首页

> 学术发表知识库

首页 学术发表知识库 问题

探索研究土壤中锰的测定论文

发布时间:

探索研究土壤中锰的测定论文

1 mol·L-1NH4OAc浸提—KMnO4比色法.1.1 方法原理 以NH4OAc 中的NH4+将土壤胶体上的Mn2+交换下来进入溶液,除去还原物质后,溶液中的锰离子可用高锰酸钾比色法测定。 测定锰的比色法是在将待测溶液中的Mn2+在酸性条件下,用适当强度的氧化剂氧化为红色的MnO4-后进行比色测定。锰的氧化可采用高碘酸钾或过硫酸铵。 高碘酸钾在热酸性溶液中,将Mn2+氧化成MnO4-的反应式如下: 2Mn2+ + 5IO4- + 3H2O====2MnO4- + 5IO3- + 6H+ 反应在含有H2SO4、 HNO3,最好为H3PO4的酸性溶液中进行得很快。所需溶液酸度的大小取决于锰含量的多少,当锰的浓度约 1 mg·L-1时,酸度须为 2 mol·L-1(H+);锰的浓度高时,须3.5 mol·L-1(H+),但酸度过高,紫色又将减退成微黄色。 MnO4-的吸收峰在波长525~545nm,其摩尔吸收系数 e525=2.24×103,浓度在0.6~25 mg·L-1Mn范围内符合 Beer定理。在有过量的高碘酸钾存在时,颜色在两个月内稳定。 若溶液中含有较多的氯离子、有机质、硫化物、草酸盐等还原性物质时,它们会干扰显色,如氯离子能使MnO4-还原成Mn2+,反应式如下: 10Cl- +2MnO4- + 16H+==5Cl2 + 2Mn2+ + 8H2O因而要消耗较多的KIO4 ,显然不能选用含有这些盐的试剂。盐土、水稻土或施用过大量含氯、硫肥料的土壤可能会有较高的氯、硫等,需要除去它们的干扰。可以预先加 HNO3或HNO3-H2SO4的混合酸蒸发,以分解除去这些物质。当有大量的三价铁时,则可以加入H3PO4与Fe3+配合成无色的配合物[Fe(PO4)2]3-,同时防止过量的碘酸铁的沉淀。 高硫酸铵与高碘酸钾同样可以作为氧化剂使锰显色,其化学反应式如下: 2Mn2+ + 5S2O82- +8H2O == 2MnO4- + 10SO42- + 16H+ 它与高碘酸钾不同之处,须加AgNO3为催化剂(因为 S2O82- 进行的氧化过程很慢,关于Ag+的催化机理并不十分清楚)。7.3.2.1.2主要仪器 往复振荡机;分光光度计。中国铁合金在线

原子吸收分光光度法

土壤重金属污染治理的策略与技术论文

在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。相信许多人会觉得论文很难写吧,以下是我为大家收集的土壤重金属污染治理的策略与技术论文,欢迎大家分享。

摘要:

在我国社会经济快速发展的背景下,土壤污染问题十分严重,严重影响了人民群众的生命健康安全。为此在新时期要高度重视土壤重金属污染的有效治理,避免土壤结构被大量破坏造成土壤中的矿物质流失。通过对土壤重金属污染治理的原因和问题进行分析,制定科学高效的应对措施,保证土壤重金属污染治理的整体水平全面提高,确保土壤重金属污染治理的效率大幅度提高,保护土壤生态,为社会经济可持续发展做出重要贡献。

关键词:

士壤重金属污染;治理问题:对策

引言:

土壤作为社会发展重要基础,必须要高度重视对土壤生态环境的妥善保护与科学处理。重金属作为土壤环境最重要的指标,由于受到工业农业的快速发展,土壤中的重金属物质含量显着超标,对于整个土壤的破坏十分明显,严重影响了土壤安全,在新时期需要重点关注土壤重金属物质,并采取有效的处理措施,减少土壤重金属造成的破坏与损伤,确保土壤重金属得到有效控制。

1、土壤重金属危害

重金属是指通过自然环境难以有效降解的各种物质。包括铅汞等,这些重金属物质如果进入到人体会引发重金属中毒,对人体造成明显损伤,而在土壤和水源中会大量淤积,也会导致水生动物和植物的生长发育受限,不利于生态环境土壤污染的农田,如果种植农作物也会造成大量的重金属进入农作物内部,植物中含有大量重金属就会通过饮食进入人体而导致食品安全问题[1]。土壤重金属污染越来越严重,对人们的生活造成巨大的威胁。为此要有效处理重金属污染,降低土壤中重金属含量。

2、土壤重金属污染主要成因

目前对于土壤重金属污染的成因主要包括自然因素和人为因素两方面,其中自然因素是指在自然环境中发生的火山爆发和土壤自身形成的因素,而人为因素则涉及工业农业交通等多个领域,也是造成土壤重金属污染的关键因素。例如在干旱地区为了提高农作物的产量解决缺水问题,往往会采取大面积灌溉的方式造成土壤养分流失,或者在灌溉中所使用的水资源受到污染,导致金属含量超标等,必然会使土壤出现金属污染问题,此外在工业领域不断发展的背景下,金属冶炼对社会发展具有十分重要的作用,但在冶炼过程中也会产生大量的重金属废水,如果没有对重金属进行妥善无害化处理,而直接排放到自然环境中,会造成土壤的重金属污染[2]。在城市发展中人们的生活水平日益提高,汽车保有量显着增多,而车辆也会生成大量汽车尾气,这些汽车尾气会直接污染大气,经过雨水冲刷会导致重金属污染物渗入到土壤内部。

还有部分有机肥料来自城市建筑垃圾、河道淤泥等,这些原材料本身富含大量重金属元素。在进入到土壤后也会造成土壤重金属含量显着升高,对土壤结构造成破坏。我国地形复杂,面积范围广大,土壤种类丰富,这也使得土壤污染问题存在明显的区域性差异,在农业发达的西北地区具有良好的土壤环境,而在中南地区由于工业密集,所以土壤污染问题严重。在发达地区为了提高农作物,往往会使用大量的化肥农药,这样就会造成农业用地日积月累受到严重的污染,致使蔬菜粮食存在农药残留,而且农业用地污染问题大部分都以有机或无机复合为主,造成土壤无法复原。当土壤受到重金属污染以后,基本无法恢复,土壤之中也会富含大量的胶体致使重金属物质不断富集,长此以往重金属污染也会日益严重,在人类正常的生活与工作中,耕地的酸碱值会发生明显变化,而且化学反应也会使重金属的离子价态和形态会发生明显的变化,而且大多数的土壤重金属污染,无法通过人类的感官进行准确识别,往往需要经过长时间的沉淀以后才能发现,这样也就造成土壤重金属污染难治理难度不断增加。

3、土壤重金属污染的主要治理策略

目前在土壤污染防治中,需要高度重视对土壤环境的妥善监测,通过对土壤中的重金属指标进行快速准确监测,能够判断土壤内部重金属富集的具体情况,为此有关部门要高度重视。建设土壤监测监管机制,采取相应的设备,对土壤的组成成分进行全面分析,提高土壤检测数据的科学性,例如成立土壤监测部门,按照专业的监管机制,安排专业人员对土壤相关数据进行全方面检测,确保土壤环境得到妥善处理,在土壤数据监测完毕后,还要将有关数据上传至监管部门,明确各个地区土壤的重金属含量,确保土壤重金属污染得到有效控制,一旦发现异常超标情况,则需要采取科学的解决,确保土壤重金属物质处理的效率全面提升,满足土壤重金属污染监测的实际需求。由于我国对土壤污染防治工作开展的时间比较晚,为此在新时期要积极加强土壤污染的有效预防,制定高效目标,坚持以预防为主,保护优先,树立完善的风险监管意识,从而确保土壤污染治理的.整体水平全面提升[3]。

要主动采取分级风险管控措施探索土壤重金属污染治理的全新方案,提高控制管理的水平,同时要做好技术调查,在全国范围内对土壤污染的具体状况进行准确的排查,保证土壤污染问题得到清晰有效的控制与解决,建立土壤重金属污染相关信息化平台(表1),实现资源共享,通过设立全国规模的土壤污染监测管理网络,保证对土壤污染监测点覆盖到市县级,做到监管数据实时更新。确保土壤管理的效率全面提升。要逐步建立污染土地目录或者土地使用污染目录,严格控制土壤的实际使用途径。加强监管存量,对源头严格防控,有效提高农业污染的监督管理力度。要坚决从源头加强土壤保护,避免土地随意滥用。

表1基于GIS系统土壤环境风险控制管理体系

4、土壤重金属污染治理的主要技术

4.1、生物治理

当前的土壤生物治理可以通过植物微生物等手段减少土壤重金属含量或降低其毒性。在植物治理中,需要积极培育能够吸附重金属物质的植物,有效去除土壤中的大量重金属物质。这种方案成本低廉,技艺简单,具有大范围推广应用的实际意义。另外可以通过微生物对土壤进行改良,但这种技术对微生物要求比较高,而且治理周期比较长,还会存在一定的风险问题[4]。

4.2、化学防治

化学防治可以通过重金属改良剂,根据不同的金属特点采取相应的化学反应,确保对重金属进行有效抑制,使这些潜藏在土壤中的重金属能够快速凝聚,减轻土壤对重金属吸收,避免造成恶劣影响。还可以直接使用金属拮抗剂,因为金属之间存在许多的相互作用,金属的特性也并不会对人体造成明显的伤害,通过化学防治可以通过有益金属对重金属相互作用产生拮抗性,减轻重金属的活跃度[5]。

