首页

> 学术发表知识库

首页 学术发表知识库 问题

海堤论文参考文献

发布时间:

海堤论文参考文献

严学新1 邵静芳2 陈洪胜1 史玉金1

(1.上海市地质调查研究院,上海200072;2.上海临港新城管委会,上海201306)

摘要:本文结合临港新城三维城市地质调查所取得的成果,分析了临港新城地质环境特征及其对城市建设的影响,以期为临港新城的城市建设服务。

关键词:地质环境特征;影响评价;临港新城

1 前言

临港新城三维地质调查是上海市三维城市地质调查的示范调查项目。工作重点是工程地质结构调查及与工程建设相关的水文地质调查,同时对临港新城区冲填土的地面沉降效应等地质问题进行调查,分析其对新城建设的影响。

临港新城地处上海市东南部,是上海国际航运中心的重要组成部分,依托未来洋山深水港建设。新城以两港大道和沪芦高速公路为分隔,共分为主城区、主产业区、综合区、重装备产业区和物流园区4大片区,在4大片区集中城市建设用地之间设置临港森林(图1)。建成后的上海临港新城,将集现代物流、港口加工、金融贸易、商业服务、居住旅游等为一体,构筑21世纪中国港口城市的新形象。

图1 临港新城规划总体布局示意图

2 临港新城地质环境特征

2.1 基础地质结构特征

调查区属华南板块扬子陆块,全区均为第四系及新近系所覆盖。基岩面埋深220~340m,其东部及南部埋深较浅,向西北方向逐渐变深,基岩地层岩性以白龙港玄武岩和侏罗系劳村组角砾状晶屑岩屑凝灰岩、英安岩为主。断裂构造形迹不明显,基底相对较稳定,对工程建设影响不大。与工程建设相关的100m以浅的晚第四纪地层发育齐全,上更新统顶部暗绿、褐黄色硬土标志层和中部的硬土层均有保留;浅部的淤泥质粘土和软粘土层所占厚度较小,而砂层和粉土层所占厚度较大,总体上地层结构条件相对较好,不利之处是近地表部分普遍分布一层滨海沉积的砂质粉土层(工程地质(2)3层)。

2.2 水文地质结构特征

调查区含水层较为发育,区内第四系松散岩类孔隙含水层包括潜水-微承压含水层及其下五层承压含水层。潜水水位一般在3.23~4.08m之间,第一层承压含水层水位一般在-1.75~-1.25m之间,水位相对较高,对规划区地下空间开发带来不利影响。规划区地下水对混凝土基础无腐蚀性,地下水对钢铁结构有中等腐蚀性。

2.3 工程地质结构特征

根据区内第四纪沉积规律和工程地质层埋藏分布特征及其物理力学指标,结合临港新城规划,对100m以浅的各工程地质层进行分析与评价。

(1)1层为填土,松散,层厚0.3~3.0m,以粘性土为主,局部含碎石、砖块及植物根茎。均匀性极差,一般不宜作建筑物的天然地基持力层;

(1)3层为冲填土,松散、流塑,层厚0.4~8.5m,层顶埋深0~1.7m,海岸带以粉性土为主,饱和,含贝壳碎片,摇震反映迅速;规划区西部以粘性土为主,饱和,含有机质染斑。本区冲填土属于欠固结土、不均匀性比较明显,其分布具有成层性、含水量高、透水性较弱、排水固结差、强度低、压缩性高(图2)、灵敏度高等特点;地基土的承载力标准值低,地基的沉降量比较大,不同地段的沉降量差别较大,可能会产生负摩阻力,对工程极其不利。对于采用桩基础的工程,还可能发生承台和地基土脱空现象,应予以注意。

图2 冲填土荷载-沉降曲线

(2)1层为褐黄色粘性土,湿,软塑-可塑,层厚0.5~2.5m,层顶埋深0.3~2.0m,含铁锰质结核及氧化铁斑点,静探比贯入阻力为0.43~1.74MPa,中-高压缩性,作为天然地基持力层时,注意其土质均匀性和厚度的差异。

