首页

> 学术发表知识库

首页 学术发表知识库 问题

有关土壤比重测定的论文目录模板

发布时间:

有关土壤比重测定的论文目录模板

作用如下乙醇可显著增强土壤脲酶活性,二者关系达到显著正相关;随乙醇作用时间延长,土壤脲酶活性增加的幅度减小;随土壤肥力升高,乙醇影响脲酶的定浓抑制率绝对值减小,而脲酶的变浓变化率则差别不大,达到最大表观脲酶活性所需的最适时间缩短。该结果揭示出土壤肥力对外源物质与土壤脲酶活性的关系有重要影响。

目录(三号、黑体、居中、目录两字空四格、与正文...你去脚印论文网看一下,里面有很多论文格式模板

1. 土壤pH及Eh测试

土壤pH及Eh是土壤的重要性状之一,它直接影响土壤甲烷厌氧菌和营养菌的活动。为了保证测试数据反映的是土壤实际情况,我们将野外采集的热释烃土壤样装入塑料样品袋,以免水分蒸发,马上送到就地的实验室测试,测试仪器为意大利HANNA公司生产的pH、Eh两用酸度计(型号:pH211A),步骤如下:

1)称取通过1mm筛孔的土壤10g,放入干净的小烧杯中;加入蒸馏水50mL,用磁力搅拌器搅拌1min,放10min测量。

2)仪器校准

研究区土壤基本为碱性土壤,因此我们利用对pH分别为6.86和9.18的标准缓冲液对pH计进行了校准。

3)pH测定

开启磁力搅拌器,响应时间1min,测量时插入pH探头,读数稳定后读值。 每次测量后用蒸馏水清洗电极,擦干后再进行测量,重复3次,取平均值。

注意:每次测量后要清洗电极以避免污染。

4)Eh校准

将pH探头换为Eh复合电极,仪器校准后直接测定试样。样品处理同前。

2. 土壤容重和湿度(含水量)的测试

土壤容重是指在自然状态下,单位体积烘干土的重量,其单位为g/cm3,土壤质地不同,容重也不同,质地轻的土壤容重较小,反之则大。 测量土壤容重可以了解土壤的松紧程度,土壤紧实则容重大,土壤疏松则容重小。 同时容重也是计算土壤孔隙度不可缺少的数据。

我们采用环刀法采集了测定容重的土壤样(详见本章土壤和壤中气采样方法)。 将环刀内的土壤全部放入已知重量的铝盒(W1)中,将铝盒与湿土一起称重(W2)。 然后烘烤24小时至恒重(105~110℃),称铝盒与烘干土重(W3) 。

结果计算

含油气盆地甲烷微渗漏及其环境意义——以新疆塔里木盆地雅克拉凝析气田为例

式中:D——烘干土容重(g/cm3);

W3——铝盒与烘干土重(g);

W1——铝盒重(g);

V——环刀筒容积(cm3);

含油气盆地甲烷微渗漏及其环境意义——以新疆塔里木盆地雅克拉凝析气田为例

式中:W%——土壤自然水含量,以百分数表示;

W2 ——铝盒与湿土重。

3. 土壤比重和孔隙度测试

土壤比重即单位体积绝对干土重和同体积水重之比重。也就是指单位体积内完全充满了土壤固相,没有水、气及孔隙情况下的重量。 土壤比重的大小与土壤的矿物质、有机质成分有很大的关系。 土壤比重可以反映土壤矿物质的性质,也是计算土壤孔隙度所必要的数据。 测试步骤如下:

1)将预先煮沸并冷却到室温的蒸馏水注满比重瓶;盖上带有毛细管的瓶塞,擦干流到外面的水,稍后一会,待完全干燥后称瓶与水的合重(B)。

2)取通过1mm筛孔的烘干土2~3g(A),精确到0.001g

3)从比重瓶中倒出水,擦干流到外面的水,小心用油光纸将土样送入比重瓶内,不得遗漏。 用少量的水将粘在瓶颈上的土粒洗入瓶内,并注意瓶内水不得超过容积的2/3。

4)慢慢摇动比重瓶,使土粒分散、混匀。

5)将比重瓶放在电热板上加热,煮沸后保持半小时。 煮沸过程中经常摇动比重瓶,驱逐土壤中的空气,使土样和水更好地混合。

6)取下比重瓶,稍冷却,将蒸馏水加入比重瓶至略低于瓶颈为止。 待比重瓶内土液澄清且温度稳定后,在注满蒸馏水,然后塞好瓶塞,使多余的水自瓶塞毛细管中溢出,用滤纸擦干后称重(C)。

结果计算

含油气盆地甲烷微渗漏及其环境意义——以新疆塔里木盆地雅克拉凝析气田为例

式中:P——土壤比重;

A——土壤烘干土样的重量;

B——比重瓶+水;

C——比重瓶+水重+土重。

土壤孔隙度=1-容重/比重

4. 土壤盐度的测定

土壤浸出液的电导率的数值能反映土壤含盐量的高低,测试电导率的仪器为上海精密科学仪器有限公司生产的DDB-303A型便携式电导仪,测量范围为(0~104us/cm),仪器误差:1.5%。测量步骤如下:

1)称取4g风干土放在50mL的小烧杯中,加水20mL,盖紧皮塞,振荡3min。

2)静置澄清后,将电导仪的电极插入待测液,使铂片全部浸没在液面下,并尽量插在液体的中心部位,测定其电导率(S),每个样品应重读2~3次,以防偶尔出现的误差。

3)一个样品测定后用蒸馏水冲洗电极,并用滤纸吸干,以备下一样品测量使用。

电导仪的电极常数值已在仪器上补偿,因此,此时显示数值即为被测溶液的电导率值。

土壤有效磷的测定论文参考文献

土壤有效磷的测定如下:

土壤速效磷的测定中,浸提剂的选择主要是根据土壤的类型和性质测定。浸提剂是否适用,必须通过田间试验来验证。浸提剂的种类很多,近20年各国渐趋于使用少数几种浸提剂,以利于测定结果的比较和交流。

我国目前使用最广学的浸提剂是0.5molL-1NaHCO3溶液(Olsen法),测定结果与作物反应有良好的相关性[注1],适用于石灰性土壤、中性土壤及酸性水稻土。此外还使用0.03molL-1NH4F-0.025molL-1HCl溶液(BrayⅠ法)为浸提剂,适用于酸性土壤和中性土壤。

同一土壤用不同的方法测得的有效磷含量可以有很大差异,即使用同一浸提剂,而浸提时的土液比、温度、时间、振荡方式和强度等条件的变化,对测定结果也会产生很大的影响。所以有效磷含量只是一个相对的指标。只有用同一方法,在严格控制的相同条件下,测得的结果才有相对比较的意义。在报告有效磷测定的结果时,必须同时说明所使用的测定方法。

试剂配制:

(1)0.5molL-1NaHCO3(pH8.5)浸提剂:42.0gNaHCO3(化学纯)溶于约800ml水中,稀释至1L,用浓NaOH调节至pH8.5(用pH计测定),贮于聚乙稀瓶或玻璃瓶中,用塞塞紧。该溶液久置因失去CO2而使pH升高,所以如贮存期超过20天,在使用前必须检查并校准pH值。

(2)无磷的活性碳粉和滤纸:须做空白试验,证明无磷存在。如含磷较多,须先用2molL-1HCl浸泡过液,用水冲洗多次后再用0.5molL-1NaHCO3浸泡过液,在布氏漏斗上抽滤,用水冲洗几次,最后用蒸馏水淋洗三次,烘干备用。如含磷较少,则直接用0.5molL-1 NaHCO3处理。

(3)钼锑抗试剂:10.0g钼酸铵[(NH4)6Mo7O24×4H2O](分析纯)溶于300ml约60℃的水中,冷却。另取181ml浓H2SO4(分析纯)慢慢注入约800ml水中,搅匀,冷却。然后将稀H2SO4液入钼酸铵溶液中,随时搅匀,再加入100ml 0.3% (m/v)酒石酸氧锑钾[K(SbO) C4H4O6×1/2H2O]溶液;最后用水稀释至2升,盛于棕色瓶中,此为钼锑贮备液。

临用前(当天)称取0.50g抗坏血酸(分析纯)溶于100ml钼锑贮备液中,此为钼锑抗试剂,在室温下有效期为24h,在2~8℃冰箱中可贮存7天。

(4)磷标准贮备液(Cp = 100mgL-1):称取105℃烘干2h的KH2PO4(分析纯)0.4394g溶于200ml水中,加入5ml浓H2SO4(分析纯)转入1L容量瓶中,用水定容,该贮备液可长期保存。