4.3、生态修复技术

在农业生态修复中通过农艺修复或生态修复等不同的方法,可以保证土壤中的水分含量,耕作制度得到有效控制,技术人员可以通过对土壤中的水分进行控制,有效改善土壤的pH,而且有部分重金属在氧化还原下会不断迁移发生变化,此外造成土壤氧化还原的主要因素在于水含量增多,所以在修复的过程中要加强对水含量的有效调控,增强氧化还原整体效能,避免重金属的快速迁移,促进土壤修复的整体质量水平全面提高。生态修复能够对土壤的水分肥力进行快速还原,改善当地的环境气候条件,有效控制重金属污染物所处的环境介质。在土壤重金属污染治理时,生态修复技术的效率比较缓慢,在短时间内并不能看到显着的效果。

4.4、工程治理技术

工程治理技术能够通过工程机械理论,加强对污染土地治理。目前常用工程治理技术包括换土法、克土法以及深耕翻土法等,是指被污染的土壤中增加干净土壤,并且快速将被污染土壤与外界隔离,减少土壤中的重金属污染物浓度。换土法则是直接将被污染的土壤快速挖掘,并搬运别处进行妥善处置,换上干净土壤。深耕翻地法是利用机械,使上部重金属污染物迅速向下部翻转,保证表土表面重金属污染浓度降低。在运用工程治理技术中,需要根据不同的技术要求选择科学的治理方法,通常污染程度比较轻的土地可以采用深耕翻土法,污染程度比较重的则需要采用换土法以及克土法,需要注意的是,在采用换土法时对被挖出的污染土壤要及时进行处理,避免对环境造成二次污染。

4.5、联合修复技术

由于土壤重金属污染物的成分多样化,不同地区的污染类型,污染程度也各不相同,凭借单一的技术很难达到预期的修复效果,为此要积极针对土壤重金属污染的具体情况,采取联合修复的方式,通过对植物和微生物联合物理和化学联合等多样化的修复手段,能够促进土壤恢复效果,减轻土壤受污染的程度[6]。

4.6、改良剂改性修复

改良剂改性修复,主要是在重金属污染土壤中加入固定配方的改良剂,使改良剂与重金属之间出现明显的吸附作用、抗结作用以及氧化还原作用,但这样的技术最终造成土壤重金属污染物活性显着下降。石灰石、碳酸钙、硅酸盐等各种改良剂相互作用还能够促进土壤的养分得到显着变化。

5、结束语

我国目前土壤重金属污染问题十分严重,而且防治工作起步晚、技术落后,给土壤重金属污染防控造成严峻挑战。针对污染物有效防治采取相应的措施加以治理,确保土壤重金属污染物的改良效果全面提高,促进我国土壤资源的安全。

参考文献

[1]赵瑞芬,程滨,滑小赞,等忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021(6):81-88.

[2]马叶,赵国梁,王晓凤,等添加螯合剂诱导栽培红叶荞菜(Betavulgarisvar.ciclaL.)修复铅和镉污染土壤效果的研究[J].土壤通报,2021(2):416-424.

[3]薄录吉,李冰,张荣全,等.金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J].土壤通报,2021(2):434-442.

[4]张启,吴明洲.某疑似污染农用地地块土壤调查布点及评价方法[J].安徽农业科学,2018(20)117-119.

[5]王海东,方凤满,谢宏芳,等芜湖市区土壤重金属污染评价及来源分析[J]2010(4):36-40.

[6]张仕军土壤中重金属污染治理存在的问题及对策研究[J]资源节约与环保,2020(9):93-94.

土壤中铜的测定毕业论文

制样时,也就是土壤消煮时,用氢氟酸,盐酸,硝酸,高氯酸四种酸进行消煮,盐酸与硝酸的用量比例是王水的比例,因为王水消解重金属最好

土壤是宝贵的自然资源。人类生活必需物质(农、副产品等)绝大部分直接或间接由土壤提供。土壤系统也是自然要素中物质和能量的迁移转化最为复杂而又频繁的场所。土壤污染会导致土壤自然正常功能的失调、土壤质量的下降,从而影响农作物的生长发育,使之产量和质量下降。土壤污染物质的迁移转化,还会引起大气、水体和生物体的污染,通过食物链的作用最终会影响人类的生命和健康。研究土壤污染的发生,污染物质在土壤系统中的迁移转化规律,以及土壤污染的控制和治理对环境保护具有十分重要的意义。砷是重要污染物之一,由于含砷污水灌溉农田,砷制剂农药的使用,土壤中砷含量不断提高致土壤受砷污染。受砷污染的农田,农作物产量大幅度下降。砷的剧毒通过食物链作用会影响人类的健康。近年来,测定土壤中砷含量常用Ag-DDTC光度法(二乙基二硫代氨基甲酸银法)和原子吸收分光光度法,其中DDTC-Ag光度法是标准分析法。一.目的要求1. 了解土壤污染分析的特点和意义。2. 了解DDTC-Ag光度法测定砷的原理,掌握其基本操作。二.方法原理土壤经酸湿法消解后,五价砷在碘化钾和氯化亚锡作用下,还原为三价砷,然后与新生态氢反应生成砷化氢气体,经过醋酸铅棉花除去硫化氢,与二乙基二硫代氨基甲酸银作用生成红色胶体银,溶液呈红色,用光度法测定:AsH3+6Ag-DDTC 6 Ag +3 HDDC+As(DDC)3干扰因素:硫化氢、锑化氢、磷化氢对砷测定有干扰,但硫、磷在消解样品条件下,被氧化成稳定硫酸盐。锑化氢干扰,加入碘化钾、氯化亚锡抑制其逸出,能消除300微克的锑干扰。三.仪器与试剂仪器:分光光度计,1 cm 比色皿;砷化氢发生瓶;电热板;移液管(10 mL, 5 mL, 25 mL);50 mL量筒。试剂:1. 砷标准贮备液:准确称量As2O3 0.1320 g置于100 mL烧杯中,加5 mL 20 %的NaOH,温热至As2O3全溶后,以酚酞批示剂,用1 moL/LH2SO4中和至无色后,再加过量10 mL,转入1000 mL容量瓶中定容,此溶液为含As 100.00 ug/mL。2. 砷标准工作液:准确吸取2.00 mL砷贮备液,置于100 mL容量瓶中,用水定容,此溶液含砷2.00 ug/mL。3. 40 %SnCL2(现用现配)::称取40 g晶体SnCL2.2H2O溶于100 mL浓盐酸,若混浊,可稍加热并投入几粒锡粒防止氧化。4. 15 %KI:贮于棕色瓶;5 浓硝酸,浓硫酸(分析纯);1+1(体积比)硫酸。6. 20-40目无砷锌粒(分析纯)。7. 0.1 % DDTC- Ag-三乙醇胺-氯仿吸收液::称0.5 g DDTC- Ag,加入50 mL氯仿和5 mL三乙醇胺,摇匀,用氯仿定容500 mL,放置过夜,用脱脂棉过滤后使用,保存在棕色瓶避光。8. 醋酸铅棉花::称取10g醋酸铅,溶于20 mL 6 moL/L醋酸,加水稀释至100 mL,将脱脂棉在此溶液中浸1小时,取出自然凉干,备用。四.操作步骤1.样品消解:准确称取样0.8001克样品放入砷化氢发生瓶中,加入5 mL浓HNO3,3 mL浓硫酸,盖上小漏斗,放在电热板上,从低温逐步提高温度加热消解。待作用完全,冒浓白烟后(赶走酸雾),试液呈淡黄色,浑浊。历时约1小时,试液量为2 mL左右,取下锥形瓶,冷却,依次加入34 mL水,2 mL15 %的KI,2 mL 40 %的SnCL2溶液,摇匀,溶液变为无色,浑浊,放置15分钟,同时做空白试验。2.标准曲线的绘制:分别吸取砷标准工作液(含砷2.00 ug/mL) 0.00、1.00、2.00、3.00、4.00、5.00 mL于砷化氢发生瓶中,各加入2.5 mL浓硫酸,加水至36 mL,加2 mL 15 %的KI及2 mL 40 %的SnCL2溶液,放置15分钟,加入SnCL2后溶液颜色变浅,几乎为无色。充分作用后加入3g锌粒,立刻接上装有醋酸铅棉花的导管,使发生的砷化氢气体进入盛有5mL砷吸收液的吸收管中,立即有气泡产生。砷吸收液由黄绿色变为浅褐色,砷标液越多,吸收液颜色越深。待反应40分钟(注意要防止后一段时间因砷化氢瓶内的溶液温度下降而使气压减少产生倒吸现象)后,取下导气管,用氯仿将吸收管内溶液补足5 mL,将吸收液转入1 cm 比色皿中,在分光光度计上于530 nm处,以试剂空白为参比,测定吸光度,并绘制标准曲线,从标准曲线上查得样品中的砷含量。3.样品测定与绘制标准曲线的操作台步骤相同。六.讨论:1. 土壤样品消解至灰白色白,试液应呈白色或浅黄色。2. 砷化氢发生过程中,要注意防止后一段时间因砷化氢瓶内的压力下降而产生倒吸现象。为避免倒吸,应将砷化氢发生瓶在进行一段时间实验后提高一定高度,使导气管内液面下降。3. 在砷化氢发生前,每加一种试剂均需摇匀,吸收管用后要洗净烘干。4. 硝酸干扰砷的测定,故需在砷化氢发生前用硫酸去除干净。5. 在砷化氢发生瓶中加入锌粒后,立即将磨口弯接管塞塞紧,避免砷化氢未与二乙基二硫代氨基甲酸银反应前从体系中逸出 。

专业的东西这里肯定没人能回答,建议到网上的数字图书馆查询,那里面应该能查询到。如果自己学校的没法查询,可以让其他农业大学的朋友帮查一下。如果那里查不到,我相信很难查到啦。

