底消除;尾气检查HC值下降不大,并仍有波动,分析认为故障仍可能是失火所致。为了进一步诊断故障,分别在左、右两侧月F气歧管氧传感器旁边的尾气检测口(该口通常用一个螺栓密封)进行检测,结果发现:左侧气缸排出的尾气C0值在0.5%左右,HC值在125ppm左右(因在催化转化器前测量,其值会比在月F气民管测量值稍高),且波动极小;右侧气缸排出的尾气中C0值也在0.5%左右,但HC值却在125—250ppm之间,且时有波动。因此间题应在右侧气缸中。为此检查右侧气缸的高压线和火花塞,发现第2缸火花塞的3个电极中有一个间隙过小,调整后重新安装,故障完全消除,尾气检测值也符合出厂标准。目前,安装催化转化器的车型越来越多,测量尾气有时比较困难,在不能很好分析故障的时候,可以尽量在催化转化器前方测量,这样可能更真实地反映发动机的排放情况。同时,还应将催化转化器前、后的测量结果加以比较,以便判断催化转化器的转化效率是否正常。一辆奔驰S320轿车,发动机怠速不稳,抖动严重,但加速正常。故障检测:调取该车故障代码,显示为正常代码;用示波器测试点火二次波形,结果正常;对各缸气缸压力进行测试,均在标准范围之内;进气及真空系统不漏气;用四气尾气分析仪检测尾气,发现怠速时数据很不稳定,第1组数据如表6所示,4种气体的检测数值全都较高。再次测试,其数据如表7所示。检测结果分析:将上述检测结果进行对比分析发现,HC和Co总是同时升高或降低,C02时高时低,燃烧效率很不稳定,02不能充分参与反应,数值一直较高。从而可以判定为混合气的形成与燃烧环境十分恶劣。推测是喷油器堵塞,导致喷油器针阀与阀座配合不密封,各缸喷油器在应该喷油时不喷油或少喷油,而在不需喷油时却持续喷油,因而造成供油不正常,致使4种气体的检测数据极不稳定。故障检修:做喷油脉冲宽度试验,怠速时为3.5ms,在正常范围内。拆下各缸喷油器检查,果然每个喷油器都有不同程度的堵塞。经过彻底清洗,装复试车,一切恢复正常。从该故障的检修过程可以看出,在燃油系统的检查中,利用尾气分析仪可以省去一些检修环节,如油压的测试,燃油泵、油压调节器和燃油滤请装置的检测。换个角度来考虑,假如在应急修理中,在未做相关检查之前,就用尾气分析仪进行检测,也许在诊断一开始就能找到故障点。一辆奥迪100型轿车,装备2.6LV6电控发动机,运转时严重抖动,加速无力,排气管排出的气体气味呛人。故障检测:用V.A.G1552微机故障检测仪对发动机电控系统进行检测,存在故障代码,故障代码的含义是“右侧燃油自适应修正已达极限”。用V.A.G1552微机故障诊断仪对发动机电控系统进行数据流检测,发现左、右两侧的燃油修正因数相差过大,左侧为—3.8%—0%,而右侧为10%—12.9%。用发动机综合分析仪检查点火系统并进行气缸压力分析,发现第3缸点火波形的击穿电压较低,且该缸气缸压力偏低(气缸压力相差过大也会导致发动机抖动)。用尾气分析仪检测尾气,Co为0.9%—1.3%, 而HC高达2800—2900 PPmo检测结果分析:根据检测结果可认为右侧混合气过稀,控制电脑对右侧燃油系统进行连续加浓且已达到修正极限。为判断是否是由于右侧氧传感器的信号导致这种结果,先对左、右两侧的氧传感器信号及其对空燃比变化的反应、电控单元对氧传感器信号变化的响应能力进行测试。为此,人为地制造混合气过浓和过稀的状态,发现氧传感器和电控单元的功能均正常,因此可以认为故障是控制系统以外的原因导致的。