(2)3层为灰色砂质粉土,稍密,饱和,层厚2.80~16.30m,层顶埋深0.6~8.5m,含云母、有机质斑点,偶见贝壳碎屑,摇震反应迅速,静探比贯入阻力为3.41MPa,标准贯入击数为11击,规划区内遍布。该层震动液化:不液化地区主要分布在规划区东南部芦潮港镇以东、西部彭镇镇、万祥镇新港镇及规划的综合区的部分地区。轻微液化区主要分布在规划区中部及主城区东部。中等液化区局部分布,主要在东海农场以南、规划区综合区东部、及芦潮港农场南部;渗流液化:规划区内地下工程建设施工时均存在,如基坑工程、隧道工程、管道工程等,应注意砂土渗流液化对工程的影响。

(4)层为灰色淤泥质粘土,饱和,层厚1.50~12.50m,层顶埋深5.8~19.5m,含有机质斑点,含云母、贝壳碎屑,压缩模量为2.23Mpa,静探比贯入阻力0.63Mpa,属滨海-浅海相沉积物,为上海地区最典型的软土层,在高层建筑和路基工程施工过程中极易发生变形。

(5)层主要为灰色粘性土层,层厚2.70~21.50m,层顶埋深17.0~25.3m,在(6)层缺失区厚度大,局部地区有砂质粉土透镜体分布。区内该层分为5个亚层,(5)1-1灰色粘土层、(5)1-2灰色粉质粘土层、(5)2灰色砂质粉土层、(5)3灰色粉质粘土夹粉土层和(5)4灰绿色粉质粘土层。其中(5)1-1、(5)1-2层很湿-饱和,软塑-流塑,压缩性较高,强度低,为荷载较大建筑的压缩层,此外,该两层由于埋藏适中,可作为沉降控制复合桩的桩基持力层。(5)2层为规划区的微承压含水层,但分布不连续,厚度小,但在大的基坑开挖工程和隧道工程中有可能揭露该层,应注意该层所产生的流砂现象。(5)3、(5)4层为溺谷相地层,分布在(6)层缺失区,厚度、埋深变化较大,且土质不均,易引起荷载较大建筑的不均匀沉降。

(6)层暗绿色-草黄色粘性土层,湿,层厚1.50~7.35m,层顶埋深22.2~29.0m,含氧化铁斑点,由上至下,粘粒含量逐渐减小,粉粒含量逐渐增大,静探比贯入阻力为1.99Mpa,该层与下部(7)层联合可作中型建筑物的桩基持力层。

(7)层草黄色-灰色砂质粉土、粉砂,饱和,层顶埋深25.0~50.0m,古河道切割区埋深较深。该层规划区内均有分布,土质好,可作大型及重型建筑物的桩基持力层。

(8)2层为粉质粘土夹粉土层,湿,层厚3.50~18.0m,层顶埋深54.6~73.0m,夹薄层粉砂或粉砂团块,偶见氧化铁斑点及贝壳碎屑。规划区内分布不连续,埋深、厚度变化大。

(9)层砂性土层,饱和,分布连续,厚度大,上部为颗粒较细,粘粒含量较多,一般为砂质粉土,下部颗粒逐渐变粗,为粉砂或细砂,底部含有砾石。该层可作为超大型建筑的桩基持力层,但由于埋藏较深,费用较大。

调查区典型工程地质剖面示意图见图3。

2.4 地质灾害

2.4.1 地面沉降

2.4.1.1 现状

临港新城规划区总体沉降量相对中心城区要小。1980~1995年规划区大部分地区累计沉降量在50~100mm之间,年均沉降量在3~7mm/a之间。1996~2001年间,规划区内地面沉降有所增加(图4),累计沉降量在50~100mm之间,年均沉降量在10~20mm/a之间,其中规划区北部地区沉降量大,万祥一带已形成沉降漏斗,最大累计沉降量达200mm。北部地区沉降与地下水的大量开采有关。目前由于南汇地区地下水开采量有所控制,而且开采不甚集中,因而由开采地下水引发的地面沉降有所减少,目前的沉降速率基本在5mm/a以下。