一、 实验目的:(一)学习测定铜的技术;(二)掌握原子吸收分光光度法的原理。二、 实验意义:土壤是植物生长的基地,是动物、人类赖以生存的物质基础,因此,土壤质量的优劣直接影响人类的生产、生活和发展。但由于近些年人们不合理地施用农药、进行污水灌溉等致使各类污染物质通过多种渠道进入土壤。当污染物进入土壤的数量超过土壤自净能力时,将导致土壤质量下降,甚至恶化,影响土壤的生产能力。此外,通过地下渗漏、地表径流还将污染地下水和地表水。我国土壤常规监测项目中,金属化合物有镉、铬、铜、汞、铅、铜;非金属无机化合物有砷、氰化物、氟化物、硫化物等;有机化合物有苯并(a)芘、三氯乙醛、油类、挥发酚、DDT、六六六等。地壳中铜的平均含量约为70mg/kg;全球土壤中铜的含量范围一般在2—100mg/kg之间,平均含量为20mg/kg;我国土壤中铜的含量在3—300mg/kg之间,平均含量为22mg/kg。土壤的铜含量常常与其母质来源和抗风化能力有关,因此也与土壤质地间接相关。土壤中的铜大部分来自含铜矿物——孔雀石、黄铜矿及含铜砂岩等。一般情况下,基性岩发育的土壤,其含铜量多于酸性岩发育的土壤,沉积岩中以砂岩含铜最低。各类土壤的含铜量按多少排列如下:砂姜黑土(25.49mg/kg)>潮土(22.48mg/kg)>褐土(22.18mg/kg)>盐碱土(18.78mg/kg)>棕壤(17.81mg/kg)>黄棕壤(15.58mg/kg)>风沙土(8.44mg/kg)。我国土壤表层或耕层中铜含量的背景值范围为7.3—55.1mg/kg(不同地区有不同的背景值)。土壤中铜的环境质量标准见表一,卫生标准见表二。表一 土壤中铜的环境质量标准值(GB15618—1995)单位:mg/kg级别 一级 二级 三级土壤pH值 自然背景 <6.5 6.5~7.5 >7.5 >6.5农田等≤ 35 50 100 100 400果园 ≤ — 150 200 200 400表二 土壤中铜的卫生标准(GB11728—89)土壤中铜的阳离子交换量(毫克当量/100g干土) <10 10—20 >20土壤中的最高容许浓度(mg/kg) 50 150 300三、实验方法和原理:(一)方法土壤污染监测的常用方法有:重量法——适用于测定土壤水分;容量法——适用于浸出物中含量较高的成分如Ca2+、Mg2+、Cl-、SO42-等测定;气相色谱法——适用于有机氯、有机磷及有机汞等农药的测定;分光光度法(AAS、AES、AFS)——适用于重金属如Cu、Cd、Cr、Pb、Hg、Zn等组分的测定。(二)原理土壤样品用HNO3—HF—HClO4混酸体系消化后,将消化液直接喷入空气—乙炔火焰。在火焰中形成的铜的基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得铜的含量。计算土壤中铜的含量。注:该方法的检出限为1mg/kg。四、实验仪器和试剂:(一)仪器原子吸收分光光度计,空气—乙炔火焰原子化器,铜空心阴极灯。1.工作条件测定波长:324.8nm;通带宽度:1.3nm;灯电流:7.5mA;火焰类型:空气-乙炔,氧化型,蓝色火焰。2.主要性能参数灵敏度:0.1mg/L;检出限:0.01mg/L;适测浓度范围:0.2—10mg/L。注:不同仪器其灵敏度和检出限有差异。(二)试剂1.硝酸:优级纯;2.氢氟酸:优级纯;3.高氯酸:优级纯;4.铜标准溶液:市售标准液。一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样。注:具体配制方法见上次的实验报告。五、 实验步骤和注意事项:(一)土壤样品的预处理1.把课前采集的土样均匀地摊开在一张比较厚的牛皮纸上;2.挑出其中的动植物残渣及难以研磨碎的石块;3.用四分法弃取土壤(留下四分之一);4.用筛子(尼龙筛网为100目)和研钵(白陶瓷制)对留下的土样进行反复的过筛—研磨,直至几乎全部过筛。(二)土壤试液的制备1.称取约0.5g土样于25mL聚四氟乙烯坩埚(高温消化罐)中,用少许水润湿;2.加入15mLHNO3,在电热板上加热消化至溶解物剩余约5mL;3.再加入5mLHF,加热分解SiO2及胶态硅酸盐;4.最后加入5mLHClO4,加热至消解物呈淡黄色;5.打开盖,先蒸至近干,然后取下冷却;6.加入(1:5)HNO31mL微热溶解残渣,移入10mL容量瓶中定容。注:制备土壤试液的同时进行全程序试剂空白实验。(三)标准曲线的绘制直接吸取一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样,测其吸光度,绘制标准曲线。注:详细步骤见上次的实验报告。(四)土壤样品的测定本实验采用标准曲线法,按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得并计算铜的含量:铜(mg/kg)=m/W式中:m——从标准曲线上查得的铜的含量(0.61g/L×10mL=6.1μg);W——称量土样干重量(0.4992g)。结果:铜(mg/kg)=6.1μg/0.4992g=12.22mg/kg。(五)注意事项1.进行过筛—研磨,一定要有耐心,直至土壤颗粒几乎全部过筛;2.有少量细砂吸附在筛网上,千万不能用毛刷刮蹭筛网(只用其轻掸),否则会破坏网眼大小,造成筛网报废;3.高氯酸、氢氟酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值;4.土壤试液在加热蒸干时温度不要超过200℃,否则无水HClO4受热后会发生爆炸;5.土样消化过程中,最后除去HClO4时必须防止将溶液蒸干,不慎蒸干时,Fe、Al盐可能形成难溶的氧化物而包藏铜,使结果偏低。六、 实验数据记录七、 实验讨论和体会:在星期三做完这个实验后,我并不认为已经结束了实验,因为我对这个实验的思考并未结束。实事求是地说,我们的这个利用火焰原子吸收分光光度法对铜的测定实验并不是很成功,这与我们初次尝试、缺乏经验有关。然而,这个实验的操作过程的繁多,也就是方法上的不完善处,也是我们实验不很成功的“致命伤”!首先,样品制备大都采用全量消解法。该方法操作过程繁多,消解不完全,待测成分易损失,准确度不易把握。实验中如果任一处环节出现偏差都会对测量结果产生影响。其次,由于土壤中可能含有有机质和植物纤维的影响,使消解往往不完全、待测成分易损失、试剂消耗量很大及产生对操作人员有害的酸气等。于是,我针对测定土壤中铜的含量的实验缺点,进行了调查研究,总结其它实验方法的优缺点,集合其长处,提出了自己的一套方法,以供老师同学参考。该方法具有方法简单、引入干扰少、提取率高等优点,也具有很好的经济效益与环境效益。关于消化方法的探讨:经过调查,土壤中铜的环境样品,组分复杂,测定难度较大。而测定准确与否,在一定程度上取决于样品的消化方法。(1)按标准所述准确称取0.45—0.50g (准确度至0.0002g)试样于25mL 聚四氟乙烯消化罐中。在实际试验中可以称取0.60—1.00g (准确度至0.0002g) 试样于50mL 聚四氟乙烯消化罐 。之所以称量数量较试验规程较多,是为了提高样品测定时的灵敏度。(2)整个样品的消解过程, 对温度的控制是严格的, 它直接影响着土壤消解能否达到要求。根据经验, 试样开始加入硝酸20mL ,高氯酸8mL ,氢氟酸8mL 后,中温加热,温度必须控制在低于400°C。温度过高,可使聚四氟乙烯熔化;温度过高,不利于消解除硅。(3)在整个消解过程中, 先后加入硝酸20mL 、高氯酸5mL、氢氟酸5mL 后,就立即加热了,而在实际操作中加入三种混合酸后,盖严,轻轻摇动,使之混匀,有利于充分溶解。在加热一段时间后,打开杯盖,以取得良好效果。为了防止飞溅,应该注意经常摇动烧杯。由于土壤种类较多,所含有机质差异较大,在消解时,注意观察各种酸的用量,可视消解情况酌情增减。土壤消解液应呈白色或淡黄色(含铁量高的土壤呈现黄色) ,但没有明显沉淀物存在。(4)在温度控制的同时, 应注意对时间的控制问题。温度过高, 时间则相应缩短, 否则加热时间过长造成消解样品焦糊,使测定结果偏低。(5)一个不能不提的问题:市售的氢氟酸含有杂质(如上海某试剂厂生产的优级纯氢氟酸中铜的杂质含量相当高),故造成校准曲线高浓度点弯曲,而且在消化过程中酸的消耗量大,消化时间长,试样易玷污,在高氯酸冒烟赶F-的操作中,时间不易控制,时间的不够或过长均将直接导致土壤中铜测定结果的偏高或偏低。所以,我个人认为,在样品消解的方法中避免HF的使用是上策,另外,HF还有毒,有腐蚀性,太危险!仪器测定过程中的问题探讨:(1)仪器开、关机时必须严格遵守操作规程。空心阴极灯预热30 分钟, 为了输送给放大系统足够的能量,必须在灯电流、狭缝、光电倍增管负高压三者之间进行合理的调试和区配,以得到最佳选择,一般的灯电流的最佳值,要比理论值大一点。(2)调节燃气和燃气压力时, 要注意静止状态和气流状态是不同的。一定在燃烧器点火的工作条件下调节,并且在测量过程中, 经常检查设定值是否已经改变。如有变化, 应随时校正,以保持在测量过程中条件的一致性。(3)毛细管的长度增加会使吸喷试液的阻力增大, 使试液提升量下降;试液放置高度相差5cm ,可导致吸喷试液量10 %的变化, 这对于精确的测量有明显的影响。因此测量时, 每个试样放置的位置高度要保持一致。(4)温度升高, 试液的粒度下降, 其吸喷试液的提升量增加,同时使雾化效率增大。加热试样,可提高测量的灵敏度。为获得准确一致的测量,应保持试液的温度相同。一般是使试液在室温下放置一定时间,使其于室温达到平衡。(5)当燃烧器缝口积有盐类或尘土时, 可使火焰变化不规则, 呈锯齿状。应卸下燃烧头, 用刀片刮去淀积的盐块, 最好依次用稀盐酸和蒸馏水彻底清洗。(6)测定土壤消解液时, 由于土壤含盐类过高会产生背景吸收,使测定结果偏高。因此必须消去背景的吸收。(7)经过研究,铜的化合物易离解,而且不形成难挥发性化合物,试液中的基体干扰较少。虽然土壤中大量的硅会产生影响,但由于采用了HNO3-HF-HClO4体系分解土样,此时极大部分硅已被除去,所以一般不会产生干扰。所以,测定土壤中的铜, 只要抓住了以上几个关键环节和改进措施就会使复杂、准确度不易把握的试验变得简单、高准确度!以上就是我的一点启发!