(5)磷标准工作液(Cp = 5mgL-1):将一定量的磷标准贮备液用0.5molL-1NaHCO3溶液准确稀释20倍,该标准工作液不宜久存。

四、操作步骤

称取风干土样(1mm)2.50g置于干燥的150ml三角瓶中,加入25±1℃的液温下[注3],于往复振荡机[注3]上振荡30±1min,立即用无磷干滤纸过滤到干燥的150ml三角瓶中。如果发现滤液的颜色较深,则应向土壤悬浊液中加入约0.3~0.5g活性碳粉,摇匀后立即过滤。

在浸提土样的当天,吸取滤出液10.00ml[注4](含1~25mgp)放入干燥的50ml三角瓶中,加入5.00ml钼锑抗显色剂,慢慢摇动,使CO2逸出。再加入10.00ml水,充分摇匀,逐尽CO2。

在室温高于15℃处放置30min后,用1cm光径比色杯[注5]在660~720nm波长(或红色滤光片)[注6]处测读吸光度,以空白溶液(10.00ml 0.5molL-1NaHCO3溶液代替土壤滤出液,同上处理)为参比液,调节分光光度计的零点。

校准曲线或直线回归方程:在测定土样的同时,准确吸取磷标准工作溶液0、1.50、2.50、5.00、10.00、15.00、20.00、25.00ml,分别放入50ml容量瓶中,并用0.5molL-1NaHCO3溶液定容。该标准系列溶液中磷的浓度依次为0、0.15、0.25、0.50、1.00、1.50、2.00、2.50mgL-1P。

吸取该标准系列溶液各10.00ml同上处理显色,测读系列溶液的吸光度,然后以上述标准系列溶液的磷浓度为横坐标,相应的吸光度为纵坐标绘制校准曲线,或计算两个变量的直线回归方程。

土壤有效磷的测定:

1、奥逊法(0.5摩尔/升NaHCO3浸提——钼锑抗比色法)

方法原理:石灰性土壤中的磷主要是以Ca-P(磷酸钙盐)的形态存在,中性土壤中则Ca-P、Al-P(磷酸铝盐)、Fe-P(磷酸铁盐)都占有一定比例。

0.5摩尔/升NaHCO3可以抑制Ca2+的活性,使某些活性较大的Ca-P被浸提出来;同时,也使比较活性的Fe-P和Al-P起水解作用而浸出。浸出液中的磷用钼锑抗比色法测定。

2、0.03摩尔/升NH4F-0.025摩尔/升HCl浸提——钼锑抗比色法

方法原理:酸性土壤中的磷主要是以Fe-P和Al-P的形态存在,利用F-在酸性溶液中络合Fe3+和Al3+的能力,可使这类土壤中比较活性的磷酸铁铝盐被陆续活化释放,同时由于H+的作用也能溶解出部分活性较大的Ca-P。

土壤的成分:

土壤是矿物质、有机质和活的有机体以及水分和空气等的混合体;按重量计,矿物质占到固相部分,即土壤干重的九成或更多,有机质约占一成,可见土壤成分以矿物质为主;土壤有机质就是土壤中以各种形态存在的有机化合物。

土壤中铜的测定毕业论文

制样时,也就是土壤消煮时,用氢氟酸,盐酸,硝酸,高氯酸四种酸进行消煮,盐酸与硝酸的用量比例是王水的比例,因为王水消解重金属最好

土壤是宝贵的自然资源。人类生活必需物质(农、副产品等)绝大部分直接或间接由土壤提供。土壤系统也是自然要素中物质和能量的迁移转化最为复杂而又频繁的场所。土壤污染会导致土壤自然正常功能的失调、土壤质量的下降,从而影响农作物的生长发育,使之产量和质量下降。土壤污染物质的迁移转化,还会引起大气、水体和生物体的污染,通过食物链的作用最终会影响人类的生命和健康。研究土壤污染的发生,污染物质在土壤系统中的迁移转化规律,以及土壤污染的控制和治理对环境保护具有十分重要的意义。砷是重要污染物之一,由于含砷污水灌溉农田,砷制剂农药的使用,土壤中砷含量不断提高致土壤受砷污染。受砷污染的农田,农作物产量大幅度下降。砷的剧毒通过食物链作用会影响人类的健康。近年来,测定土壤中砷含量常用Ag-DDTC光度法(二乙基二硫代氨基甲酸银法)和原子吸收分光光度法,其中DDTC-Ag光度法是标准分析法。一.目的要求1. 了解土壤污染分析的特点和意义。2. 了解DDTC-Ag光度法测定砷的原理,掌握其基本操作。二.方法原理土壤经酸湿法消解后,五价砷在碘化钾和氯化亚锡作用下,还原为三价砷,然后与新生态氢反应生成砷化氢气体,经过醋酸铅棉花除去硫化氢,与二乙基二硫代氨基甲酸银作用生成红色胶体银,溶液呈红色,用光度法测定:AsH3+6Ag-DDTC 6 Ag +3 HDDC+As(DDC)3干扰因素:硫化氢、锑化氢、磷化氢对砷测定有干扰,但硫、磷在消解样品条件下,被氧化成稳定硫酸盐。锑化氢干扰,加入碘化钾、氯化亚锡抑制其逸出,能消除300微克的锑干扰。三.仪器与试剂仪器:分光光度计,1 cm 比色皿;砷化氢发生瓶;电热板;移液管(10 mL, 5 mL, 25 mL);50 mL量筒。试剂:1. 砷标准贮备液:准确称量As2O3 0.1320 g置于100 mL烧杯中,加5 mL 20 %的NaOH,温热至As2O3全溶后,以酚酞批示剂,用1 moL/LH2SO4中和至无色后,再加过量10 mL,转入1000 mL容量瓶中定容,此溶液为含As 100.00 ug/mL。2. 砷标准工作液:准确吸取2.00 mL砷贮备液,置于100 mL容量瓶中,用水定容,此溶液含砷2.00 ug/mL。3. 40 %SnCL2(现用现配)::称取40 g晶体SnCL2.2H2O溶于100 mL浓盐酸,若混浊,可稍加热并投入几粒锡粒防止氧化。4. 15 %KI:贮于棕色瓶;5 浓硝酸,浓硫酸(分析纯);1+1(体积比)硫酸。6. 20-40目无砷锌粒(分析纯)。7. 0.1 % DDTC- Ag-三乙醇胺-氯仿吸收液::称0.5 g DDTC- Ag,加入50 mL氯仿和5 mL三乙醇胺,摇匀,用氯仿定容500 mL,放置过夜,用脱脂棉过滤后使用,保存在棕色瓶避光。8. 醋酸铅棉花::称取10g醋酸铅,溶于20 mL 6 moL/L醋酸,加水稀释至100 mL,将脱脂棉在此溶液中浸1小时,取出自然凉干,备用。四.操作步骤1.样品消解:准确称取样0.8001克样品放入砷化氢发生瓶中,加入5 mL浓HNO3,3 mL浓硫酸,盖上小漏斗,放在电热板上,从低温逐步提高温度加热消解。待作用完全,冒浓白烟后(赶走酸雾),试液呈淡黄色,浑浊。历时约1小时,试液量为2 mL左右,取下锥形瓶,冷却,依次加入34 mL水,2 mL15 %的KI,2 mL 40 %的SnCL2溶液,摇匀,溶液变为无色,浑浊,放置15分钟,同时做空白试验。2.标准曲线的绘制:分别吸取砷标准工作液(含砷2.00 ug/mL) 0.00、1.00、2.00、3.00、4.00、5.00 mL于砷化氢发生瓶中,各加入2.5 mL浓硫酸,加水至36 mL,加2 mL 15 %的KI及2 mL 40 %的SnCL2溶液,放置15分钟,加入SnCL2后溶液颜色变浅,几乎为无色。充分作用后加入3g锌粒,立刻接上装有醋酸铅棉花的导管,使发生的砷化氢气体进入盛有5mL砷吸收液的吸收管中,立即有气泡产生。砷吸收液由黄绿色变为浅褐色,砷标液越多,吸收液颜色越深。待反应40分钟(注意要防止后一段时间因砷化氢瓶内的溶液温度下降而使气压减少产生倒吸现象)后,取下导气管,用氯仿将吸收管内溶液补足5 mL,将吸收液转入1 cm 比色皿中,在分光光度计上于530 nm处,以试剂空白为参比,测定吸光度,并绘制标准曲线,从标准曲线上查得样品中的砷含量。3.样品测定与绘制标准曲线的操作台步骤相同。六.讨论:1. 土壤样品消解至灰白色白,试液应呈白色或浅黄色。2. 砷化氢发生过程中,要注意防止后一段时间因砷化氢瓶内的压力下降而产生倒吸现象。为避免倒吸,应将砷化氢发生瓶在进行一段时间实验后提高一定高度,使导气管内液面下降。3. 在砷化氢发生前,每加一种试剂均需摇匀,吸收管用后要洗净烘干。4. 硝酸干扰砷的测定,故需在砷化氢发生前用硫酸去除干净。5. 在砷化氢发生瓶中加入锌粒后,立即将磨口弯接管塞塞紧,避免砷化氢未与二乙基二硫代氨基甲酸银反应前从体系中逸出 。