2.4.1.2 趋势分析

图3 临港新城典型工程地质剖面示意图

规划区地面沉降主要由开采地下水和工程建设所引起。区内开展自来水管网建设和改造,因地下水的开采地面沉降短时间内仍将持续发育;区内存在大面积的欠固结冲填土,其自重固结沉降量相当可观,据初步试验计算,对于厚度为6m的冲填土,其完全固结沉降量可达8~12.5cm。规划区内94塘以西部分冲填土,固结已经有一段时间,后续自重固结沉降量相对比较小;而94塘以东部分为新近冲填土,其自后续重固结沉降量将会比较大。

2.4.2 岸滩冲淤

临港新城边滩的演变,其外形基本保持不变,5m以上的边滩面积在自然状态下变化很小,边滩演变主要呈整体向东南方向移动的趋势,与长江口演变的总体趋势是一致的。

芦潮港东部岸坡总体上比较稳定,冲淤幅度较小;芦潮港南部岸坡的特点是:近岸是陡坡,其外是平坦的海底,两者之间的水深大约为6~7m,两者的演变存在一定的差异。近岸陡坡1958~1977年侵蚀,1977~1997年淤涨,1997~2003年侵蚀;而其外的平坦海底1958~1989年淤涨,1989~2003年侵蚀。近岸陡坡的冲淤变动范围在水平方向上为1.5km左右,在垂向上为4m左右。平坦海底的垂向冲淤变幅约3m,平均淤积速率1958~1977年为10.4cm/a,1977~1989年为4.3cm/a,1989~1997年为-14.7cm/a(侵蚀),1997~2003年为-19.6cm/a(侵蚀)。1997年以来,近岸陡坡也由淤积转变为冲刷。可见,近年芦潮港岸段的侵蚀呈加强趋势。位于杭州湾北岸的芦潮港岸段海底近10年以冲刷为主,而南汇嘴以东以淤积为主。

3 地质环境对临港新城规划与建设的影响分析

3.1 充分发挥工程地质结构特征优势,适当调整城市结构布局

3.1.1 建筑适宜性评价

依据影响工程地质条件的主要地基土层的分布缺失情况对临港新城进行工程地质分区,即:影响天然地基条件的(2)1层、(1)3层和影响桩基条件的(6)层的分布缺失情况进行分区(见图5所示)。

Ⅰ1工程地质地段,(2)1层、(6)层分布,(1)3层缺失,天然地基、桩基条件好地段,适宜各种建(构)筑物,可按城市功能需要进行布置;

图4 临港新城规划区1996~2001年累计地面沉降现状示意图

华东地区地质调查成果论文集:1999~2005

华东地区地质调查成果论文集:1999~2005

Ⅱ1工程地质地段,(2)1层分布,(1)3层、(6)层缺失,桩基条件差,天然地基条件好,适宜布置多层建(构)筑物;

华东地区地质调查成果论文集:1999~2005

华东地区地质调查成果论文集:1999~2005

3.1.2 地下空间开发适宜性评价

规划区浅部均分布有砂层,厚度较大、分布稳定,中部砂层(5)2层零星分布,地下工程施工中均有可能发生流砂。对地下工程建设不利。规划区内软土层均有分布,连续,埋深、厚度变化不大,易发生变形,对基坑边坡影响较大;对于隧道盾构建议在第(4)、(5)中穿过。

图5 工程地质分区示意图

3.2 地面沉降(尤其是不均匀沉降)对新城安全的可能影响

3.2.1 海堤沉降——防洪安全

由2.4.1分析可知,规划区内由于地下水开采导致的地面沉降将持续发育,冲填土自重固结导致的地面沉降也同时存在,使海堤防洪能力不断下降。因此,设计时应预留由于地面沉降导致损失的标高,同时加强监测,及时加高。