根据上述检测结果,点火波形基本正常,可以认为点火系统正常,但HC过高表示失火,因此可以认为这种失火很可能是由于混合气过稀,超出着火界限所致。但从尾气中的Co值看,实际混合气并不过稀,因此判断故障很可能是进气系统漏气所致。测量气缸压力,发现第3缸压力比其它缸低约100kPao故障检修:在拆解进气歧管时,发现进气歧管垫的实际压合面宽度只有1mm左右(至少应有4—5mm),其原因是进气歧管的安装面为v形,在安装密封垫后,再安装进气歧管时,由于不小心使该垫下滑,从而减小了密封带,导致严重漏气,即使燃油修正已达到极限,但仍无法完全补偿,这是机械原因导致的故障。将上述故障点彻底排除后试车,故障排除。一辆上海别克G轿车,故障症状是发动机排气冒黑烟。诊断与排除:大修发动机后试车,开始时一切正常,只是排气管接口垫有些轻微漏气。继续试车发现,发动机热车后出现怠速不稳、加速不畅现象,同时故障灯点亮报警。经检查,显示故障码为四131,即氧传感器故障。发动机热车运转时就车测量(不拔下括头),氧传感器电压为0.28V且不变化,更换一个氧传感器后,发动机刚着车时还好,但运转一会儿后故障重现,怠速不稳,排气管冒黑烟。拆下火花塞检查,发现已有积碳,更换一组新火花塞后,运转约半小时,怠速又不稳,检查火花塞又被积碳糊死。此时故障灯再次点亮,经检查显示故障码P0171,即混合气太稀。因更换氧传感器后故障不但没有好转反而加重,所以修理工认为故障不在氧传感器。经测量,油压正常,又检查、试换7空气流星、水温、节气门位置等传感器,故障始终未能排除,于是回过头来再检查新换的氧传感器。经就车测量,氧传感器电压为0.18V左右,与用检测仪查到的数据相同,证明检测仪可以完全接收到氧传感器电压。断开氧传感器括头,测量PCM端接线,电压只有0.32V(理论值为0.45V),于是怀疑电路有故障或PCM损坏。用尾气分析仪检查尾气,发现在怠速时C0含量接近4%,HC达到300ppm左右。通过尾气分析可以认为此时的混合气不是太浓。就车测量氧传感器,电压仍旧很低(这种现象又可以解释为混合气过稀)。断开氧传感器括头,用数字万用表测量PCM端电压为0.44V,说明线路及PCM基本情况正常。为什么会出现浓、稀两种截然不同的解释呢7难道是新换的氧传感器有故障7于是,使用模拟器模拟氧传感器数值的功能。将模拟器的绿色氧传感器专用线和黑色连线连接在车上氧传感器的输出回路上;将中间功能选择开关置于Knock/0xy位置;将右侧功能选择开关置于VoHs/0xy位置;使发动机起动运转,然后打开SST皿,此时SST皿4寄产生一个0.15V的恒定的连续信号来模拟稀混合气状态下的氧传感器发出的信号;按下模拟器上方的“0(y”键,模拟器将产生一个0.85V的恒定的连续信号来模拟浓混合气状态下的氧传感器发出的信号;在使用模拟器模拟7氧传感器后,再用检测仪读取数据流,发现氧传感器的输入信号也一同变化;当模拟器的电压较长时间为0.85V时,观察尾气的C0值降为0.65%,说明PCM对系统的控制完好,故障原因还是在氧传感器。将氧传感器安装到其它车辆上进行试验,没有发现任何故障,数据流、燃烧、尾气、行驶都很正常。通过上面的试验可以证明:系统几乎没有故障,问题的原因在于氧传感器信号。因为此车有漏气现象,会不会是因为排气包漏气,导致排气包中形成负压,将外界的真空引进排气系统当中了呢7经检查ldF气系统确有漏气之处,将排气管修好之后试车,故障排除。