土壤中砷的测定毕业论文

原子荧光光度法( 城市污水水质检验方法标准CJ/T51-2004)1 范围本章规定了用氢化物发生-原子荧光光度法测定城市污水中总砷的方法。(1) 测定范围本方法测定浓度范围与仪器的特性有关。(2) 干扰及消除6倍锑、20倍铅、30倍锡、200倍铜和200倍锌对砷测定无干扰。加入硫脲-抗坏血酸可消除砷、锑之间以及大多数共存元素的干扰,镉盐的存在可减少铜的干扰。2 方法原理在盐酸介质中,以硼氢化钾作还原剂,使砷生成砷化氢,以氩气作载气将砷化氢导入石英炉原子化器进行原子化,以砷特种空心阴极灯做激发光源,砷原子受光辐射激发产生电子跃迁,当激发态的电子返回基态时即发出荧光,荧光强度在一定的浓度范围内与砷含量成正比。3 试剂除另有说明外均用分析纯试剂和去离子水 (电阻率>3MΩ·cm,250℃)(1) 硝酸 (ρ=1.42g/mL,优级纯)。(2) 硫酸 (ρ=1.84g/mL,优级纯)。(3) 盐酸 (ρ=1.18g/mL,优级纯)。(4) 盐酸 (1+1):将1体积的盐酸 (23.2.3.3)加入同体积的水中,摇匀。(5) 硫脲-抗坏血酸混合液:称取5.0g硫脲和5.0g抗坏血酸溶于100mL水中,摇匀。(6) 2% (m+V)硼氢化钾溶液:称取2.0g硼氢化钾溶于100mL0.5% (m+V)氢氧化钾溶液中,过滤后待用,现配现用。(7) 砷标准贮备液 (cAs=1mg/mL):称取0.6600g三氧化二砷 (110℃烘2h) 溶于5mL20% (m+V)氢氧化钠溶液中,用酚酞作指示剂,以1moL/L硫酸溶液中和至中性后,再加入15mL1moL/L硫酸溶液,最后用水稀释至500mL。(8) 砷标准工作溶液 (cAs=1μg/mL):用23.2.3.6砷标准储备液逐级稀释至cAs=1μg/mL。4 仪器(1) 原子荧光光度计。(2) 砷空心阴极灯。(3) 仪器条件 (推荐值):灯电流:30mA~80mA;负高压:250V~350V;原子化器炉高:6mm~8mm载气 (Ar)流量:300mL/min;屏蔽气 (Ar):800mL/min;读数时间:10s;延迟时间:0s;测量方法:标准曲线法。5 分析步骤(1) 样品预处理取适量实验室样品作试料 (使砷含量<5.0μg=,置于高型烧杯中,加入3mL浓硫酸及5mL浓硝酸,煮沸消解至冒出白色烟雾。如溶液尚不清澈透明,可再加入5mL浓硝酸,继续加热消解至冒出白色烟雾,冷却。小心加入25mL水,再煮沸至冒出白色烟雾为止,冷却后,加少量水稀释,并将烧杯内溶液转移过滤至100mL容量瓶中,用水洗涤烧杯,合并洗液于容量瓶中,加入20mL(1+1) 盐酸后,加20mL硫脲-抗坏血酸混合溶液,最后加水至刻度,摇匀并放置15min后,供测定时用。洁净的水样可不消解,直接加入20mL(1+1) 盐酸和20mL硫脲-抗坏血酸混合溶液,加水至100mL刻度,摇匀放置15min后,供测定时用。(2) 样品测定1) 开启仪器,并预热20min以上。2) 设定仪器条件 (见推荐值)。3) 测量:将进样管插入待测样品中,还原剂管插入硼氢化钾溶液中,夹好蠕动泵压块,测量待测样品的荧光强度 (取二次测量值的平均值),并作空白校正。从校正曲线上查得砷的含量。(3) 工作曲线的绘制另取7个100mL 容量瓶,分别吸取0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL砷标准使用溶液于其中,加20mL(1+1)盐酸和20mL硫脲-抗坏血酸混合溶液,用蒸馏水稀释至100mL,再按23.2.5.1,23.2.5.2方法操作,分别测得荧光强度。然后以各点的荧光强度为纵座标,以其对应的浓度为横座标绘制工作曲线。6 分析结果的表述砷的浓度按下式计算:C=(C1×V0)/V式中 c——砷的浓度,μg/L;c1——由工作曲线上查得的砷浓度,μg/L;V0——试料消解后的定容体积,mL;V——试料体积,mL。7 精密度和准确度3个实验室分别对5.00μg/L、25.0μg/L、50.0μg/L三种不同浓度的砷标准样品进行了18次测定,方法相对误差置信范围为 (-0.47±1.05)%。3个实验室以废污水为本底进行了加标测定,回收率置信范围为 (98.7+6.8)%。

我们家买的 英国Trace2o重金属检测仪器 操作非常简单,很实用的。

(1)实验目的

本实验采用氢化物发生—原子荧光法测定各类土壤中的总砷含量。

(2)实验原理

砷的酸性溶液在氢化物发生器中,与还原剂硼氢化钾发生氢化反应,生成砷化氢气体。以氩气为载气,将砷化氢气体导入石英炉中进行原子化,受热的砷化氢解离成砷的气态原子。砷原子受到光源特征辐射线的照射而被激发产生原子荧光,荧光信号到达检测器变为电信号,经电子放大器放大后由读数装置读出结果。产生的荧光强度与试样中被测元素的含量成正比,可以从校准曲线查得被测元素的含量。

土壤中大多数元素经分解后也能进入待测溶液中,如 Cu2+、Co2+、Ni2+、Cr6+、Au3+、Hg2+等,对测定有干扰,加入硫脲即可消除。

方法检出限为0.4μg/L。

(3)实验仪器

原子荧光光谱仪;砷双阴极空心阴极灯;电热板;50mL比色管。

(4)试剂和溶液

本试验方法所用试剂除特殊注明外,均指分析纯试剂。所述溶液如未指明溶剂,均系水溶液。

a.王水溶液(1∶1),现用现配。取3 份浓盐酸(优级纯)与l份浓硝酸(优级纯)混合均匀,然后用水稀释。

b.氢氧化钠溶液(ρ=100g/L),称取10g氢氧化钠,用去离子水溶解,定容于100mL容量瓶中。

c.氢氧化钾溶液(ρ=1g/L),称取0.1g氢氧化钾,用去离子水溶解,定容于100mL容量瓶中。

d.硼氢化钾-氢氧化钾溶液,称取1.5g硼氢化钾溶于100mL氢氧化钾溶液(c)中。用时现配。

e.盐酸溶液(1∶1),优级纯。

f.硫脲-抗坏血酸溶液:称取 5g 硫脲(优级纯,H2NCSNH2)、5g 抗坏血酸(C6H8O6)溶于水中,稀释至100mL。用时现配。

g.盐酸溶液(1∶9),优级纯。

(5)砷标准储备溶液(1.00g/L)

称取0.6600g预先在110℃下烘干2 h的三氧化二砷(优级纯)于小烧杯中,加入10mL氢氧化钠溶液[(4)b],加热溶解,无损移入500mL容量瓶中,用水稀释至刻度,摇匀。

临用时,取一定量的上述溶液,用(1∶9)盐酸溶液[(4)g]准确稀释成含砷1.00mg/L的标准工作溶液。

(6)试样制备

称取能通过0.149mm筛孔的已风干试样0.5g(精确至0.0001g),置于50mL具塞比色管中,加数滴水湿润样品,加10mL(1∶1)王水溶液[(4)a],加塞后小心摇匀,在室温下放置过夜。次日,于沸水浴中加热消解2 h,其间摇动一次,取出冷却,加水定容。同时做空白试验。

(7)分析步骤

A.样品测定

吸取5.00mL清亮试液于10mL比色管中,加2.5mL硫脲-抗坏血酸溶液[(4)f],充分摇匀,加2mL(1∶1)盐酸溶液[(4)e],加水至刻度,摇匀,放置15min。以(1∶9)盐酸溶液[(4)g]为载体、以硼氢化钾-氢氧化钾溶液[(4)d]为还原剂、以氢气为载气,将样品吸入氢化物发生器中,将产生的砷化氢气体导入电热石英炉中进行原子化,将测得的荧光强度减去试剂空白的荧光强度后,从校准曲线上求出试液中砷的含量。