3.2.2 不均匀沉降——基础设施(轨道交通、地下管线)安全运营

规划区内地下水开采形成的“沉降漏斗”,区内冲填土的不均匀性都会引起地面不均匀沉降。规划区内多项线性工程项目,如经过规划区的浦东铁路、轨道交通3号线,新城区内大量的线性工程的建设及运营过程中都会不同程度的受到区域地面不均匀沉降的影响,严重时将引起轨道交通无法运营,管线开裂。

3.3 海岸带变化趋势及其对城市安全的影响

3.3.1 对规划区土地资源增长的影响

规划区位于南汇边滩和杭州湾北岸。南汇边滩是长江口南岸沙嘴的主体,长江口和杭州湾两股水体落潮合流和涨潮分流是塑造这个沙嘴的动力条件,长江丰富的流域来沙则是形成这个宏大沙嘴的物质基础。近30年来,东滩稳定淤涨,向外延伸速度每年达40~90m。但随来沙量的减少,南汇边滩冲淤趋势将会发生一定改变,如南岸在长江来沙丰富的时候,呈沙嘴突出;来沙减少时呈弧形转折,前者滩地淤积,后者侵蚀。根据预测结果,南汇东滩仍将淤积,但淤积速率有所减少,而南岸冲刷趋势将增强,严重影响土地后备资源。而杭州湾北岸20世纪70年代中后期东端岸段开始出现高滩侵蚀现象,并且逐年由东向西推进,至20世纪80年代中期,奉贤岸段滩涂已由淤涨转为侵蚀。未来一段时间内随着长江口南岸泥沙来源减少,潮流输沙能力增强,滩地侵蚀后退明显,滩地资源逐步减少。而且芦潮港人工半岛一期促淤坝,拦阻了部分长江口泥沙向杭州湾北岸输移,使进入芦潮港以西的泥沙减少,使得杭州湾北岸冲刷作用增强,从而亦影响到北岸的滩涂资源的增长。

3.3.2 岸滩冲淤对岸带工程建设的影响

岸滩冲淤对护岸结构的影响主要是冲刷对其安全性的影响。根据已有成果,岸带冲刷1m前后将使各类海堤的安全系数降低,降低的幅度在11%~15%之间,从而影响海堤结构的安全性。岸滩冲淤对桥梁结构的影响主要在于引起泥面线下降,从而导致桩基承载力下降,基础变形增大,进一步影响结构和基础的内力。根据预测,规划区杭州湾岸段将处于冲刷状态,因此,应注意东海大桥的桩基工程所遭受的影响。

4 对策

(1)在工程地质分区Ⅰ区,第(6)、(7)层埋深适中,为桩基持力层好区;Ⅱ区,第(6)层缺失,第(7)层埋藏较深,以(7)层为持力层桩基费用大。根据规划区的地质条件,可适当调整建构筑物的位置或在调整基础的型式,选择第(5)层作为桩基持力层。在满足使用、安全情况下,节约建设成本。规划区分布大面积的欠固结冲填土,根据拟建工程特点,结合冲填土的土性,采取适当的方法加以处理。规划区第(4)软土层遍布,该层土易发生变形,在基坑开挖及地下工程建设过程中要加强监测,以便能及时采取措施。

(2)规划区内地面沉降发育,地面沉降(尤其是不均匀沉降)对基础设施(轨道交通、地下管线、海堤等)影响严重,建议建立临港新城地面沉降监测网,监测地面沉降动态,及时采取防治措施。

5 结束语

临港新城三维城市地质调查是上海市三维地质调查的示范项目,是对城市地质调查工作的一个探索,还存在许多不足。本次调查以工程地质调查为主,取得了一定的成果,能较好地服务于临港新城的工程规划建设。调查过程中,地调中心给予了很大支持,在此表示感谢!