新能源汽车驱动电机检测论文

近年来,伴随着行业的发展,新能源 汽车 逐渐被广泛使用,各大厂商也推出了自家的明星产品。电机作为电动 汽车 最重要的部件之一,各大厂商纷纷选择各类电机运用在自家的产品上。而不同的电机到底有什么差别?又各自被运用到哪些车型上去了?

什么是电机? 所谓电机,就是将电能与机械能相互转换的一种电力元器件。 当电能被转换成机械能时,电机表现出电动机的工作特性;当机械能被转换成电能时,电机表现出发电机的工作特性。大部分电动 汽车 在刹车制动的状态下,机械能将被转化成电能,通过发电机来给电池回馈充电。 电动机的发展状态及分类 电动 汽车 经常采用的驱动电机有 直流电机、异步电机、永磁同步电机和开关磁阻电机四类 。 直流电动机 最早应用于电动 汽车 的是直流电机,这种电机的特点是控制性能好、成本低。随着电子技术、机械制造技术和自动控制技术的发展,异步电机、永磁同步电机和开关磁阻电机表现出比直流电机更加优越的性能,这些类型的电机正在逐步取代直流电机。

优点:成本低、易控制、调速性能良好 缺点:结构复杂、转速低、体积大、维护频繁 特性: 在电动 汽车 发展早期,直流电机被作为驱动电机广泛应用,但是由于其结构复杂,导致它的瞬时过载能力和电机转速的提高受到限制,长时间工作会产生损耗,增加维护成本。

此外,电动机运转时电刷冒出的火花使转子发热,会造成高频电磁干扰,影响整车其他电器性能。因此,目前电动 汽车 行业已经基本将直流电动机淘汰。 应用代表车型:早期部分车型 小结:基本上处于淘汰阶段,应用车型都是早期上市车型。 永磁同步电机

永磁式电动机根据定子绕组的电流波形的不同可分为两种类型,一种是无刷直流电机,它具有矩形脉冲波电流;另一种是永磁同步电机,它具有正弦波电流。

这两种电机在结构和工作原理上大体相同,转子都是永磁体,减少了励磁所带来的损耗,定子上安装有绕组通过交流电来产生转矩,所以冷却相对容易。由于这类电机不需要安装电刷和机械换向结构,工作时不会产生换向火花,运行安全可靠,维修方便,能量利用率较高。

永磁式电动机的控制系统相比于交流异步电机的控制系统来说更加简单。但是由于受到永磁材料本身的限制,在高温、震动和过流的条件下,转子的永磁体会产生退磁现象,所以在相对复杂的工作条件下,永磁式电机容易发生损坏,故这一块还有待继续发展改善。

而且永磁材料价格较高,因此整个电机及其控制系统成本较高,目前只有稀土资源丰富的中国比较倾向于使用永磁电机的电动 汽车 驱动方案。像日本、欧洲,要么是使用轻稀土的永磁材料做永磁电机,要么是直接改用无需稀土材料但对控制器设计要求更高的开关磁阻电机。

优点:效率高、结构简单、体积小、重量轻 缺点:成本较高、高温下磁性衰退

特性: 所谓永磁,是指在制造电机转子时加入永磁体,使电机的性能得到进一步提升。而所谓同步,则指的是转子的转速与定子绕组的电流频率始终保持一致。因此,通过控制电机的定子绕组输入电流频率,电动 汽车 的车速将最终被控制。 与其他类型的电机相比较,永磁同步电机最大优点就是具有较高的功率密度与转矩密度,说白了,就是相比于其他种类的电机,在相同质量与体积下,永磁同步电机能够为新能源 汽车 提供最大的动力输出与加速度。这也是在对空间与自重要求极高的新能源 汽车 行业,永磁同步电机成为首选的主要原因。 但是,它也有自身的缺点,转子上的永磁材料在高温、震动和过流的条件下,会产生磁性衰退的现象,使得电机容易发生损坏。

应用车型:比亚迪秦、比亚迪宋DM、宋EV300、北汽EV系列、腾势400、众泰E200、荣威ERX5等。 小结: 被广泛使用,成为主流电机,目前被各大新能源 汽车 品牌车型选用。 交流异步电机 交流异步电机是目前工业中应用十分广泛的一类电机,其特点是定、转子由硅钢片叠压而成,两端用铝盖封装,定、转子之间没有相互接触的机械部件,结构简单,运行可靠耐用,维修方便。

交流异步电机与同功率的直流电动机相比效率更高,质量约轻了二分之一左右。如果采用矢量控制的控制方式,可以获得与直流电机相媲美的可控性和更宽的调速范围。由于有着效率高、比功率较大、适合于高速运转等优势,交流异步机是目前大功率电动 汽车 上应用最广的电机。 但在高速运转的情况下电机的转子发热严重,工作时要保证电机冷却,同时异步电机的驱动、控制系统很复杂,电机本体的成本也偏高,另外运行时还需要变频器提供额外的无功功率来建立磁场,故相与永磁电机和开关磁阻电机相比,异步电机的效率和功率密度偏低,不是能效最优化的选择。 异步电动机应用的较多的地区是美国,这也被人为是和路况有关。在美国,高速公路已经具有一定的规模,除了大城市外, 汽车 一般以一定的高速持续行驶,所以能够让高速运转而且在高速时有较高效率的异步电动机得到广泛应用。 优点:结构简单、可靠性好、成本易控 缺点:效率低、调速性差