B.绘制校准曲线

分别吸取含砷1.00mg/L的标准工作溶液0.00mL、0.50mL、1.50mL、2.50mL、5.00mL、7.50mL于50mL比色管中,加10mL(1∶1)盐酸溶液[(4)e],摇匀,加12.5mL硫脲-抗坏血酸溶液[(4)f],加水至刻度,充分摇匀,即为含砷0.00mg/L、0.01mg/L、0.03mg/L、0.05mg/L、0.10mg/L、0.15mg/L的标准系列溶液,放置15min,与试样在相同条件下测量样品的荧光强度。

(8)数据处理及结果计算

现代岩矿分析实验教程

式中:w(As)为土壤砷的质量分数(mg/kg);ρ为从校准曲线查得的砷的浓度(mg/L);V为测定试样体积(mL),本方法为10mL;D为分取倍数,本方法为50/5;m为试样质量(g)。

重复试验结果以算术平均值表示,保留两位小数。表6.6为重复试验结果所允许的相对标准偏差。

表6.6 重复试验结果允许的相对标准偏差

注:加入硫脲将As5+还原成低价后才能有效地生成砷化氢;加入硫脲后应充分摇匀使其溶解;试样酸度不宜过大,一般在c(HCl)=1.2 mol/L为宜;20多种常见元素,其质量浓度在100mg/L或大于100mg/L时,对此法不产生干扰,但Ag、Au、Bi的质量浓度最好分别低于5mg/L、3mg/L、20mg/L。

土壤质量 总汞的测定 原子荧光法 GB/T 22105.1 -2008土壤质量 总汞的测定 冷原子吸收分光光度法 GB/T 17136-1997

土壤肥料学土壤研究论文

土壤:土壤是远古矿石风化而来,土壤有机质是草木植株落叶及根系腐烂形成。土壤中贮存着多种植物生长所必须的营养成分(有机物、氮磷钾、钙镁硅硫及硼锌锰钼铁钠等微量元素)。土壤有固定植物根系的作用,能为植物提供应养,土壤有机物可为微生物提供营养使其繁衍生息,土壤微生物在繁衍过程中代谢产物(有机酸、植物生长生长调节剂(赤霉素、吲哚类)等),有机酸可以将土壤中部分不溶于水的矿质元素及金属化合物溶解供植物吸收,可促使土壤形成稳定的团粒结构等等。土壤有机质的高低代表着土壤肥力的高低。所谓的肥料:指的是人为施入的无机化肥,随着人们追求高产,化学肥料的用量越来越大,不仅使土壤环境恶化质地变劣(肥料淋失造成水污染,土壤有机质逐渐减少而土壤越来越板结)例如:磷酸二铵长期大量使用致使磷酸盐与土壤中钙镁等离子形成不溶化合物致使土壤板结,并造成土壤元素失衡而行成增肥不增产,这就是肥料在生态环境及可持续发展农业中的主要因素。可持续发展必须要测土配方施肥,杜绝盲目而不合理的施肥,发展生物有机肥料,消除或减少化学肥料对环境及土壤的破坏及污染。从而使土壤理化性状及肥力逐渐恢复才是可持续发展的方向。学习肥料的使用及土壤肥料科学很重要,可指导农民根据土壤理化性状、供肥能力、作物形成产量所需肥料数量,根据肥料利用率计算出最经济的化肥施用量,配合有机肥料提高化肥利用率并起到改良土壤恢复地力之功效。水平有限!希望能帮到你。

1931年,经虞宏正教授推荐,进入中央地质调查所,在该所的土壤研究室和美国专家一起工作。1934年侯光炯任该室副主任,1937年晋升为主任。为了查清我国的土壤资源,他历尽艰辛,和同事们一起开展了大面积的土壤调查,取得了大量第一手资料,写出了《河北省定县土壤调查报告》、《中国北部及西北部之土壤》、《四川重庆区土壤概述》及《甘肃省东南部黄土之分布利用与管理》等论文。大量的实践使他牢固地树立了土壤科学必须为农业生产服务的信念。1935年,侯光炯作为中央地质调查所土壤研究室的代表和邓植仪、张乃凤一起代表中国出席了在英国牛津召开的第三届国际土壤学大会,并宣读论文,首次对水稻土的发生、层次形态划分,特别是水稻土层次形态与生产力的关系,作了科学论述。会上还展出了,各种水稻土标本,系统地展示了中国水稻土的研究成果,受到与会科学家的重视。会后,侯光炯得到苏、美、德、法、英、意、匈、荷兰、瑞典等10多个国家的代表的邀请和中华教育基金会的资助,去各国进行访问和合作研究。侯光炯带着“中国土壤与欧美土壤有什么不同”的问题在外国进行了3年考察和研究。在瑞典写出了《土壤胶体两性活动规律》论文,在苏联写了《红壤成分与茶叶品质的关系》论文。抗日战争期间,受研究条件所限,他的一些有关研究农业土壤方法的创建,竟是在家中进行的。女儿帮助采集标本,妻子帮助试验。初试成功的“土壤粘韧性测定法”可以方便地用于测定土壤矿质胶体的性质,从而受到国内外同行们的重视。1946年,侯光炯转入四川大学任教授,主讲土壤肥料学、土壤化学、土壤地理学等课程。他教学认真负责,实行启发式教学,经常组织学生进行学术讨论、野外考察和科学研究。在这期间,与青年教师合作写了《土壤吸附养分状况和土壤粘韧性的关系》、《用粘韧曲线鉴定土壤特性》和《粘韧曲线的测定》3篇论文,刊于第四届国际土壤学大会论文集中。中华人民共和国成立后,侯光炯应邀参加全国首次土壤肥料会议。朱德同志关于“土壤科学必须为农业生产服务”的号召给他留下了深刻的印象,更加坚定了他对中国土壤科学的发展要走自己的道路的信念。1952年院系调整后,成立了西南农学院,侯光炯任该院教授。为了使土壤科学紧密为农业规划和农业生产服务,他承担了云南橡胶宜林地考察;长江上游的岷江、沱江、涪江、嘉陵江流域的土壤调查,以及后来的第一次和第二次全国土壤普查、西南区农业土壤区划等任务。在完成这些任务的同时,写出《中国土壤粘韧性研究》,该文曾在匈牙利全国土壤学会上宣读,并译成俄文,转载入前苏联《土壤学》杂志,引起了国外行家们的共鸣;写出了《四川盆地内紫色土的分类与分区》,作为在巴黎召开的第六届国际土壤学大会的论文;写出《利用土壤层次评价土壤肥力的研究》论文,并在罗马尼亚召开的第八届国际土壤学大会上宣读。侯光炯认为,解决农业生产中的问题必将带动土壤学科的发展。1956年,侯光炯加入了中国共产党。他兼任中国科学院重庆土壤室主任,集中精力研究紫色土,于1960年提出了“农业土壤生理性”的见解。“文化大革命”期间侯光炯虽处困境,长期卧床的妻子又不幸去世,家庭和精神上的遭遇丝毫没有动摇他继续研究农业土壤的决心。1973年以来,他深入广阔农村长达18年之久,在四川简阳镇全区和长宁县相岭区蹲点,进行土壤科学理论应用的研究,提出了旱地的“大窝栽培”和冬水田的“自然免耕”技术,经大面积推广,有明显的增产效果,受到广大科学工作者的重视和农民的欢迎。侯光炯从事农业教育和土壤科学研究几十年如一日,勤于思考,敢于创新,热爱祖国、热爱科学,1955年被遴选为中国科学院生物学部委员;曾先后被选为第一、二、三、五、六、七届全国人民代表大会代表;1986年获全国“五一”劳动奖章,1989年被授予全国劳动模范光荣称号,以表彰他为发展中国土壤科学所作的贡献。土壤学家。上海金山人。1928年毕业于北京农业大学农化系。西南农业大学教授、自然免耕研究所所长。从事土壤学教学与科研工作达60年之久,在土壤肥力和土壤地理研究方面发现“光肥平衡”日周期变化的事实,从而开辟了土壤胶体热力学新领域;1986年通过鉴定的水田自然免耕新技术,到1988年底已在南方13省推广2200多万亩,增产率在15%以上;为适应土壤肥力研究的需要,创建了土壤胶体物理―土壤粘韧率和粘韧曲线,以及土壤胶体热力学+联式pH两种测定方法,并拟定了土壤肥力分类体系,为制定我国土地利用规划提供了科学依据。1955年选聘为中国科学院院士(学部委员)。1905年5月7日出生于江苏金山县(今属上海)吕巷镇。1911年至1917年就读于金山县吕巷镇第三小学。1917年秋至1922年秋在江苏南通甲种农校攻读农科。1922年秋至1923年夏毕业留校任棉花实验室技术员。1923年秋至1924年7月免试升入南通大学农科就读。1924年7月至1928年夏转入北平大学农学院农化系攻读本科,获农学士学位。1928年秋至1931年3月就职于北平大学农学院。1931年3月至1946年8月到南京,供职于前中央地质调查所土壤研究室,先后任调查员、室副主任、主任、主任技师。其间:1931年3月至1935年6月从事土壤调查、室内分析化验及水稻土研究。1935年7月赴英国牛津大学出席第三届国际土壤学会议。1935年7月至1937年2月先后到英、荷、德、瑞典、芬、苏、匈、意、美等国考察或短期合作研究。1937年2月至1938年7月回到南京前中央地质调查所,主持土壤研究室工作。抗日战争爆发后随迁长沙。先后赴浙东、赣中、湘南进行土壤调查。1938年8月至1940年8月随所迁重庆北碚,继续主持土壤研究室工作。1940年8月至1941年8月借调到江西地质调查所筹建土壤室和红壤改良实验室。1941年8月至1942年初回北碚原单位研究四川土壤。1942年初至1942年冬兼任四川大学和前中央大学(南京大学前身之一)土壤学教授。1943年初至1946年8月回土壤研究室工作,并兼重庆大学、川北大学教授。1946年8月至1948年任四川农改所技正,兼任四川大学农学院、铭贤学院(山西农业大学前身)教授。1948年起专任四川大学农学院教授。1948年至1952年12月任四川大学农学院教授。1952年12月至1996年11月逝世前在西南农业大学任教授,博士导师,先后兼任西南农业大学土化系主任、西南农科所土化系主任、中国科学院重庆土壤研究室主任、四川土壤研究室主任、宜宾自然免耕研究所所长、名誉所长,1996年任西南农业大学名誉校长。其间:1955年当选中国科学院学部委员(后改称院士)、中国农科院学术委员。1956年加入中国共产党。1956年6月赴匈牙利出席第六届国际土壤学会议。1964年6月赴罗马利亚出席第八届国际土壤学会议。1972年春至1980年春在四川简阳镇农村蹲点从事科研及高产试验、示范、推广。1978年至1983年任中国科学院成都分院土壤研究室主任。1980年春至1980年秋在宜宾江安县铁清乡蹲点从事科研及高产试验、示范、推广工作。1980年秋至逝世在宜宾长宁县农村蹲点科研,重点进行自然免耕高产研究、示范和推广。1994年4月赴墨西哥出席第十五届国际土壤学会议,会后顺访美国进行学术交流。1996年11月4日因病逝世,享年92岁。