专业的东西这里肯定没人能回答,建议到网上的数字图书馆查询,那里面应该能查询到。如果自己学校的没法查询,可以让其他农业大学的朋友帮查一下。如果那里查不到,我相信很难查到啦。

一、 实验目的:(一)学习测定铜的技术;(二)掌握原子吸收分光光度法的原理。二、 实验意义:土壤是植物生长的基地,是动物、人类赖以生存的物质基础,因此,土壤质量的优劣直接影响人类的生产、生活和发展。但由于近些年人们不合理地施用农药、进行污水灌溉等致使各类污染物质通过多种渠道进入土壤。当污染物进入土壤的数量超过土壤自净能力时,将导致土壤质量下降,甚至恶化,影响土壤的生产能力。此外,通过地下渗漏、地表径流还将污染地下水和地表水。我国土壤常规监测项目中,金属化合物有镉、铬、铜、汞、铅、铜;非金属无机化合物有砷、氰化物、氟化物、硫化物等;有机化合物有苯并(a)芘、三氯乙醛、油类、挥发酚、DDT、六六六等。地壳中铜的平均含量约为70mg/kg;全球土壤中铜的含量范围一般在2—100mg/kg之间,平均含量为20mg/kg;我国土壤中铜的含量在3—300mg/kg之间,平均含量为22mg/kg。土壤的铜含量常常与其母质来源和抗风化能力有关,因此也与土壤质地间接相关。土壤中的铜大部分来自含铜矿物——孔雀石、黄铜矿及含铜砂岩等。一般情况下,基性岩发育的土壤,其含铜量多于酸性岩发育的土壤,沉积岩中以砂岩含铜最低。各类土壤的含铜量按多少排列如下:砂姜黑土(25.49mg/kg)>潮土(22.48mg/kg)>褐土(22.18mg/kg)>盐碱土(18.78mg/kg)>棕壤(17.81mg/kg)>黄棕壤(15.58mg/kg)>风沙土(8.44mg/kg)。我国土壤表层或耕层中铜含量的背景值范围为7.3—55.1mg/kg(不同地区有不同的背景值)。土壤中铜的环境质量标准见表一,卫生标准见表二。表一 土壤中铜的环境质量标准值(GB15618—1995)单位:mg/kg级别 一级 二级 三级土壤pH值 自然背景 <6.5 6.5~7.5 >7.5 >6.5农田等≤ 35 50 100 100 400果园 ≤ — 150 200 200 400表二 土壤中铜的卫生标准(GB11728—89)土壤中铜的阳离子交换量(毫克当量/100g干土) <10 10—20 >20土壤中的最高容许浓度(mg/kg) 50 150 300三、实验方法和原理:(一)方法土壤污染监测的常用方法有:重量法——适用于测定土壤水分;容量法——适用于浸出物中含量较高的成分如Ca2+、Mg2+、Cl-、SO42-等测定;气相色谱法——适用于有机氯、有机磷及有机汞等农药的测定;分光光度法(AAS、AES、AFS)——适用于重金属如Cu、Cd、Cr、Pb、Hg、Zn等组分的测定。(二)原理土壤样品用HNO3—HF—HClO4混酸体系消化后,将消化液直接喷入空气—乙炔火焰。在火焰中形成的铜的基态原子蒸汽对光源发射的特征电磁辐射产生吸收。测得试液吸光度扣除全程序空白吸光度,从标准曲线查得铜的含量。计算土壤中铜的含量。注:该方法的检出限为1mg/kg。四、实验仪器和试剂:(一)仪器原子吸收分光光度计,空气—乙炔火焰原子化器,铜空心阴极灯。1.工作条件测定波长:324.8nm;通带宽度:1.3nm;灯电流:7.5mA;火焰类型:空气-乙炔,氧化型,蓝色火焰。2.主要性能参数灵敏度:0.1mg/L;检出限:0.01mg/L;适测浓度范围:0.2—10mg/L。注:不同仪器其灵敏度和检出限有差异。(二)试剂1.硝酸:优级纯;2.氢氟酸:优级纯;3.高氯酸:优级纯;4.铜标准溶液:市售标准液。一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样。注:具体配制方法见上次的实验报告。五、 实验步骤和注意事项:(一)土壤样品的预处理1.把课前采集的土样均匀地摊开在一张比较厚的牛皮纸上;2.挑出其中的动植物残渣及难以研磨碎的石块;3.用四分法弃取土壤(留下四分之一);4.用筛子(尼龙筛网为100目)和研钵(白陶瓷制)对留下的土样进行反复的过筛—研磨,直至几乎全部过筛。(二)土壤试液的制备1.称取约0.5g土样于25mL聚四氟乙烯坩埚(高温消化罐)中,用少许水润湿;2.加入15mLHNO3,在电热板上加热消化至溶解物剩余约5mL;3.再加入5mLHF,加热分解SiO2及胶态硅酸盐;4.最后加入5mLHClO4,加热至消解物呈淡黄色;5.打开盖,先蒸至近干,然后取下冷却;6.加入(1:5)HNO31mL微热溶解残渣,移入10mL容量瓶中定容。注:制备土壤试液的同时进行全程序试剂空白实验。(三)标准曲线的绘制直接吸取一周前仪器分析实验课上配好的浓度分别为1mg/L、3mg/L、5mg/L的标准溶液及空白样,测其吸光度,绘制标准曲线。注:详细步骤见上次的实验报告。(四)土壤样品的测定本实验采用标准曲线法,按绘制标准曲线条件测定试样溶液的吸光度,扣除全程序空白吸光度,从标准曲线上查得并计算铜的含量:铜(mg/kg)=m/W式中:m——从标准曲线上查得的铜的含量(0.61g/L×10mL=6.1μg);W——称量土样干重量(0.4992g)。结果:铜(mg/kg)=6.1μg/0.4992g=12.22mg/kg。(五)注意事项1.进行过筛—研磨,一定要有耐心,直至土壤颗粒几乎全部过筛;2.有少量细砂吸附在筛网上,千万不能用毛刷刮蹭筛网(只用其轻掸),否则会破坏网眼大小,造成筛网报废;3.高氯酸、氢氟酸的纯度对空白值的影响很大,直接关系到测定结果的准确度,因此必须注意全过程空白值的扣除,并尽量减少加入量以降低空白值;4.土壤试液在加热蒸干时温度不要超过200℃,否则无水HClO4受热后会发生爆炸;5.土样消化过程中,最后除去HClO4时必须防止将溶液蒸干,不慎蒸干时,Fe、Al盐可能形成难溶的氧化物而包藏铜,使结果偏低。六、 实验数据记录七、 实验讨论和体会:在星期三做完这个实验后,我并不认为已经结束了实验,因为我对这个实验的思考并未结束。实事求是地说,我们的这个利用火焰原子吸收分光光度法对铜的测定实验并不是很成功,这与我们初次尝试、缺乏经验有关。然而,这个实验的操作过程的繁多,也就是方法上的不完善处,也是我们实验不很成功的“致命伤”!首先,样品制备大都采用全量消解法。该方法操作过程繁多,消解不完全,待测成分易损失,准确度不易把握。实验中如果任一处环节出现偏差都会对测量结果产生影响。其次,由于土壤中可能含有有机质和植物纤维的影响,使消解往往不完全、待测成分易损失、试剂消耗量很大及产生对操作人员有害的酸气等。于是,我针对测定土壤中铜的含量的实验缺点,进行了调查研究,总结其它实验方法的优缺点,集合其长处,提出了自己的一套方法,以供老师同学参考。该方法具有方法简单、引入干扰少、提取率高等优点,也具有很好的经济效益与环境效益。关于消化方法的探讨:经过调查,土壤中铜的环境样品,组分复杂,测定难度较大。而测定准确与否,在一定程度上取决于样品的消化方法。(1)按标准所述准确称取0.45—0.50g (准确度至0.0002g)试样于25mL 聚四氟乙烯消化罐中。在实际试验中可以称取0.60—1.00g (准确度至0.0002g) 试样于50mL 聚四氟乙烯消化罐 。之所以称量数量较试验规程较多,是为了提高样品测定时的灵敏度。(2)整个样品的消解过程, 对温度的控制是严格的, 它直接影响着土壤消解能否达到要求。根据经验, 试样开始加入硝酸20mL ,高氯酸8mL ,氢氟酸8mL 后,中温加热,温度必须控制在低于400°C。温度过高,可使聚四氟乙烯熔化;温度过高,不利于消解除硅。(3)在整个消解过程中, 先后加入硝酸20mL 、高氯酸5mL、氢氟酸5mL 后,就立即加热了,而在实际操作中加入三种混合酸后,盖严,轻轻摇动,使之混匀,有利于充分溶解。在加热一段时间后,打开杯盖,以取得良好效果。为了防止飞溅,应该注意经常摇动烧杯。由于土壤种类较多,所含有机质差异较大,在消解时,注意观察各种酸的用量,可视消解情况酌情增减。土壤消解液应呈白色或淡黄色(含铁量高的土壤呈现黄色) ,但没有明显沉淀物存在。(4)在温度控制的同时, 应注意对时间的控制问题。温度过高, 时间则相应缩短, 否则加热时间过长造成消解样品焦糊,使测定结果偏低。(5)一个不能不提的问题:市售的氢氟酸含有杂质(如上海某试剂厂生产的优级纯氢氟酸中铜的杂质含量相当高),故造成校准曲线高浓度点弯曲,而且在消化过程中酸的消耗量大,消化时间长,试样易玷污,在高氯酸冒烟赶F-的操作中,时间不易控制,时间的不够或过长均将直接导致土壤中铜测定结果的偏高或偏低。所以,我个人认为,在样品消解的方法中避免HF的使用是上策,另外,HF还有毒,有腐蚀性,太危险!仪器测定过程中的问题探讨:(1)仪器开、关机时必须严格遵守操作规程。空心阴极灯预热30 分钟, 为了输送给放大系统足够的能量,必须在灯电流、狭缝、光电倍增管负高压三者之间进行合理的调试和区配,以得到最佳选择,一般的灯电流的最佳值,要比理论值大一点。(2)调节燃气和燃气压力时, 要注意静止状态和气流状态是不同的。一定在燃烧器点火的工作条件下调节,并且在测量过程中, 经常检查设定值是否已经改变。如有变化, 应随时校正,以保持在测量过程中条件的一致性。(3)毛细管的长度增加会使吸喷试液的阻力增大, 使试液提升量下降;试液放置高度相差5cm ,可导致吸喷试液量10 %的变化, 这对于精确的测量有明显的影响。因此测量时, 每个试样放置的位置高度要保持一致。(4)温度升高, 试液的粒度下降, 其吸喷试液的提升量增加,同时使雾化效率增大。加热试样,可提高测量的灵敏度。为获得准确一致的测量,应保持试液的温度相同。一般是使试液在室温下放置一定时间,使其于室温达到平衡。(5)当燃烧器缝口积有盐类或尘土时, 可使火焰变化不规则, 呈锯齿状。应卸下燃烧头, 用刀片刮去淀积的盐块, 最好依次用稀盐酸和蒸馏水彻底清洗。(6)测定土壤消解液时, 由于土壤含盐类过高会产生背景吸收,使测定结果偏高。因此必须消去背景的吸收。(7)经过研究,铜的化合物易离解,而且不形成难挥发性化合物,试液中的基体干扰较少。虽然土壤中大量的硅会产生影响,但由于采用了HNO3-HF-HClO4体系分解土样,此时极大部分硅已被除去,所以一般不会产生干扰。所以,测定土壤中的铜, 只要抓住了以上几个关键环节和改进措施就会使复杂、准确度不易把握的试验变得简单、高准确度!以上就是我的一点启发!