特性: 相比于永磁同步电机,异步电机的优点是成本低、工艺简单、运行可靠耐用、维修方便,而且能忍受大幅度的工作温度变化。 反之,温度大幅变化会损坏永磁同步电动机。尽管在重量和体积方面,异步电动机并不占优,但其转速范围广泛以及高达20000rpm左右的峰值转速,即使不匹配二级差速器也能够满足该级别车型高速巡航的转速需求,至于重量对续航里程的影响,高能量密度的电池能够“掩盖”电机重量的优势。

应用车型:特斯拉Model S、Modle X、江铃E200、江铃E100、江铃E160、众泰云100S、芝麻E30等。 小结:只是少量车型选用,但也不乏主流车型,从目前来看,该类电机不会成为趋势。 开关磁阻电机 开关磁阻电机作为一种新型电机,相比其他类型的驱动电机而言,它的结构最为简单,定、转子均为普通硅钢片叠压而成的双凸极结构,转子上没有绕组,定子装有简单的集中绕组,具有结构简单坚固、可靠性高、质量轻、成本低、效率高、温升低、易于维修等优点。

它具有直流调速系统可控性好的优良特性,同时适用于恶劣环境,适合作为电动 汽车 的驱动电机使用。业内人士预测,开关磁阻电机将成为电动 汽车 领域的一匹黑马。 特性: 但开关磁阻电机有转矩波动大、需要位置检测器、系统非线性特性,磁场为跳跃性旋转,控制系统复杂;对直流电源会产生很大的脉冲电流等缺点。另外开关磁阻电动机为双凸极结构,不可避免地存在转矩波动,噪声是开关磁阻电动机最主要的缺点。 但近年来的研究表明,采用合理的设计、制造和控制技术,开关磁阻电动机的噪声完全可以得到良好的抑制。像目前日本对开关磁阻电机的研究比较深入,日本电产的开关磁阻电机也广泛应用于电动 汽车 、家电等各类行业中。目前中国国内也渐渐有厂家关注这块电动 汽车 驱动电机的未来发展方向 优点:结构简单、体积小轻便、效率高、成本低 缺点:噪声振动大、输出扭矩脉动

应用代表车型:无 小结: 暂未被广泛应用,但未来有可能因为其优良特性,而成为主流电机。 作为电动 汽车 重要组成部件,不同电机的选用,会决定该电动车生产成本与使用情况。对于时下来讲,被广泛应用的尚属永磁同步电机,最主要的两点是可靠性好和成本易控。 -------------------华丽丽的分割线--------------------- 【番外知识储备篇】 外转子电机: 指外壳旋转、轴固定的电机。

特点: 1.外转子电机具有节省空间,设计紧凑且美观的特点。适合安装在叶轮里,具有最佳的冷却效果。无需V型带、附加的张紧带或其他设备。 2.电机使用一对密封的深沟球轴承,寿命长。高精度的球轴承可使振动降到最低,运行噪音低。 3.特殊的鼠笼转子结构及一次压铸成型工艺,确保电机启动平滑,转速高。 4.选用高品质电磁材料及特殊的电磁结构设计,确保电机高效运行,并且更加节能。 5.在电机绕组端装有高灵敏度热保护器,确保电机安全可靠的运行。 内转子电机: 内转子一般极数少,转速高,转矩小;外转子一般极数多,转速低,转矩大。 在转子重量相同情况下,内部转的没有外面转的转动惯量大,所以里面转的kv高,力矩低;外转转动惯量大,从而提高了在不稳定负载下电动机的效率和输出功率。 内转电机的扭力小,转速高,一般用交通工具模型(如车模、船模),而外转子的电机散热较好。

内转子电机和外转子电机的区别 通俗一点来说,两者的区别就是里面转与外面转的区别。 内转子电机是转子电机主轴一起转,电机机座固定,用外壳做定子,内部和主轴做转子。 外转子电机是转子随着电机外壳一起旋转,电机主轴固定,外壳做转子,内部和主轴做定子。 盘式电机: 又叫碟式电机,具有体积小、重量轻、效率高的特点,一般电机的转子和定子是里外套着装的,盘式电机为了薄,定子在平的基板上,转子是盖在定子上的,一般定子是线圈,转子是永磁体或粘有永磁体的圆盘。 除了效率高和体积小外,盘式电机的独特结构使得其还具有很多普通电机无法比拟的优点。比如线圈和定子间的间隙小,其相互感应也效应很小。无刷的结构使得盘式电机的应用更为灵活,包括要求电机大孔径穿孔的情况都能使用。双轴空气间隙结构能够使盘式电机产生自然的泵吸作用,可谓是盘式电机自带的“内置冷却装置”。