参考文献

[1]中国地质调查局.地质调查标准汇编水文、工程、环境地质调查勘查

[2]张咸恭等.专门工程地质学.北京:地质出版社,1986

[3]岩土工程勘察规范(DGJ08-37-2002).上海市工程建设规范

Geological Environmental Character of Lingang New City and Its Influences to the Construction

Yan Xuexin1,Shao Jingfang2,Chen Hongsheng1, Shi Yujin1

(1. Shanghai Institute of Geological Survey, Shanghai 200072;2. Management Committee of Lingang New City, Shanghai 201306)

Abstract: In this paper, basing on the production of the three dimensional geological investigation of Lingang new city, geological environmental character of Lingang new city and its influences to the construction are analyzed. The goal is as one reference for the construction of Lingang new city.

Key words: Geological environmental character; Analysis of influence; Lingang New City

[1] Bernard D., Chen D. and Burlion N. A 3D study of mortar degradation by x-ray computed microtomography[J]. High Performance Structures and Materials, 2004, 6:297-306.[2] Da Chen, Ismail Yurtdas, Nicolas Burlion, Jian-Fu Shao. Elastoplasticité et endommagement dans un matériau cimentaire en cours de dessiccation : comparaison essais / calculs[J]. Revue européenne de génie civil, 2006, 10(3):405-421.[3] Nicolas Burlion, Dominique Bernard, Chen Da. X-ray microtomography: application to microstructure analysis of a cementitious material during leaching process[J]. Cement and Concrete Research, 2006, 36(2): 346-357.[4] 陈达, Yurtdas Ismail. 干燥作用对水泥基材料影响的研究[J]. 郑州大学学报(工学版), 2006, 27(4):58-61.[5] D. Chen, I. Yurtdas, N.Burlion, J.F.Shao. Elastoplastic damage behavior of a mortar subjected to compression and desiccation[J]. Journal of Engineering Mechanics, ASCE, 2007, 133(4):464-472.[6] 陈达,张玮. 风能利用和研究综述[J]. 节能技术, 2007, 25(4):339-343,359.[7] 陈达,江朝华,张玮. 玻璃纤维增强塑料(GFRP)筋混凝土梁斜截面受力性能[J]. 河海大学学报(自然科学版), 2007, 35(5):534-537.[8] 陈达,东培华,廖迎娣. 海洋环境中受腐蚀混凝土的力学研究现状和展望[J]. 腐蚀与防护, 2007, 28(12):630-632.[9] L Chen, T Rougelot, D Chen, JF Shao. Poroplastic damage modeling of unsaturated cement-based materials[J]. Mechanics Research Communications, 2009, 36(8):906-915.[10] Nicolas Burlion, Dominique Bernard, Da Chen. Evolution microstructurale d’un mortier lixivié: caractérisation expérimentale au moyen de la microtomographie par rayon X[A]. In L. Dormieux, D.Kondo, K.Sab ed. Microstructure et propriétés des matériau[C], Paris: Ponts et Chaussees press, 2005.[11] D.Chen, I.Yurtdas, N.Burlion, J.F. Shao. Plastic damage modelling of concrete subjected to desiccation[A]. In Gilles Pijaudier-Cabot, Bruno Gérard, Paul Acker ed. 7th International Conference on Creep, Shrinkage and Durability of Concrete and Concrete Structures[C], France: Ecole Centrale de Nantes, 2005:181-186.