土壤中砷的测定毕业论文

原子荧光光度法( 城市污水水质检验方法标准CJ/T51-2004)1 范围本章规定了用氢化物发生-原子荧光光度法测定城市污水中总砷的方法。(1) 测定范围本方法测定浓度范围与仪器的特性有关。(2) 干扰及消除6倍锑、20倍铅、30倍锡、200倍铜和200倍锌对砷测定无干扰。加入硫脲-抗坏血酸可消除砷、锑之间以及大多数共存元素的干扰,镉盐的存在可减少铜的干扰。2 方法原理在盐酸介质中,以硼氢化钾作还原剂,使砷生成砷化氢,以氩气作载气将砷化氢导入石英炉原子化器进行原子化,以砷特种空心阴极灯做激发光源,砷原子受光辐射激发产生电子跃迁,当激发态的电子返回基态时即发出荧光,荧光强度在一定的浓度范围内与砷含量成正比。3 试剂除另有说明外均用分析纯试剂和去离子水 (电阻率>3MΩ·cm,250℃)(1) 硝酸 (ρ=1.42g/mL,优级纯)。(2) 硫酸 (ρ=1.84g/mL,优级纯)。(3) 盐酸 (ρ=1.18g/mL,优级纯)。(4) 盐酸 (1+1):将1体积的盐酸 (23.2.3.3)加入同体积的水中,摇匀。(5) 硫脲-抗坏血酸混合液:称取5.0g硫脲和5.0g抗坏血酸溶于100mL水中,摇匀。(6) 2% (m+V)硼氢化钾溶液:称取2.0g硼氢化钾溶于100mL0.5% (m+V)氢氧化钾溶液中,过滤后待用,现配现用。(7) 砷标准贮备液 (cAs=1mg/mL):称取0.6600g三氧化二砷 (110℃烘2h) 溶于5mL20% (m+V)氢氧化钠溶液中,用酚酞作指示剂,以1moL/L硫酸溶液中和至中性后,再加入15mL1moL/L硫酸溶液,最后用水稀释至500mL。(8) 砷标准工作溶液 (cAs=1μg/mL):用23.2.3.6砷标准储备液逐级稀释至cAs=1μg/mL。4 仪器(1) 原子荧光光度计。(2) 砷空心阴极灯。(3) 仪器条件 (推荐值):灯电流:30mA~80mA;负高压:250V~350V;原子化器炉高:6mm~8mm载气 (Ar)流量:300mL/min;屏蔽气 (Ar):800mL/min;读数时间:10s;延迟时间:0s;测量方法:标准曲线法。5 分析步骤(1) 样品预处理取适量实验室样品作试料 (使砷含量<5.0μg=,置于高型烧杯中,加入3mL浓硫酸及5mL浓硝酸,煮沸消解至冒出白色烟雾。如溶液尚不清澈透明,可再加入5mL浓硝酸,继续加热消解至冒出白色烟雾,冷却。小心加入25mL水,再煮沸至冒出白色烟雾为止,冷却后,加少量水稀释,并将烧杯内溶液转移过滤至100mL容量瓶中,用水洗涤烧杯,合并洗液于容量瓶中,加入20mL(1+1) 盐酸后,加20mL硫脲-抗坏血酸混合溶液,最后加水至刻度,摇匀并放置15min后,供测定时用。洁净的水样可不消解,直接加入20mL(1+1) 盐酸和20mL硫脲-抗坏血酸混合溶液,加水至100mL刻度,摇匀放置15min后,供测定时用。(2) 样品测定1) 开启仪器,并预热20min以上。2) 设定仪器条件 (见推荐值)。3) 测量:将进样管插入待测样品中,还原剂管插入硼氢化钾溶液中,夹好蠕动泵压块,测量待测样品的荧光强度 (取二次测量值的平均值),并作空白校正。从校正曲线上查得砷的含量。(3) 工作曲线的绘制另取7个100mL 容量瓶,分别吸取0.00mL、0.50mL、1.00mL、2.00mL、3.00mL、4.00mL、5.00mL砷标准使用溶液于其中,加20mL(1+1)盐酸和20mL硫脲-抗坏血酸混合溶液,用蒸馏水稀释至100mL,再按23.2.5.1,23.2.5.2方法操作,分别测得荧光强度。然后以各点的荧光强度为纵座标,以其对应的浓度为横座标绘制工作曲线。6 分析结果的表述砷的浓度按下式计算:C=(C1×V0)/V式中 c——砷的浓度,μg/L;c1——由工作曲线上查得的砷浓度,μg/L;V0——试料消解后的定容体积,mL;V——试料体积,mL。7 精密度和准确度3个实验室分别对5.00μg/L、25.0μg/L、50.0μg/L三种不同浓度的砷标准样品进行了18次测定,方法相对误差置信范围为 (-0.47±1.05)%。3个实验室以废污水为本底进行了加标测定,回收率置信范围为 (98.7+6.8)%。