盘式电机在我们的生活中的应用十分广泛,绝大多数普通电机不适用或者难以满足的场合都能见到盘式电机的身影。例如新型的电动 汽车 、混合动力 汽车 以及水下推进器等对发动机重量和体积要求较高的交通工具都会使用盘式电机作为驱动。 总结一下这三种电机: 1、外转子电机扭矩大转速低;

2、内转子电机转速高转矩小;

3、盘式电机轴向尺寸小,散热好,但功率受限制。 在应用方面,轮毂电机应用盘式电机较多;轮边电机应用外转子电机较多。

汽车新能源还是非常有前景的,可以考虑长期学习

战略性新兴产业之新能源汽车:中国车企冲顶2010年10月18日发布的《国务院关于加快培育和发展战略性新兴产业的决定》规划到2020年,新能源汽车将成为中国国民经济的先导产业。发改委随后在对有关决定解读时指出,新能源汽车是全球汽车行业升级转型的方向。我国要在未来形成具有世界竞争力的汽车工业体系,必须超前部署新能源汽车的研发和产业化。当前,要充分发挥社会各方面的积极性,以产业联盟系列化为途径,着力突破动力电池、驱动电机和电子控制领域关键核心技术,加速形成知识产权,推进插电式混合动力汽车、纯电动汽车推广应用和产业化。而有关规划实际上已经将中国新能源汽车10年内的发展目标定为全球第一。若这一规划成真,中国汽车企业将有望通过新能源汽车的跨越发展一举登上全球汽车产业的王者宝座。2009年9月,我国在联合国气候变化峰会上提出,争取到2020年非化石能源占一次能源消费总量的比重达到15%左右。同年12月,我国在哥本哈根气候变化大会上承诺到2020年,我国单位GDP二氧化碳排放比2005年下降40-45%。这意味着未来10年我国节能减排任务艰巨。我国工业能耗大约占70%,而汽车是工业能耗大户,我国每年新增石油需求的2/3用于交通运输业。截至2010年10月,全国机动车保有量约1.99亿辆。若未来国内机动车完全更新换代为新能源汽车(价格按每车10万元计算),则整个市场规模将高达20万亿元(这还未考虑到出口)。因此,发展新能源汽车不但有助于节能减排目标的实现,同时也代表了汽车产业的发展方向,其市场空间极其惊人。根据《电动汽车科技发展“十二五”专项规划》,到2015年中国电动汽车保有量计划达到100万辆,动力电池产能约达到100亿瓦时。此外,根据《节能与新能源汽车产业规划》,到2015年我国新能源汽车将初步实现产业化,动力电池、电机、电控等关键零部件核心技术实现自主化;纯电动汽车和插电式混合动力汽车市场保有量达到50万辆以上;到2020年,我国新能源汽车实现产业化,新能源汽车产业化和市场规模达到全球第一,其中新能源汽车(插电式混合动力汽车、纯电动汽车、氢燃料电池汽车等)保有量达到500万辆;以混合动力汽车为代表的节能汽车销量达到世界第一,年产销量达到1500万辆。因此,我国新能源汽车产业即将面临爆发期,可以预计该产业中将会涌现出许多高速成长的企业,而这些企业也将会在资本市场获得良好的表现,极具投资价值。新能源汽车产业政策支持全面加强现代电动汽车一般可分为三类:纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)。近些年在传统混合动力汽车的基础上,又衍生出一种外接充电式(Plug-In)混合动力汽车(PHEV)。目前全世界各国对电动汽车都非常重视,许多国家都开始投入大量资金开发电动汽车。我国对新能源汽车产业支持政策由来已久。“十五”期间,投入8.8亿元设立电动汽车重大科技专项,并取得重要进展,形成了“三纵三横”的研发布局,基本形成电动汽车自主开发的技术平台。所谓“三纵”是指开发燃料电池汽车、混合动力电动汽车、纯电动汽车;“三横”是指多能源动力总成控制、驱动电机、动力蓄电池。此外,电动汽车也被列入我国“863”计划12 个重大专项之一。