[12] D. CHEN, I.YURTDAS, N.BURLION, J.F.SHAO. A coupled elastoplastic damage model for cement-based materials submitted to desiccation[A]. 2nd International Conference on Coupled T-H-M-C Processes in Geo-systems: Fundamentals, Modeling, Experiments & Applications[C]. Nanjing, China, 2006 may 22-24:514-519.[13] 陈晓峰,陈达,廖迎娣. 过闸船舶撞击力研究[J]. 水运工程, 2010, (9):48-50.[14] 张研,蒋林华,陈达. 围压状态下的混凝土本构模型[J]. 计算力学学报, 2010, 27(6):1096-1101.[15] D.Chen, W.Q.Shen, J.F.Shao, I.Yurtdas. Micromechanical modeling of mortar as a matrix-inclusion composite with drying effects[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 37(9):1034-1047.[16] 陈达,庄宁,廖迎娣,黄辉. 水泥土力学特性随龄期发展规律试验研究[J]. 水利水运工程学报, 2012(1):26-29.[17] 陈达,廖迎娣,庄宁,黄辉. 水泥品种对水泥土力学性能与耐久性的影响[J]. 施工技术, 2012, 41(359):84-86.[18] 何良德,姜晔,殷兆进,周博,唐晖. 内河船舶跟驰间距模型[J]. 交通运输工程学报, 2012, 12(1):55-62, 86.[19] CHEN Da, WANG Na, JIANG Chaohua. Influence of Sulfate Attack and Drying-wetting Cycle on Properties of Mortar[J]. Applied Mechanics and Materials, 2012, 204-208: 3731-3735.[20] Na Wang, Da Chen, Yingdi Liao. Study on foundation structure for comprehensive power generation of offshore renewable energy [J]. Advanced Materials Research, 2012, 594-597:121-125.[21] 陈达,李莉,姚鹏飞,廖迎娣. 高桩码头拱式纵梁结构[J]. 江南大学学报(自然科学版), 2012, 11(6):685-689.[22] 陈达,谢春秋,廖迎娣,侯利军. 闸墙碰撞分析及其混凝土性能指标研究[J]. 水运工程, 2013(5):120-123.[23] 陈达,廖迎娣,侯利军,欧阳峰. 受硫酸盐侵蚀水泥基材料力学性能及本构模型[J]. 建筑材料学报, 2013, 16(6):743-749.[24] Da Chen, Yingdi Liao, Chaohua Jiang, Xingguo Feng. The mechanical properties of coastal soil treated with cement [J]. Journal of Wuhan University of Technology- Materials Science Edition, 28(6):1155-1160.[25] Da Chen, Chen Du, Xingguo Feng, Feng Ouyang. An elastoplastic damage constitutive model for cementitious materials under wet-dry cyclic sulfate attack [J]. Mathematical Problems in Engineering, vol. 2013, Article ID 562410, 7 pages, 2013.[26] I. Yurtdas, D. Chen, D.W. Hu, J.F. Shao. Influence of alkali silica reaction (ASR) on mechanical properties of mortar [J]. Construction and Building Materials, 2013, 47(10):165-174.[27] Da Chen, Kai Huang, Valentin Bretel, Lijun Hou. Comparison of Structural Properties between Monopile and Tripod Offshore Wind-Turbine Support Structures [J]. Advances in Mechanical Engineering, vol. 2013, Article ID 175684, 9 pages, 2013.[28] Xingguo Feng, Xiangyu Lu, Yu Zuo, Da Chen. The influence of plastic deformation on the structure of passive films on carbon steel in simulated pore solution[J]. Journal of the Brazilian Chemical Society, 2014, 25(2): 372-379.