我们家买的 英国Trace2o重金属检测仪器 操作非常简单,很实用的。

(1)实验目的

本实验采用氢化物发生—原子荧光法测定各类土壤中的总砷含量。

(2)实验原理

砷的酸性溶液在氢化物发生器中,与还原剂硼氢化钾发生氢化反应,生成砷化氢气体。以氩气为载气,将砷化氢气体导入石英炉中进行原子化,受热的砷化氢解离成砷的气态原子。砷原子受到光源特征辐射线的照射而被激发产生原子荧光,荧光信号到达检测器变为电信号,经电子放大器放大后由读数装置读出结果。产生的荧光强度与试样中被测元素的含量成正比,可以从校准曲线查得被测元素的含量。

土壤中大多数元素经分解后也能进入待测溶液中,如 Cu2+、Co2+、Ni2+、Cr6+、Au3+、Hg2+等,对测定有干扰,加入硫脲即可消除。

方法检出限为0.4μg/L。

(3)实验仪器

原子荧光光谱仪;砷双阴极空心阴极灯;电热板;50mL比色管。

(4)试剂和溶液

本试验方法所用试剂除特殊注明外,均指分析纯试剂。所述溶液如未指明溶剂,均系水溶液。

a.王水溶液(1∶1),现用现配。取3 份浓盐酸(优级纯)与l份浓硝酸(优级纯)混合均匀,然后用水稀释。

b.氢氧化钠溶液(ρ=100g/L),称取10g氢氧化钠,用去离子水溶解,定容于100mL容量瓶中。

c.氢氧化钾溶液(ρ=1g/L),称取0.1g氢氧化钾,用去离子水溶解,定容于100mL容量瓶中。

d.硼氢化钾-氢氧化钾溶液,称取1.5g硼氢化钾溶于100mL氢氧化钾溶液(c)中。用时现配。

e.盐酸溶液(1∶1),优级纯。

f.硫脲-抗坏血酸溶液:称取 5g 硫脲(优级纯,H2NCSNH2)、5g 抗坏血酸(C6H8O6)溶于水中,稀释至100mL。用时现配。

g.盐酸溶液(1∶9),优级纯。

(5)砷标准储备溶液(1.00g/L)

称取0.6600g预先在110℃下烘干2 h的三氧化二砷(优级纯)于小烧杯中,加入10mL氢氧化钠溶液[(4)b],加热溶解,无损移入500mL容量瓶中,用水稀释至刻度,摇匀。

临用时,取一定量的上述溶液,用(1∶9)盐酸溶液[(4)g]准确稀释成含砷1.00mg/L的标准工作溶液。

(6)试样制备

称取能通过0.149mm筛孔的已风干试样0.5g(精确至0.0001g),置于50mL具塞比色管中,加数滴水湿润样品,加10mL(1∶1)王水溶液[(4)a],加塞后小心摇匀,在室温下放置过夜。次日,于沸水浴中加热消解2 h,其间摇动一次,取出冷却,加水定容。同时做空白试验。

(7)分析步骤

A.样品测定

吸取5.00mL清亮试液于10mL比色管中,加2.5mL硫脲-抗坏血酸溶液[(4)f],充分摇匀,加2mL(1∶1)盐酸溶液[(4)e],加水至刻度,摇匀,放置15min。以(1∶9)盐酸溶液[(4)g]为载体、以硼氢化钾-氢氧化钾溶液[(4)d]为还原剂、以氢气为载气,将样品吸入氢化物发生器中,将产生的砷化氢气体导入电热石英炉中进行原子化,将测得的荧光强度减去试剂空白的荧光强度后,从校准曲线上求出试液中砷的含量。

B.绘制校准曲线

分别吸取含砷1.00mg/L的标准工作溶液0.00mL、0.50mL、1.50mL、2.50mL、5.00mL、7.50mL于50mL比色管中,加10mL(1∶1)盐酸溶液[(4)e],摇匀,加12.5mL硫脲-抗坏血酸溶液[(4)f],加水至刻度,充分摇匀,即为含砷0.00mg/L、0.01mg/L、0.03mg/L、0.05mg/L、0.10mg/L、0.15mg/L的标准系列溶液,放置15min,与试样在相同条件下测量样品的荧光强度。

(8)数据处理及结果计算

现代岩矿分析实验教程

式中:w(As)为土壤砷的质量分数(mg/kg);ρ为从校准曲线查得的砷的浓度(mg/L);V为测定试样体积(mL),本方法为10mL;D为分取倍数,本方法为50/5;m为试样质量(g)。

重复试验结果以算术平均值表示,保留两位小数。表6.6为重复试验结果所允许的相对标准偏差。

表6.6 重复试验结果允许的相对标准偏差

注:加入硫脲将As5+还原成低价后才能有效地生成砷化氢;加入硫脲后应充分摇匀使其溶解;试样酸度不宜过大,一般在c(HCl)=1.2 mol/L为宜;20多种常见元素,其质量浓度在100mg/L或大于100mg/L时,对此法不产生干扰,但Ag、Au、Bi的质量浓度最好分别低于5mg/L、3mg/L、20mg/L。

土壤质量 总汞的测定 原子荧光法 GB/T 22105.1 -2008土壤质量 总汞的测定 冷原子吸收分光光度法 GB/T 17136-1997

与土壤有关的小论文

从小学、初中、高中到大学乃至工作,大家一定都接触过论文吧,论文是学术界进行成果交流的工具。一篇什么样的论文才能称为优秀论文呢?以下是我精心整理的议论文论据素材:土壤污染,仅供参考,希望能够帮助到大家。

当土壤中含有害物质过多,超过土壤的自净能力,就会引起土壤的组成、结构和功能发生变化,微生物活动受到抑制,有害物质或其分解产物在土壤中逐渐积累通过“土壤→植物→人体”,或通过“土壤→水→人体”间接被人体吸收,达到危害人体健康的程度,就是土壤污染。

中国土壤污染十分严重

西媒称,在河北大营村以北靠近拥有“皮革之都”称号的辛集市的地方,是有着4000居民的锚营村。那里有一个巨大的.露天垃圾场,堆放着周边数百家特殊工厂制造出来的废弃物。由于气味难闻,村民们不敢开窗,对饮用水被污染他们也投诉了不知道多少回。一名王姓村民说,“很多人都得了罕见的疾病,甚至也有年纪轻轻就得癌的人。”

据西班牙《国家报》网站7月5日报道,5月末的一天凌晨,三辆卡车来到河北省辛集市大营村,趁着天色昏暗,将卡车上装载的“货物”倾倒进了附近水渠里,直到有人发现并靠近,这些人才仓皇逃走。没人确切地知道倒进水渠里的到底是什么东西。但是一个月后,空气中仍能闻出混合的化学品味道。

刺鼻的味道让村民张亚春(音)两年前种下的将近200棵杨树全部枯死,只能砍了当柴烧。旁边一块地的主人、农民老边(音)蹲在地头掉眼泪,他担心这块作为他一家全部收入来源的小麦地可能会颗粒无收,因为灌溉用的水就来自那个水渠。

居住着1500人的大营村的村民不知道谁该为这一切负责。在村子附近就是化工厂、钢铁厂和皮革厂。

报道称,遗憾的是,这些并非孤立的案件。中国的土壤污染已经成为了一个和空气污染一样严重的问题。

中国国土资源部在20xx年至20xx年进行了一项调查,20xx年公布了部分调查结果。该结果显示,中国全国土壤总点位超标率为16.1%,耕地的点位超标率为19.4%。污水灌溉农田面积已经超过330万公顷。造成土壤污染的各种原因当中包括工厂的有毒废弃物的排放、污水灌溉或过度使用杀虫剂等。

报道称,但实际情况可能更糟。批评人士认为,在1500个被检测地区布设的1万个点位中提取的土壤样本并不具有多少代表性,没有考虑到所有有毒化学物质的可能性。中国土地再生协会高盛达(音)指出,全国有30万到50万公顷土壤受到了污染。

经过3年的筹备,中国政府于5月31日公布了《土壤污染防治行动计划》,这是已经通过的水资源和空气污染防治计划的补充。土壤污染防治计划预计到20xx年全国土壤污染加重趋势得到初步遏制。到20xx年,全国土壤环境质量稳中向好。到20xx年,土壤环境质量全面改善。