土壤环境检测研究论文

meiyou

谈净土洁食问题“万物土中生,食以土为本”, 土壤是人类生存的基本资源,是农业发展的重要基础。据统计,2000年世界粮食总产量约为22亿吨,其中我国粮食产量约5亿吨。这些粮食均是在全球17亿公顷(我国占 1.2亿公顷)耕种土壤上生产的。正是因为这些土壤能提供作物生长的养分和水分,也就是具有土壤“肥力”,才能使粮食获得稳定的产量,才能维系人类的生存和繁衍。然而,事物总有两面性,一方面,土壤中如果没有充分的养分和水分,没有“肥力”,就不可能使作物正常生长,更谈不上获得稳定的产量,而另一方面,土壤中的养分元素含量,对作物生长讲,经常是供需不平衡的,必须注意调节,特别是人们有意无意地向土壤中加入了不利于作物生长的各种“有害”元素,使土壤及水体发生污染,就会导致农产品品质恶化,影响人体健康。因此,土壤质量的好坏,直接关系到人类生存质量的好坏。当前我国农产品质量与安全问题,越来越引起社会广泛关注。引发农产品质量不良的因素,包括自然与人为两个方面,其中生态环境,即水、土、气、生等方面的污染,是导致农产品品质不良的重要根源。以往人们关注的是“蓝天、碧水”,认为只要天蓝,水碧,就能保证农业环境及其产品质量安全。岂不知,除了“蓝天、碧水”外,更重要的是保证土壤质量的安全,只有保证了“净土”、才能保证“洁食”,才能保证人类生命的健康与安全,最终才能保障整个社会的稳定与发展。相反,如果没有“净土”,土壤中的有害气体将影响大气,土壤中的有毒物质也会影响到水体,致使天不再蓝,水不再碧,即使天蓝、水碧,也会有毒害物质飘在空中,溶在水中,或进入土中。因此,对农产品质量安全而言,“净土、洁食”比“蓝天、碧水”更加重要,都是同等重要的战略性安全问题。土壤污染是农产品不安全的源头不洁净的土壤是指遭受不良物质污染的土壤。土壤污染包括重金属污染、农药和持久性有机化合物污染、化肥施用污染等多方面。随着人口增加及经济发展,我国面临的土壤环境安全问题越加突出。据统计,我国重金属污染的土壤面积达2000万公顷,占总耕地面积的1/6。因工业“三废”污染的农田近700万公顷,使粮食每年减产100亿公斤。其中,在一些污灌区土壤镉的污染超标面积,近20年来增加了14.6%,在东南地区,汞、砷、铜、锌等元素的超标面积占污染总面积的45.5%。有资料报道,华南地区有的城市有50%的农地遭受镉、砷、汞等有毒重金属和石油类的污染。长江三角洲地区有的城市有万亩连片农田受镉、铅、砷、铜、锌等多种重金属污染,致使10%的土壤基本丧失生产力,也曾发生千亩稻田受铜污染及水稻中毒事件,一些主要蔬菜基地土壤镉污染普遍,其中有的市郊大型设施蔬菜园艺场中,土壤中锌含量高达517毫克/千克,超标5倍之多。其次,我国农药总施用量达131.2万吨(成药),平均每亩施用931.3克,比发达国家高出一倍。特别是随着种植结构的改制,蔬菜和瓜果的播种面积大幅度增长,这些作物的农药用量可超过100公斤/公顷,甚至高达219公斤/公顷,较粮食作物高出1~2倍。农药施用后在土壤中的残留量为50%~60%,已经长期停用的六六六、滴滴涕目前在土壤中的可检出率仍然很高。据调查,一些名特优农副产品中,有机磷检出率100%,六六六检出率95%,超标2.4%。另在全国16个省的检查结果,蔬菜、水果中农药总检出率为20%~60%,总超标率为20%~45%;因蔬菜、水果农药残留引起人畜中毒死亡事件时有发生。据不完全统计,华南地区的中心城市自1997年至2001年共发生因蔬菜农药残留引发的食物中毒事件28起,中毒415人,个别地市高毒、高残留农药每年造成急性中毒5~7宗,受害人数约300人。类似的急性中毒事故在长江三角洲地区也有发生。值得注意的是,近年来沿海大部分地区的大田耕地土壤中持久性毒害物质大量积累,2000年太湖流域农田土壤中,15种多氯联苯同系物检出率为100%,六六六、滴滴涕超标率为28%和24%。令人不安的是,许多低浓度有毒污染物的影响是慢性的和长期的,可能长达数十年乃至数代人。第三,过量施用化肥也会造成土壤污染。90年代,全世界氮肥使用量为8000万吨氮,其中我国用量达1726吨氮,占世界用量的21.6%。我国耕地平均施用化肥氮量为224.8公斤/公顷,其中有17个省的平均施用量超过了国际公认的上限225公斤/公顷,有4个省达到了400公斤/公顷。据31个省、市、自治区的调查,目前在农业结构改制后的蔬菜、瓜果地里,单季作物化肥(折合纯养分)用量通常可达569~2000公斤/公顷以上,如一些蔬果种植大县的化肥平均用量已达1146公斤/公顷;滇池区蔬菜花卉基地,一季作物氮磷肥用量(纯养分)达687公斤/公顷,最高可达3300公斤/公顷;其化肥用量远高于全国平均水平(390公斤/公顷),较之世界用化肥首户的荷兰还高出一倍多;每年农田使用化肥氮进入环境的氮素达1000万吨左右,有些地区饮用水及农产品中,硝态氮和亚硝态氮的含量均明显超标。2000年下半年,华南地区有的城市监测到菜地土壤硝酸盐含量超标率为33.1%;据中国农科院对某地32种主要蔬菜调查,蔬菜硝酸盐含量比80年代初增加了1~4倍,其中有17种蔬菜硝酸盐含量超过欧盟提出的最低量标准;2001年长江三角洲的个别省份农产品出口由于监测不合格而损失数亿美元。综上所述,近年来我国的土壤污染正在向不同尺度的区域性发展,并对各种农产品品质产生严重影响。特别是我国东南沿海经济快速发展地区,土壤及环境污染问题严重。主要表现为:1.持久性微量毒害污染物已成为新的、长期潜在的区域性土、水环境污染问题;2.大气中有害气体细粒子和痕量毒害污染物构成了土壤与大气的复合污染,城市光化学烟雾频繁并加重;3.农田与菜地土壤受农药/重金属等污染突出,硝酸盐积累显著,已严重影响农产品安全质量及其市场竞争力;4.珠江三角洲和太湖流域土壤和沉积物中有机氯农药残留普遍,已发现一些多环芳烃和多氯联苯等有害污染物的潜在高风险区。造成如此严重的污染,除了自然原因外,人为活动是产生土壤与环境污染的主要原因,尤其是近20年来,随着工业化、城市化、农业集约化的快速发展,人们对农业资源高强度的开发利用,使大量未经处理的固体废弃物向农田转移,过量的化肥与农药大量在土壤与水体中残留,造成我国大面积农田土壤环境发生显性或潜性污染,成为影响我国农业与社会经济可持续发展的严重问题。应当指出,由于土壤污染具有隐蔽性,潜伏性和长期性,其严重后果仅能通过食物给动物和人类健康造成危害,因而不易被人们察觉。因此,改善生态环境,保护土壤质量,控制与修复土壤污染,才能实现农业安全,保证人畜健康。值得商榷的几种认识针对当前农产品质量安全问题,社会上有各种提法。如�建立“无公害农业”、“绿色农业”、“有机农业”、“绿色食品”、“生态农业”等。的确,21世纪的农业应该建立以“生态农业”为标志的现代化农业,但生态农业并不等于或不能完全保证农产品是安全的。如果不能从本质上实施生态农业的基本原则,杜绝有害物质的介入,不能通过整个农业生产体系与全程质量控制来保证农产品质量安全,则上述的这些提法均是无济于事的。下面就相关问题进行商榷。1.“有机”不能替代“无机”,有机肥并非是最“洁净”的人们一般认为有机肥培肥土壤是最安全的。这种认识是不全面的。第一,农业增产的实践证明,1公斤化肥,可增产5公斤~10公斤粮食。我国粮食的增产,有30%~35%是靠施用化肥取得的,化肥的贡献不容忽视。正确地说,化肥和有机肥的配合施用才是最有效的增产措施。第二,从对环境的污染看,无论是化肥还是有机肥,只要施用不当,均会出现污染。过量施用化肥是有害的,但有机肥若用量过大,腐熟不全,施用季节不当,也会对水圈、生物圈与大气圈产生污染。特别应注意的是,当前农村中的有机肥有不少是来自含化学激素或重金属等饲料饲养的畜禽排泄物,不少企业制造的商品有机肥的原料也不纯净。因此,有机肥也会变成引发土壤污染的根源。第三,目前社会上提出的“无公害”、“绿色”、“有机食品”以及A级、AA级“绿色食品”等,是以不使用或少用化学合成物质(化肥、农药、食品添加剂等)为主要标准的,其中以有机食品为最高等级。然而,这些标准还有待于国家对土壤与农产品质量标准与监测体系全面建立和完善后才能真正做到。