目前我国汽车产业支持政策包括两个方面:一是鼓励节能环保和小排量汽车,减少现有汽车能源消耗和排放;二是鼓励新能源汽车发展。主要补助插电式(plug-in)混合动力车和纯电动车。支持政策的走向是:(1)一揽子政策推动整个产业发展、补贴范围扩展到私人购车领域节能与新能源汽车产业发展规划和一揽子扶持政策将于近期上报国务院审议,如审议通过,最快年内有望实施。一揽子扶持政策将从研发生产、市场推广、售后服务和回收利用等各个环节入手,制订产业政策、财政政策、税收政策、投融资政策等。我国还准备设立国家层面的节能与新能源汽车研发与产业化专项,重点支持节能与新能源汽车关键技术研发和技术改造。这将是我国第一次针对一个产业提出一揽子扶持政策。近期我国对新能源汽车的补贴范围从对公交、公务、市政、邮政等政府采购补贴逐步扩展到对私人购买新能源汽车进行补贴。2009年1月,国家启动“十城千车” 节能与新能源汽车示范推广试点,计划用3年左右的时间,每年发展10个城市,每个城市推出1000辆新能源汽车,首批列入了13个城市。09年底试点城市由13个扩大到20个,选择5个城市对私人购买节能与新能源汽车给予补贴试点。2010年5月,政府在全国范围内开展“节能产品惠民工程”,消费者在6月18日之后,每购买一辆节能型汽车,将获得3000元的补贴。6月,出台对于私人购买新能源汽车补贴办法,对满足支持条件的新能源汽车,按3000元/千瓦时给予补助。插电式混合动力乘用车最高补助5万元/辆;纯电动乘用车最高补助6万元/辆。(2)通过补贴扶持和引导新能源汽车产业链整体的发展,并重点支持关键环节新能源汽车的补贴政策通过规定补助范围、对象,并需要满足一系列的支持条件,来引导试点城市建立相关配套设施和示范推广工作。通过《推荐车型目录》和国家标准,来引导申请补助的汽车生产企业及其新能源汽车产品,提高和保证产品性能参数,重点扶持具备一定产能规模和完善售后服务体系,具有自主知识产权的企业。目前,发改委正在修订《产业结构调整指导目录(2010年本)》,在鼓励类产品中,新增新能源汽车关键零部件。其中包括电池管理系统、电机管理系统、电动汽车驱动电机、电路集成以及充电设备等。在配套设施方面,国家电网2010年将建设75个电动汽车充电站和6200个充电桩,2015年前将建设1700个充电站。南方电网也宣布2010年将建设超过80座充电站。在国家和行业标准方面,我国已制定并发布了新能源汽车相关国家标准和行业标准共计42项,其中22项已列为新能源汽车产品准入的专项检验标准。2012年前,我国将基本建立与产业发展和能源规划相适应的节能与新能源汽车及充电设施标准体系。新能源汽车技术路线:近期以混合动力汽车为重点,未来以纯电动车为主要发展方向面对纯电动汽车(PEV)、混合动力汽车(HEV)、燃料电池电动汽车(FCEV)等不同的技术选择,根据《节能与新能源汽车产业规划》,我国新能源车发展路线将以纯电动汽车作为主要战略取向,近期以混合动力汽车为重点,大力推广普及节能汽车。考虑到技术发展现状,而将燃料电池电动汽车作为未来长期的发展方向。经过近10年的自主研发和示范运行,中国在电动车产业技术方面与世界先进水平的差距在大幅度缩小;中国电动车领军企业与国外电动车技术的先行车企正在同一起跑线上成长。小型纯电动乘用车将是3到5年内中国电动车产业发展的主导方向。在“十二五”电动车发展规划中,小型纯电动车将得到充分重视。动力电池:以锂电池为主要发展方向、以锰酸锂+钛酸锂为正负极搭配方式动力电池、电机、电控等关键部件成本占电动车整车成本的30%至50%,同时也是新能源汽车的关键核心技术。根据《节能与新能源汽车产业规划》,到2015年,动力电池、电机、电控等关键零部件核心技术实现自主化;到2020年,节能与新能源汽车及关键零部件技术将达到国际先进水平。