报道称,但是计划也暴露出一些问题。到新的控制土壤污染相关法律通过之前,这个计划都还无法真正实施。中国环保部环境规划院土壤保护问题专家王夏晖承认,“20xx年调查的准确性并不高,我们还需要更多确切的数据”。专家希望能在20xx年底完成对全部耕地污染状况的调查。

报道称,全面执行计划是一项成本高昂的任务。参与计划制定的中国环境科学研究院研究员顾青岛(音)指出,国有和私营部门可能将建立合作关系。

报道认为,最重要的是,该计划将地方政府视为执行计划的责任人。绿色和平组织的江卓珊指出,鉴于土壤污染的严重性,对地方政府而言最大的挑战可能是具有专业知识的人才的配备。

由于回答限制,很多出处的页面网址不能加上去,见谅。1.中国土壤环境污染问题突出地区的污染现状及成因:据不完全调查,目前全国受污染的耕地约有1.5亿亩,污水灌溉污染耕地3250万亩,固体废弃物堆存占地和毁田200万亩,合计约占耕地总面积的十分之一以上,全国每年因重金属污染的粮食达1200万吨,造成的直接经济损失超过200亿元。其中,一些地区土壤污染已呈严重态势,甚至出现了土壤重污染区和高风险区。1.重金属污染重金属是指密度 4.0以上的约 60种元素或密度在 5.0以上的45种元素。As和 Se是非金属,但是它们的毒性及某些性质与重金属相似,所以将 Se和硒列入重金属污染物范围内。污染土壤环境的重金属主要是指生物毒性显著的Hg、Cd、Pb、Cr以及类金属 As,还包括具有毒性的重金属 En、Cu、Co、Ni、Sn、V等污染物。当前最引起人类关注的是 Hg、Cd、Pb、Cr、As,它们被称为“五毒”(农田土壤重金属污染及防治研究进展)。土壤中重金属的来源是多途径的,首先是成土母质本身含有重金属,不同的母质、成土过程所形成的土壤含有重金属量差异很大。此外,人类工农业生产活动,也造成重金属对大气、水体和土壤的污染(土壤中重金属污染现状与防治方法)。我国 Cd 污染的土地涉及11 个省市的 25 个地区。 如江西省某县多达 44 % 的耕地受污染,形成670hm2 的“镉米”区;沈阳某污灌区农田土壤中 Cd 含量高达 130mg/kg ;成都东郊污灌区内米中含Cd 量高达165mg/kg 。 农业部农业环境监测总站 1996 ~ 1998 年的监测结果表明,污灌区 Cd 污染面积最大,占重金属超标面积的569 % ,而农产品 Cd 超标率达102 % (曹仁林等,2001)。我国各大城市的耕地土壤均存在不同程度的Cd 污染,其中沈阳市郊区和西安污灌区土壤 Cd 污染尤为严重,如沈阳市农田土壤中Cd 含量为088mg/kg ,西安污灌区土壤中Cd 含量为0628mg/kg(土壤镉污染特征及污染土壤的植物修复技术机理)蛐岩县主要的土壤污染物为Mg和B.43%的采样点土壤 Mg含量达重度污染水平,最高超标21.16倍.仅有 211和 238两个采样点达到清洁标准;而 B的污染似乎更为普遍,所用采样点土壤 B浓度超标,50%的样点达到重度污染水平.其原因是 在岫岩县石唐、偏岭、风源等区域.分布有众多的衰 3 蚰岩县土壤捡剥统计值殛帚染指矬国营及乡镇、个体 经营的采矿、冶炼企业,以轻烧 Mg、重烧 Mg为主要工艺的菱镁矿加工业排放 出大量 MgO、SO2等 污染物./vlgO 白色粉末降落地表后,形成 MgCX~、Mg(H0 )2等反应产物,凝聚成大颗粒分散在土壤中,加之该区域土壤 中广泛存在的 MgSO+、MgCl2,形成硬壳覆盖地表,从根本上阻止作物生长.部分地区虽然作物可以生长,但土壤中可溶性 Mg被作物吸收,对人及其他生物的健康形成较大的威胁.而 B污染也是由于B矿点源污染所致(辽宁东部山区土壤污染状况与防治对策研究).稻米对于镉污染的吸附作用明显强于玉米、大豆等其他的作物品种在各种人为因素中,则主要包括工矿业、农业和交通等来源引起的土壤重金属污染(土壤中重金属污染现状与防治方法)。2.污水灌溉污水灌溉等废弃物已造成大面积农田的土壤污染。如沈阳张士灌区用污水灌溉 20 多年后,污染耕地2 500多 hm 2,造成了严重的镉污染,稻田含镉 5~ 7m gökg。天津近郊因污水灌溉导致213 万 hm 2 农田受到污染。广州近郊因为污水灌溉而污染农田2 700hm 2 , 因施用含污染物的底泥造成1 333hm 2 的土壤被污染, 污染面积占郊区耕地面积的 46% 。20 世纪 80 年代中期对北京某污灌区进行的抽样调查表明, 大约 60% 的土壤和 36% 的糙米存在污染问题(我国的土壤污染现状及其防治对策)。早在 30 年代 ,就有抚顺炼油厂污水排入浑河灌溉水稻的记载。到了 50 年代 ,随着农业生产的发展,在北方一些干旱、半干旱地区,由于水资源比较紧张,为了充分利用污水的水肥资源,污水灌溉被大面积采纳、推广,这对促进当地农业的粮食生产曾起到了积极的作用。到了1983 年,污水灌溉面积达到 2 ×106 hm2 。然而,由于长期的污水灌溉 ,土壤 —作物系统的污染逐渐暴露出来,为了解决这一土壤环境问题,污水的土地处理系统得到了应用和发展长三角、珠三角、辽中南城市群3个典型区的土壤污染状况调查;在典型地区启动污染土壤修复与综合治理试点;建立健全基于风险评估的土壤环境质量标准体系;完成《土壤污染防治法》草案。从污染物的种类和类型上看 ,新技术、新产品应用未能有效预防导致我国新型污染物不断出现 ,这些新型污染物影响更持久 ,危害更大 ;从污染物的浓度上看 ,污染物的含量 ,随着经济的发展 ,一些污染物因为无法降解、逐步积累 ,增加还是非常快的。例如 ,有资料表明 ,近年来 ,上海土壤中汞和镉的含量增加了 50% ;浙江南部一些地区土壤中 Cu、Zn等重金属全部超标 ,持久性有机污染物部分检出率达100%。辽河流域据介绍,辽河流域是我国传统的工矿区之一,交通便利、矿产资源丰富,长期以来形成了以煤炭、石油、钢铁等工矿业为主的经济结构,资源利用效率较低,污染强度高;污染源污染治理水平低,化工、冶金、采矿、制药等行业污染严重,部分企业设备陈旧、落后,污染治理设施不完善;加之辽河流域环境监测、预警、应急处置和环境执法能力薄弱,有些地区有法不依,执法不严现象较为突出,环境违法处罚力度不够,污染的现象不能得到有效遏制。有关人士还指出,土壤污染和水污染是相互交替、互相影响的。一方面,部分地区的土壤污染是由于污灌造成的。由于辽河水资源短缺,为解决工农业用水问题而长期进行污水灌溉,使得大量有毒、有害物质进入土壤,积累到一定程度,超过了土壤本身的自净限度。另一方面,辽河流域鞍山、辽阳等地是全国闻名的工矿区,常年的矿产开发造成一些矿区土壤污染非常严重,通过水体的冲刷,土壤中的重金属和有毒物质加速了河流的污染。有专家指出,在资源和重工业为主导的经济结构下,工业生产的污染程度相对会比较高,治污难度大;受经济利益的驱使,部分企业安装、运行污染治理设施不到位,随意排放废水废气废渣的现象时有发生,使人防不胜防;同时,地方政府重地区GDP轻环境保护的意识依然存在,对污染现象听之任之。对于辽河而言,其治污问题面临更多重的考验——在当前经济危机的影响依然持续、东北老工业基地亟待振兴的形势下,一方面辽河流域土壤污染和水污染等问题严重,已经到了非治不可的地步;另一方面,在2008年来的全球性金融危机的席卷之下,地方政府面临着经济增速放缓,失业率增加的巨大压力,一切工作的中心都集中到了保障经济平稳发展上来。环境治理面临着让位于经济发展而被忽视的问题。对于几十年污染“积重”的整个辽河流域,有人表示担心,“有些地方为了发展经济,根本不管所谓的环境污染,这么几十年下来,才造成整个流域污染情况严重。