对此,我们必须要有清醒的认识。2. “无土栽培”不能代替“净土”种植随着农业经济的不断发展,各地已广泛建立了农业科技示范园或基地,并以高度集约的方式,进行无土栽培,取得了可喜的成绩,解决了部分城市的蔬菜、瓜果供给,获得了很好的经济、社会效益。但从国家的粮食总体需求来看,至少在近阶段(几十年甚至几个世纪)仍然不能取代广阔的农业耕地。因此,必须在发展无土栽培蔬菜、瓜果的同时,继续强化全国耕地土壤肥力的培育与土壤污染防治,用“净土”生产粮食,造福于人民。3.目前的“生态农业”并非等于安全农业所谓“生态农业”是以生态理论为基础,以现代生态农业技术为手段,以农业可持续发展为核心,通过农业与环境,生态与经济的平衡,达到农业安全与人类健康的最终目标。在建设生态农业过程中,必须注意贯彻生态学原理,做到生态系统的良性循环,保持系统功能的稳定性与持续性;将农业安全与人类健康列为首位,建立多层次的持续高效的农业生态系统,并按区域特点建立生态区域模式。从而使现代生态农业在促进地区与国家经济发展方面起重要推动作用。生态农业是综合复杂的系统工程,需要与国家及地区的农业现代化建设相结合,核心是农业安全与人类健康。其中土壤与环境质量是农业生态工程的重要内容。这是一项需要投入实力,坚持不懈,科学实施的宏大工程。而目前多数地方多只是停留在口号和概念上,尤其不注意农业安全与人类健康。大家应对此有清醒认识。4.“净土”不等于“洁食”的确,洁净的土壤只是生产质量安全农产品的基本保证。事实上,洁净基地生产出的清洁农产品,还需经过储存、运输、深加工、市场流通直至餐桌等诸多过程。只有经过了这些全过程质量控制,最后到达餐桌仍是清洁的,才算农产品的真正安全。因此,在农业安全生产中,除了从防治土壤污染这个源头抓起外,还必须注意防治产地环境、生产过程、流通环节中所产生的污染问题,并通过建立与制定国家与地方一系列的农产品规范,完善质量认证、监测、管理、法制等体系建设,严格控制农产品的“全程清洁”生产,才能使农业安全得到可靠保障。保护和治理土壤与环境质量的建议1.开展全国土壤质量本底调查,建立全国土壤质量监测网络,为实现农产品的安全生产提供保障我国土壤资源丰富,土壤类型复杂多样,不同利用方式、不同投入水平、不同管理模式均对土壤质量产生影响。虽然已经进行过两次全国性的土壤普查,但最近的一次已经过去了20多年,当时所获得的有关土壤环境质量的信息甚少,不能满足当今农业生产,特别是农产品质量安全生产的需要。如最近在太湖地区进行的土壤质量调查,其结果表明土壤质量的空间变异很大,环境质量状况令人担忧。如果不全面摸清各地土壤质量本底情况,针对不同质量土壤进行农业清洁生产,就根本不能保障农产品的质量安全。因此,在全国范围内进行土壤质量的本底调查十分紧迫。目前,国家有关部门也正在推动全国性的与土壤质量有关的调查,如国土资源部的农业环境地球化学调查;国家环境保护总局的土壤污染调查;农业部的耕地质量调查与评价以及中国科学院的土壤质量研究等。但从目前的进展来看,各部门的侧重点均有所不同,缺乏必要的统一与整合,造成工作重复和资源浪费。因此,建议国务院组织、协调有关部门,加强资源和技术的整合,逐步、分区、分阶段地开展基于农产品质量安全的全国性耕地土壤环境质量调查与评价工作,并建立长期的动态监测体系。2. 尽快修订土壤环境质量标准,加强土壤有机与激素类污染物质的监测和研究,并尽快与国际接轨目前,就农业生产中污染物而言,FAO(联合国粮农组织)迄今已公布了相关限制标准共2522项,美国则多达4000多项,其它发达国家的控制标准达数百项甚至上千项,而我国农产品质量标准中仅涉及62种化学污染物,所颁布的无公害农产品标准中,也仅规定了农药残留、重金属和硝酸盐含量控制标准,这与发达国家的限制标准不相适应。此外,美国、德国、英国、荷兰等西方国家对PCBs(多氯联苯)、PAHs(多环芳烃)、PCDD/PCDFs(二恶英类)等与人体健康威胁最大的有机污染物(环境激素)也制订了有关的质量控制标准。而我国新近颁布的无公害农产品产地土壤环境质量标准仍是引用现行土壤环境质量标准,且重金属仅限5种,农药仅限六六六和滴滴涕,其它有机污染物未涉及。因此,建议加强土壤中环境激素类物质的监测和研究,尽快修订有关土壤环境质量标准和农产品质量标准,尽快与国际接轨。3.大力开展农业清洁生产,加强土地质量保护和修复的研究开展农业清洁生产是解决农产品品质的根本措施。据江苏的经验,必须在摸清土壤与环境质量本底,抓好“净土”这个源头的基础上,选好主要农产品,明确技术规程,通过试验示范抓好并建立五大体系,即农产品质量安全生产技术规范体系;农产品质量安全标准体系;农产品质量安全监管监测与认证体系;质量安全农产品管理与市场信息体系;农产品质量安全法规与执法体系。对大面积遭受污染的土壤,必须开发行之有效的污染土壤修复技术,并对有关环境技术基础与原理,如土壤污染形成机制与农产品质量安全措施;持久性微量毒害物的环境行为、生态毒理及人体健康危害;污染土壤、地表水和地下水的环境生物修复;农业面源污染及水体富营养化的修复过程与机理;痕量气体污染、细粒子污染及酸雨的形成、危害机制与防治等进行深入研究,以恢复和提高其土壤与环境质量水平。与此同时,应发展具有我国自主知识产权的环保技术与产业。此外,应将生态环境资产损失计入生产成本,以绿色GDP指标来衡量和考核地区经济发展成就。4.制订土地质量修复和保护规划,加强规模化和标准化农产品生产示范基地的建设应利用土壤环境质量调查与评价的结果,制订土地质量修复和保护规划,包括质量安全农产品发展的生产基地布局、结构调整、污染防治、污染土壤修复、农业清洁生产规划等,加强污染土地整治与修复的资金投入。同时在长江三角洲、珠江三角洲、胶东半岛、京津塘和东北等地区进行规模化和标准化农产品生产示范基地建设,逐步在全国建成一批安全、优质(营养、保健)、特色农产品生产基地,不断提升市场竞争力和出口创汇能力。此外,应加强环保法规建设,健全管理体制和机制,制定更严格的环境标准。在保证国家现行环境法规的基础上,制定区域性新法规。在控制农业和农村面源污染的工作中,重点应该包括制定合理的土壤质量保护条例、湖泊和近海养殖规划,实施规模化畜禽养殖和生态养殖,建设农村集中居住社区和污水废物集中处理,合理使用有机肥,推广使用绿色农药,推广精准施肥技术,严禁使用高毒、高残留农药等。重视土壤、水体和大气持久性有毒物质及其长期危害效应的监测。5.加强土壤与环境质量的宣传与科普工作,进一步提高全民生态环保意识农田土壤环境质量的不断恶化,必将严重影响到我国农田生态系统的生物多样性、食物链安全、人体健康和经济、社会的可持续发展,也必将影响到我国农业在世界上的地位和命运。因此,土壤环境质量的健康和安全是我国农产品质量安全及人民健康安全的重要基础,也是我国人口-资源-环境-经济-社会协调、可持续发展的根本保证。要大力开展土壤与环境质量的宣传与科普工作,让全社会都知道只有“净土”才有“洁食”,只有“洁食”才能“健康”,只有“健康”才能“稳定”,只有“稳定”才能保证全社会的“可持续发展”。可见,“净土、洁食”与“蓝天、碧水”是同等重要的国家生态与环境安全发展的长远战略。因此,我们建议国家要像治理沙尘暴,治理长江、黄河与水土保持一样,刻不容缓地对待和解决我国当前面临的土壤与环境污染问题。希望全社会共同努力,使我们的天空更蓝,水更清,土壤更洁净,食物更安全。

土壤重金属污染治理的策略与技术论文

在学习、工作生活中,大家都不可避免地会接触到论文吧,论文是学术界进行成果交流的工具。相信许多人会觉得论文很难写吧,以下是我为大家收集的土壤重金属污染治理的策略与技术论文,欢迎大家分享。

摘要:

在我国社会经济快速发展的背景下,土壤污染问题十分严重,严重影响了人民群众的生命健康安全。为此在新时期要高度重视土壤重金属污染的有效治理,避免土壤结构被大量破坏造成土壤中的矿物质流失。通过对土壤重金属污染治理的原因和问题进行分析,制定科学高效的应对措施,保证土壤重金属污染治理的整体水平全面提高,确保土壤重金属污染治理的效率大幅度提高,保护土壤生态,为社会经济可持续发展做出重要贡献。

关键词:

士壤重金属污染;治理问题:对策

引言:

土壤作为社会发展重要基础,必须要高度重视对土壤生态环境的妥善保护与科学处理。重金属作为土壤环境最重要的指标,由于受到工业农业的快速发展,土壤中的重金属物质含量显着超标,对于整个土壤的破坏十分明显,严重影响了土壤安全,在新时期需要重点关注土壤重金属物质,并采取有效的处理措施,减少土壤重金属造成的破坏与损伤,确保土壤重金属得到有效控制。

1、土壤重金属危害

重金属是指通过自然环境难以有效降解的各种物质。包括铅汞等,这些重金属物质如果进入到人体会引发重金属中毒,对人体造成明显损伤,而在土壤和水源中会大量淤积,也会导致水生动物和植物的生长发育受限,不利于生态环境土壤污染的农田,如果种植农作物也会造成大量的重金属进入农作物内部,植物中含有大量重金属就会通过饮食进入人体而导致食品安全问题[1]。土壤重金属污染越来越严重,对人们的生活造成巨大的威胁。为此要有效处理重金属污染,降低土壤中重金属含量。

2、土壤重金属污染主要成因

目前对于土壤重金属污染的成因主要包括自然因素和人为因素两方面,其中自然因素是指在自然环境中发生的火山爆发和土壤自身形成的因素,而人为因素则涉及工业农业交通等多个领域,也是造成土壤重金属污染的关键因素。例如在干旱地区为了提高农作物的产量解决缺水问题,往往会采取大面积灌溉的方式造成土壤养分流失,或者在灌溉中所使用的水资源受到污染,导致金属含量超标等,必然会使土壤出现金属污染问题,此外在工业领域不断发展的背景下,金属冶炼对社会发展具有十分重要的作用,但在冶炼过程中也会产生大量的重金属废水,如果没有对重金属进行妥善无害化处理,而直接排放到自然环境中,会造成土壤的重金属污染[2]。在城市发展中人们的生活水平日益提高,汽车保有量显着增多,而车辆也会生成大量汽车尾气,这些汽车尾气会直接污染大气,经过雨水冲刷会导致重金属污染物渗入到土壤内部。

还有部分有机肥料来自城市建筑垃圾、河道淤泥等,这些原材料本身富含大量重金属元素。在进入到土壤后也会造成土壤重金属含量显着升高,对土壤结构造成破坏。我国地形复杂,面积范围广大,土壤种类丰富,这也使得土壤污染问题存在明显的区域性差异,在农业发达的西北地区具有良好的土壤环境,而在中南地区由于工业密集,所以土壤污染问题严重。在发达地区为了提高农作物,往往会使用大量的化肥农药,这样就会造成农业用地日积月累受到严重的污染,致使蔬菜粮食存在农药残留,而且农业用地污染问题大部分都以有机或无机复合为主,造成土壤无法复原。当土壤受到重金属污染以后,基本无法恢复,土壤之中也会富含大量的胶体致使重金属物质不断富集,长此以往重金属污染也会日益严重,在人类正常的生活与工作中,耕地的酸碱值会发生明显变化,而且化学反应也会使重金属的离子价态和形态会发生明显的变化,而且大多数的土壤重金属污染,无法通过人类的感官进行准确识别,往往需要经过长时间的沉淀以后才能发现,这样也就造成土壤重金属污染难治理难度不断增加。

3、土壤重金属污染的主要治理策略

目前在土壤污染防治中,需要高度重视对土壤环境的妥善监测,通过对土壤中的重金属指标进行快速准确监测,能够判断土壤内部重金属富集的具体情况,为此有关部门要高度重视。建设土壤监测监管机制,采取相应的设备,对土壤的组成成分进行全面分析,提高土壤检测数据的科学性,例如成立土壤监测部门,按照专业的监管机制,安排专业人员对土壤相关数据进行全方面检测,确保土壤环境得到妥善处理,在土壤数据监测完毕后,还要将有关数据上传至监管部门,明确各个地区土壤的重金属含量,确保土壤重金属污染得到有效控制,一旦发现异常超标情况,则需要采取科学的解决,确保土壤重金属物质处理的效率全面提升,满足土壤重金属污染监测的实际需求。由于我国对土壤污染防治工作开展的时间比较晚,为此在新时期要积极加强土壤污染的有效预防,制定高效目标,坚持以预防为主,保护优先,树立完善的风险监管意识,从而确保土壤污染治理的.整体水平全面提升[3]。

要主动采取分级风险管控措施探索土壤重金属污染治理的全新方案,提高控制管理的水平,同时要做好技术调查,在全国范围内对土壤污染的具体状况进行准确的排查,保证土壤污染问题得到清晰有效的控制与解决,建立土壤重金属污染相关信息化平台(表1),实现资源共享,通过设立全国规模的土壤污染监测管理网络,保证对土壤污染监测点覆盖到市县级,做到监管数据实时更新。确保土壤管理的效率全面提升。要逐步建立污染土地目录或者土地使用污染目录,严格控制土壤的实际使用途径。加强监管存量,对源头严格防控,有效提高农业污染的监督管理力度。要坚决从源头加强土壤保护,避免土地随意滥用。

表1基于GIS系统土壤环境风险控制管理体系

4、土壤重金属污染治理的主要技术

4.1、生物治理

当前的土壤生物治理可以通过植物微生物等手段减少土壤重金属含量或降低其毒性。在植物治理中,需要积极培育能够吸附重金属物质的植物,有效去除土壤中的大量重金属物质。这种方案成本低廉,技艺简单,具有大范围推广应用的实际意义。另外可以通过微生物对土壤进行改良,但这种技术对微生物要求比较高,而且治理周期比较长,还会存在一定的风险问题[4]。

4.2、化学防治

化学防治可以通过重金属改良剂,根据不同的金属特点采取相应的化学反应,确保对重金属进行有效抑制,使这些潜藏在土壤中的重金属能够快速凝聚,减轻土壤对重金属吸收,避免造成恶劣影响。还可以直接使用金属拮抗剂,因为金属之间存在许多的相互作用,金属的特性也并不会对人体造成明显的伤害,通过化学防治可以通过有益金属对重金属相互作用产生拮抗性,减轻重金属的活跃度[5]。

4.3、生态修复技术

在农业生态修复中通过农艺修复或生态修复等不同的方法,可以保证土壤中的水分含量,耕作制度得到有效控制,技术人员可以通过对土壤中的水分进行控制,有效改善土壤的pH,而且有部分重金属在氧化还原下会不断迁移发生变化,此外造成土壤氧化还原的主要因素在于水含量增多,所以在修复的过程中要加强对水含量的有效调控,增强氧化还原整体效能,避免重金属的快速迁移,促进土壤修复的整体质量水平全面提高。生态修复能够对土壤的水分肥力进行快速还原,改善当地的环境气候条件,有效控制重金属污染物所处的环境介质。在土壤重金属污染治理时,生态修复技术的效率比较缓慢,在短时间内并不能看到显着的效果。

4.4、工程治理技术

工程治理技术能够通过工程机械理论,加强对污染土地治理。目前常用工程治理技术包括换土法、克土法以及深耕翻土法等,是指被污染的土壤中增加干净土壤,并且快速将被污染土壤与外界隔离,减少土壤中的重金属污染物浓度。换土法则是直接将被污染的土壤快速挖掘,并搬运别处进行妥善处置,换上干净土壤。深耕翻地法是利用机械,使上部重金属污染物迅速向下部翻转,保证表土表面重金属污染浓度降低。在运用工程治理技术中,需要根据不同的技术要求选择科学的治理方法,通常污染程度比较轻的土地可以采用深耕翻土法,污染程度比较重的则需要采用换土法以及克土法,需要注意的是,在采用换土法时对被挖出的污染土壤要及时进行处理,避免对环境造成二次污染。

4.5、联合修复技术

由于土壤重金属污染物的成分多样化,不同地区的污染类型,污染程度也各不相同,凭借单一的技术很难达到预期的修复效果,为此要积极针对土壤重金属污染的具体情况,采取联合修复的方式,通过对植物和微生物联合物理和化学联合等多样化的修复手段,能够促进土壤恢复效果,减轻土壤受污染的程度[6]。

4.6、改良剂改性修复

改良剂改性修复,主要是在重金属污染土壤中加入固定配方的改良剂,使改良剂与重金属之间出现明显的吸附作用、抗结作用以及氧化还原作用,但这样的技术最终造成土壤重金属污染物活性显着下降。石灰石、碳酸钙、硅酸盐等各种改良剂相互作用还能够促进土壤的养分得到显着变化。

5、结束语

我国目前土壤重金属污染问题十分严重,而且防治工作起步晚、技术落后,给土壤重金属污染防控造成严峻挑战。针对污染物有效防治采取相应的措施加以治理,确保土壤重金属污染物的改良效果全面提高,促进我国土壤资源的安全。

参考文献

[1]赵瑞芬,程滨,滑小赞,等忻州市灌区土壤重金属污染评价及分布特征分析[J].北方园艺,2021(6):81-88.

[2]马叶,赵国梁,王晓凤,等添加螯合剂诱导栽培红叶荞菜(Betavulgarisvar.ciclaL.)修复铅和镉污染土壤效果的研究[J].土壤通报,2021(2):416-424.

[3]薄录吉,李冰,张荣全,等.金乡县大蒜产区土壤重金属特征及潜在生态风险评价[J].土壤通报,2021(2):434-442.

[4]张启,吴明洲.某疑似污染农用地地块土壤调查布点及评价方法[J].安徽农业科学,2018(20)117-119.

[5]王海东,方凤满,谢宏芳,等芜湖市区土壤重金属污染评价及来源分析[J]2010(4):36-40.

[6]张仕军土壤中重金属污染治理存在的问题及对策研究[J]资源节约与环保,2020(9):93-94.

相关百科

热门百科

首页
发表服务