在动力电池环节,我国力争突破动力电池瓶颈。到2015年,动力电池系统能量密度达到120瓦时/公斤以上,成本降低至2元/瓦时,循环寿命稳定达到2000次或10年以上。到2020年,动力电池系统能量密度达到200瓦时/公斤以上,成本降低至1.5元/瓦时以下。目前二次电池包括铅酸电池、镍镉电池、镍氢电池和锂电池等。虽然影响电池性能及决定其相对优势的因素很多,但是比能量是最重要最直观的一个指标。从铅酸电池、镍镉电池、镍氢电池到锂电池,比能量越来越高。与铅酸电池、镍镉电池和镍氢电池比较,锂电池的优势明显,因此作为发展方向的锂电池将会在电动汽车领域广泛应用。我们预计2015年国内新能源汽车动力锂电池的市场规模达到180亿元。到2020年,新能源汽车已经进入普及期,新能源汽车动力锂电池规模将达到2880亿元。市场容量巨大,且增长迅速。锂电池单元主要由正极、负极、隔膜和电解液四部分组成。正极材料是决定电池性能的关键,目前市场应用的主流正极材料包括钴酸锂、锰酸锂、三原材料和磷酸铁锂,其中锰酸锂和磷酸铁锂可以说是各领风骚。由于磷酸铁锂产品存在一致性、低温性能、高倍率放电性能和成本等问题,因此我们认为未来新能源汽车将主要选择锰酸锂路线。从目前市场主流新能源汽车看,除了比亚迪坚持使用磷酸铁锂电池,其他公司也基本都选择了锰酸锂路线。在负极材料方面,虽然碳材料一直处于主导地位,但是我们预计钛酸锂的出现将会颠覆行业格局。钛酸锂是一种性能优异的负极材料,由于电位过高,钛酸锂并不适合与磷酸铁锂搭配,反而锰酸锂+钛酸锂体系是较优的一种选择。锰酸锂+钛酸锂体系的优势包括:近乎完美的安全性、使用寿命更长、可以快速充放电、结合锰酸锂具备整体成本优势等。因此我们认为锰酸锂+钛酸锂体系将会是未来正负极材料的主要搭配方式。电解液约占锂电池成本的15%,电解液中关键材料六氟磷酸锂约占成本一半,目前六氟磷酸锂国产化程度很低,毛利率更高达70%;隔膜是锂电关键材料中技术壁垒最高的一种高附加值材料,占锂电池成本的20%左右,由于技术含量高,目前国内80%的隔膜需要进口。可以预计动力锂电池用隔膜的发展方向是耐高温、多层隔膜、高强度、高保液能力。驱动电机:我国驱动电机技术进步明显驱动电机是电动汽车的关键部件,直接影响整车的动力性及经济性。驱动电机主要包括直流电机和交流电机。目前电动汽车广泛使用交流电机,主要包括:异步电机、开关磁阻电机和永磁电机(包括无刷直流电机和永磁同步电机)。其中,异步电机主要应用在纯电动汽车,永磁同步电机主要应用在混合动力汽车中,开关磁阻电机目前主要应用在客车中。车用电机的发展趋势包括:第一、电机本体永磁化:永磁电机具有高转矩密度、高功率密度、高效率、高可靠性等优点。我国具有世界最为丰富的稀土资源,因此高性能永磁电机是我国车用驱动电机的重要发展方向。第二、电机控制数字化:专用芯片及数字信号处理器的出现,促进了电机控制器的数字化,提高了电机系统的控制精度,有效减小了系统体积。第三、电机系统集成化:通过机电集成和控制器集成,有利于减小驱动系统的重量和体积,可有效降低系统制造成本。在驱动电机方面,经过“九五”、“十五”、“十一五”国家对电动汽车用电机系统的集中研发和应用,我国已自主开发了满足各类电动汽车需求的驱动电机系统产品,获得了一大批电机系统的相关知识产权,形成具有核心竞争能力的车用驱动电机系统批量生产能力。目前,我国自主开发的永磁同步电机、交流异步电机和开关磁阻电机已经实现了与国内整车产业化技术配套,电机重量比功率显著提高,电机系统最高效率达到93%以上,系列化产品的功率范围覆盖了200kW以下电动汽车用电机动力需求,各类电机系统的核心指标均达到相同功率等级的国际先进水平。但是与国际先进水平相比,在产品集成度、可靠性和系统应用技术方面,仍存在较大的差距。

相关百科

热门百科

首页
发表服务