如果这一点不改,只是沿着‘污染——治理——污染’的老路子,最后只能是越治越污,环境越来越坏。”一. 长三角根据中科院南京土壤所2006年在南京郊区蔬菜基地做的定点测试,仅有40%的土壤处于安全等级,而30%的土壤已经受到污染。而浙江省有关部门的调查显示,全省Ⅰ类和Ⅱ类土壤占调查区总面积的82%,其余18%的土壤均受到了不同程度的污染。“区域内工业化、城市化和农业集约化的快速发展,加上疏于防治,大量未经处理的废弃物通过多种渠道向土壤系统转移、残留,是形成土壤污染的主要因素。”近期,浙江省台州市路桥区峰江街道139名村民被查出血铅严重超标,元凶是建在村里的一家被列为重点监控企业的蓄电池企业。在上世纪80年代末期,我国污染面积只有几百万公顷,而现在已经超过一千万公顷。土壤污染类型多样化,其中严重的是重金属污染,根据中科院生态所研究,目前我国受镉、砷、铬、铅等重金属污染的耕地面积近两千万公顷,约占耕地总面积的五分之一,全国每年因重金属污染而减产粮食1000多万吨。此外农药、抗生素、病原菌等也成为土地污染的来源。土壤污染除导致土壤质量下降、农作物产量和品质下降外,更为严重的是土壤对污染物具有富集作用,一些毒性大的污染物,如汞、镉等富集到作物果实中,人或牲畜食用后发生中毒。 如我国辽宁沈阳张士灌区由于长期引用工业废水灌溉,导致土壤和稻米中重金属镉含量超标,人畜不能食用。土壤不能再作为耕地,只能改作他用。 3.固体废弃物堆放 另外,在农田中,由于化肥的不合理施用,农药喷施和 地膜等造成的污染也相当严重。2. 地方土壤环境保护工作面临的问题和对国家土壤环境保护法规、制度、政策等方面的需求目前,我国土壤污染面临着严峻的形势,部分地区土壤污染严重,土壤污染类型多样,呈现新老污染物并存、无机有机复合污染的局面,土壤污染途径多,原因复杂(环保总局在京召开首次全国土壤污染防治工作会议,且污染面积、分布和程度不清,污染防治基础薄弱,地方土壤保护工作防治措施缺乏依据和方向,状况不容乐观,面临诸多挑战。同时,防治土壤污染的法律还非常欠缺,土壤环境标准体系也尚未形成,法律是土壤污染防治的关键,是实现土壤环境保护的最主要途径,它对保护土地质量,维持社会、经济和环境的可持续发展具有重大意义。从法律角度分析,土壤污染现状的原因包括以下三个方面:首先,我国土壤污染防治的相关法律法规空白,缺乏有效的法律制度。在我国现行的法律体系中,已经制定了环境保护、土地管理、水污染防治、大气污染防治等相关的法律法规,但土壤污染防治的法律基本上是一项空白(论我国农业用地土壤污染的法律保障)。虽然若干法律中一些零星规定,对农业生态环境的保护起到了一定的积极效果,但都是分散而不系统的,缺乏可操作性的具体法律制度。随着我国快速的工业化、城市化进程,农业用地土壤污染仍有继续加重的趋势,说明现行立法有限条款的粗略性规定不可能有效防治现代农业技术和不合理的土地利用方式造成的土壤污染问题,满足不了土壤污染防治的现实需要。而法律的“真空”状态则会进一步滋长土地资源的滥用现象,加剧土壤污染问题(浅析我国土壤防治的法律问题)。在长三角地区环保工作中,南京理工大学经济管理学院教授徐光华指出“缺乏相对统一的区域环境准入和污染物排放标准、缺乏相关法律规范,是长三角地区环保工作目前的软肋。”区域经济发展中所遇到的各类环保问题,通常都很难靠一地的政府来解决。要应对日益严重的环境污染形势,两省一市的有关部门必须尽快建立起区域环境信息共享与发布制度,启动区域环境监管与应急联动机制,并在此基础上加快区域环境保护相关法律规范的研究和制定,长三角土壤污染后果堪忧)。因此,在现行法的基础上,有必要对土壤污染防治保护采取一定的法律措施,健全和完善环境相关法律法规。其次,土壤污染防治的行政管理和执法混乱。依据我国现有的法律体制,对于土壤的法律保护,实行管与分管相结合的多部门分层次的管理体制,涉及多个行政部门对土壤污染的行政管理,在这种体制下,管理主体林立,权力和责任分散,不仅不利于集中、统一管理,而且容易造成管理上的混乱(浅析我国土壤污染防治的法律问题)。由于土壤污染的来源多样,情况复杂,所以除了职责最多联系最为紧密的环境保护部门、农业部门有环境行政监管权力外,许多其他的部门如水利部、国土资源行政主管部门等在特定的情况下也有管理权限(我国农村土壤污染防治的法律问题研究)。但是,由于法律并没有赋予环境保护执法部门对其他行政主管部门的环境执法的监督权,同时对于各个执法部门之间在土壤污染处理上应当如何相互配合的重要问题也没有做出规定,这就导致了在具体的土壤保护的执法当中多头执法,交叉执法,执法不到位,甚至部门之间借执法来争夺各自的利益,降低了土壤保护的整体实效,损害了土壤保护的整体利益,有关法律法规对部门之间如何监督协调没有具体规定,并且在实际环境行政执法管理中地方情况差异较大,出现的许多污染问题无法很好的得到解决,从而导致部门与部门之间相互扯皮、争权推责(浅析我国土壤污染防治的法律问题)。可以说,这种多头管理体制,不仅严重影响了治污的效率,也浪费了诸多的行政管理资源。另外,在我国大多数基层地区尤其是贫困的农村地区,由于经济发展落后,摆脱贫困的愿望强烈,大多领导干部以经济的快速发展为首要目标,当经济发展与环境保护发生冲突的时候,就会牺牲环境来图发展(防控农村土壤污染的迭律对策研)。因此,我国在对土壤污染管理及执法上也存在许多的问题。最后,土壤环境保护的司法保障有待加强。目前,虽然我国土壤污染比较严重,污染情况时有发生,但涉及土壤污染诉讼的案例却很少,从仅有的几个案例中,不难发现我国农村土壤司法救济中存在的问题。首先,我国至今没有关于土壤污染修复和赔偿的条例规定,对企业也没有任何约束,即使土壤被污染了,也很难追究他们的责任。2006年8月,甘肃省徽县发生的“铅中毒”事件就是一个典型的案例。当时,这个县水阳乡的两个村庄共有368人查出血铅超标,其中14岁以下的儿童149人。经环保部门调查发现,位于这两个村庄附近的一家铅冶炼厂是重要污染源,造成当地土壤、空气和水体污染。虽然这家工厂后来被勒令关停,但如何给那些遭受污染损害的村民以有效的补偿,如何从根本上转变那种以群众健康甚至生命为代价的粗放型增长方式,却是一个难题。(邱林,中国1/5耕地受污染防治形势严峻,改善土壤环境质量系国家行动。另外,在农村环境诉讼中,一个最现实的问题就是诉讼费用的负担问题。我国农民是社会中最大的弱势群体,他们是城市发展的牺牲品,长期处于经济的困窘之中,他们的收入大多仅能勉强维持生计(防控农村土壤污染的迭律对策研)。与此同时,土壤污染对农民造成的损失是长期的也是巨大的。在我国司法实践中 ,诉讼费用直接与诉讼标的额挂钩 ,且实行诉讼费用预交制度 ,农民很有可能会因为交不起诉讼费用而无法得到司法保障(我国农村土壤污染防治的法律问题研究)。1999年 12月 20 日大庆市红岗区杏树岗镇民吉村十三户农民向大庆市中院起诉 ,要求被告大庆油田有限责任公司赔偿原告土地污染损害赔偿518431. 06元。本案中十三户农民的土地污染发生于1993年 ,但是当年只给付原告青苗补偿款。由于农民对土地是否被污染不懂 ,在 1999年前没有提起诉讼 ,但一直以上访的形式找镇政府、土地局以及被告单位要求解决 ,虽在 1999年 11月 4日达成协议 ,但未实际履行。1999 年 12 月 ,原告向大庆市农业局申请对受污染的农田进行取样化验鉴定。2000年 1月农业局进行了取样 ,并由市农业局送省质量检验检测中心检验。2001 年 5 月农业局根据检验结果又组织五位专家现场勘查 ,做出鉴定意见:已造成受污染农田土坡次生盐渍化 ,对农作物已造成严重危害。《中华人民共和国环境保护法 》第七条:国务院环境保护行政主管部门 ,对全国环境保护工作实施统一监督管理。县级以上地方人民政府环境保护行政主管部门 ,对本辖区的环境保护工作实施统一监督管理。《中华人民共和国水污染防治法实施细则 》第四十三条第二款。该案件从 1999 年 12 月到 2003 年 12 月 ,经两级法院长达四年的审理 ,最终法庭调解结案 ,被告赔偿原告损失 159607. 38元 ,一、二审诉讼费用由被告承担。值得注意的是在案件审理过程中。大庆中院以原告超诉讼时效为由 ,判决驳回原告的诉讼请求。判后原告不服 ,但由于农民多年未耕种土地无收入没有上诉费用 ,为维护原告人合法权益 ,由代理人交上诉费 10196. 00元 ,才使得农民的合法权益能够得到最终的保护(一件土地污染损害赔偿案的艰难诉讼)。因此,为有效防治土壤污染,应在现行有关土壤污染防治立法的基础上,细化、扩展土壤污染防治的制度,或制定专门的法律法规,以加强对土壤污染的监督和管理。从法律上,对污染灌溉、工矿废弃物、城市生活垃圾、化肥农药等土壤污染物及污染行为作出明确规定,通过法律手段有效防治土壤污染。另外,在法律法规中应当理顺土壤污染防治的行政管理体制,建立土壤污染的动态监测评价制度,制定相关土壤污染防治的具体规划制度,确立土壤污染的环境标准,建立土壤污染应急措施制度和法律责任制度等相关的制度。(浅析我国土壤污染防治的法律问题(论文)。3.土壤环境保护工作经验和典型模式、政策建议由于土壤污染的潜伏性、不可逆性、长期性和后果严重性等特点,土壤环境保护应遵循 “防重于治”的基本原则,坚持“预防为主、防治结合、综合治理”。对未被污染的土壤采取预防措施,要控制或消除污染源;对已经污染的土壤则要采取积极治理措施 ,将污染控制在最低限度(我国环境保护科学研究现状与展望)。土壤一旦被污染,治理起来相当困难,相对于污染物在土壤-植物系统中含量、行为、生物地球化学循环、毒理、代谢模式和与重金属有关的流行病等方面的研究,土壤污染的治理与管理研究要薄弱得多,大多数治理方法尚处在试验阶段,再加之考虑到治理费用等问题,能应用的成熟方法目前很少。总结出现的各类土壤污染治理方法,大体上可分以下四类:1.工程措施(包括客土、换土、翻土、去表土、隔离、热处理、电化学方法等)此种方法效果好、稳定,是一种治本措施,适用于大多污染物和多种条件,但一般在小范围内较实用,且代价昂贵,还可能造成地下水或其他介质的潜在污染。近年来,把污水、大气污染治理技术引进土壤治理过程中,开辟了土壤污染治理新的途径,如磁分离技术、阴阳离子代换法等(土壤污染治理方法研究)。2.化学措施施用改良剂、抑制剂等降低土壤污染物的水溶性、扩散性和生物有效性 ,从而降低污染物进入生物链的能力,减轻对土壤生态环境的危害()。例如:在某些重金属污染的土壤中加入石灰、矿渣等碱性物质,使重金属生成氢氧化物沉淀。或添加膨润土、合成沸石等交换容量较大的物质来钝化土壤中的重金属等。3.生物措施生物治理方法有着物理治理方法和化学治理方法无可比拟的优越性,其优点主要表现在以下几个方面:①处理费用低,其处理成本只相当于物化方法的二分之一到三分之一;②处理效果好,对环境的影响低,不会造成二次污染,不破坏植物生长所需要的土壤环境;③处理操作简单,可以就地进行处理。基于这些优点,应用生物修复已成为当今土壤污染治理技术研究的一大热点(土壤污染的生物修复技术研究进展)。生物措施是利用特定的动、植物和微生物吸收或降解土壤中的污染物。与此措施相对应的新兴学科“环境生物技术”方兴未艾。应用现场污染治理的生物措施始于 1989 年 3 月,美国阿拉斯加海岸被石油污染,采用了两组亲脂性微生物后,使其净化过程加快了两倍。早期生物治理采用的主体生物类群多为微生物。最近,植物修复正成为生物治理措施中的一个亮点。植物对污染点的修复有三种方式:植物固定、植物挥发和植物吸收。研究表明,利用适当的植物不但可去除土壤环境中的有机物,还可以去除重金属和放射性核素。超累积植物已成为环境保护工作者追寻、筛选的目标。我国对植物修复和超积累植物的研究已有良好的开端(我国土壤环境保护研究的回顾与展望)。例如,在土壤重金属镉污染的植物修复研究中,通过大量筛选研究发现,十字花科芸苔属植物(Brassica spp.)中的很多种或基因型具有较强的吸收累积 Cd特性。我国广泛种植的油菜(B.campestris)就是该属植物,其中某些品种或基因型在累积 Cd 方面可能很高。筛选并种植可食部位低积累 Cd 作物品种(低吸收或低转移),通过作物互做(间作、轮作)减少作物对Cd 的吸收等植物修复方面的研究也需做进一步研究(土壤镉污染特征及污染土壤的植物修复技术机理)。4.农业措施包括增施有机肥提高环境容量、控制土壤水分、选择适宜形态化肥和选种抗污染农作物品种等。另外,国外发达国家在土壤污染防治方面的工作开展得较早 ,许多国家都已建立了相对完善的污染土地识别、评价和处理体系 ,其中美国、德国和日本的土壤保护实践在世界范围内极具代表意义。在国外,有关土壤污染防治法律保护的立法经验很多。美国于1985年和1990年修订的《农业法》希望实现劳动生产率的提高的同时保护资源与环境,实现“持续农业”的发展。另外,1990年在联邦政府实施了“保护计划”管理。1987年为了控制农业水源水质而制定了《水质法》。欧盟到目前为止还没有明确的土壤保护政策,但现有许多欧盟立法都与土壤保护有关。如《关于环境保护、尤其是污泥农用时保护土壤的86/278/EEC指令》对农用污泥作出了规定;《关于废物的75/442/EEC指令》要求废物在处置时不能污染土壤;2004年底前,提出《关于堆肥和生物废弃物指令》,其目的是为了控制潜在的污染,并鼓励使用被批准的混合肥料,等等。日本已经建立了由预防对策和治理对策构成的土壤环境保全体系。有《农用地土壤污染防止法律》(1970)、《市街地土壤污染暂定对策方针》(1986)、《土壤污染环境标准》(1991)、《土壤污染对策法》(2002),等等。《土壤污染对策法》的实施,使得污染治理由被动向主动转化,以前无法计算的环保社会效益可体现为可以计算的经济效益,此种趋势表明日本的土壤环境保护已经呈现出新的阶段特点[3]。这些国外的立法经验对我国土壤污染防治的法律完善具有非常重要的借鉴意义(浅析我国土壤污染防治的法律问题)。“重视生态补偿机制,是国外土壤污染防治工作中的一大经验,值得我们借鉴。”虞锡君向记者介绍道,生态补偿机制,又称生态系统服务付费,主要原则就是“污染者付费”和“保护者受偿”——由污染事故的责任方治理土壤污染、或者支付土壤污染治理的费用。国外在这方面有过不少成功案例——1972年,美国通过的《纳税人减税法》,目的之一就是以税收方面的优惠措施,来刺激私人资本投资于土壤清洁治理。根据美国政府的报告,其直接结果是吸引了34亿美元的私人投资,8000个受到污染的棕色地块恢复了生产能力。虞锡君表示,在区域联动的基础上确立土壤生态直接补偿制度,或许是我们目前值得努力的方向(长三角土壤污染后果堪忧。)郑进华 彭 强 郑晓琴.浅析我国土壤污染防治的法律问题.[A], 环境法治与建设和谐社会——2007年全国环境资源法学研讨会(2007.8.12~15•兰州)论文集高拯民.我国环境保护科学研究现状与展望lJ1.土壤学报,1989,26 (3):262-272.

会的,支离破碎的黄土高原地理面貌就是因为植被覆盖过少形成的,土壤都冲进黄河了,在黄河入海口沉积,黄河是携带泥沙最多的河流。亚马逊河流域雨量大,雨水多但是有大面积热带雨林覆盖所以土壤流失少,也可通过一个小实验说明……

相关百科

热门百科

首页
发表服务