[29] 陈达, 杨一琛, 冯兴国, 欧阳峰. 碱硅酸反应对水泥基材料力学性能的影响 [J]. 土木建筑与环境工程, 2014, 36(1):119-124.[30] Chaohua Jiang, Ke Fan, Fei Wu, Da Chen. Experimental study on the mechanical properties and microstructure of chopped basalt fibre reinforced concrete [J]. Materials and Design, 58(2014):187-193.[31] Hou Lijun, Xu Shilang, Zhang Xiufang, Chen Da, Shear behaviors of reinforced ultrahigh toughness cementitious composite (RUHTCC) slender beams with stirrups [J]. Journal of Materials in Civil Engineering, ASCE, 26(3): 466-475.[32] 侯利军,陈达,徐世烺,张秀芳,无腹筋RUHTCC梁抗剪性能试验研究,东南大学学报,44(1): 133-139, 2014.[33] Liao Yingdi, Chen Da, Liu Zihan, Ouyang Feng, Hou Lijun. Elastoplastic-damage compression constitutive model for cementitious material subjected to alkali-silica reaction [J]. Journal of Advanced Concrete Technology, 2014(12):158-166.[34] Xingguo Feng, Xiangyu Lu, Yu Zuo, Da Chen. The passive behaviour of 304 stainless steels in saturated calcium hydroxide solution under different deformation [J]. Corrosion Science, 82 (2014):347-355.[35] 侯利军,陈达*,徐世烺,张秀芳,正常使用状态下RUHTCC梁的弯曲变形预测,工程力学,2014, 31(11):183-189.[36] 冯兴国, 卢向雨, 陈达, 杨雅师, 苏晓栋. 拉应力和压应力对砂浆中钢筋锈蚀的影响 [J]. 建筑材料学报, 2015, 18(4):640-646.[37] 范可, 刘子涵, 陈达. 规则波作用下挡浪板式防浪墙波浪力研究[J]. 水运工程, 2014, 10(1):7-12.[38] 侯利军, 陈达, 孙晋永, 徐世烺. RC/UHTCC复合梁的弯曲与界面性能试验研究. 水利学报, 45(z1): 100-107.[39] Y.D. Liao, Y.C. Yang, C.H. Jiang, X.G. Feng, D. Chen. Degradation of mechanical properties of cementitious materials exposed to wet-dry cycles of sulphate solution [J]. Materials Research Innovations, 19 (2015):173-177. [1] 中华人民共和国水利部, 村镇供水工程施工质量验收规范》(SL 688-2013)[2] 中华人民共和国交通运输部, 《水运工程施工监控技术规范》 [1] 杨正,娄保东,陈达等. 船舶吃水超限预警系统及预警方法[P]. 中国专利: ZL 2009 1 0305821.5.[2] 陈达,张玮,廖迎娣,江朝华. 一种船舶对闸墙碰擦力测试方法[P]. 中国专利: ZL 2009 1 0035364.2.[3] 刘曙明,王爱民,储兴隆,陈达等. 船舶对闸墙碰擦力测试系统[P]. 中国专利:ZL2009 10035365.7.[4] 陈达,廖迎娣,陈波涛,张峰. 杆件轴向荷载超限预警系统及预警方法[P]. 中国专利: ZL 2010 1 0225001.8.[5] 郑金海,陈达,廖迎娣等. 一种用于控制吃水超深船舶过闸的方法及装置[P]. 中国专利: ZL 2010 1 0273480.0.[6] 陈达,廖迎娣,何良德,杨正. 全自动墙体护面混凝土喷射系统[P]. 中国专利: ZL 2010 1 0526441.7.[7] 陈达,廖迎娣,庄宁,张峰等. 一种混凝土分层浇筑装置及施工方法[P]. 中国专利: ZL 2010 1 0564948.1.[8] 庄宁,何良德,郑金海,陈达等. 一种船闸闸室墙变形监测装置及监测方法[P]. 中国专利: ZL 2011 1 0009658.5.[9] 陈达,王伟,王瑞彩,刘桃根等. 新型防波堤及其设计方法[P]. 中国专利: ZL 2011 1 0098720.2.[10] 陈达,李正,廖迎娣,杨正等. 爬升脚手架安全监控方法及装置[P]. 中国专利: ZL 2011 1 0102354.3.[11] 陈达,陈蒙龙,宋晓阳,范可等. 环境亲水型复合式海堤[P]. 中国专利: ZL 2011 1 0261642.3.[12] 陈达,廖迎娣,欧阳峰等. 一种检测闸门漏水的装置及其控制方法[P]. 中国专利: ZL 2011 1 0434394.8.[13] 陈达,王娜,欧阳峰,范江山等. 一种抵御波吸力的连通式防波堤消浪结构[P]. 中国专利: ZL 2012 1 0013135.2.[14] 廖迎娣,王娜,陈达等. 一种气囊式船闸灌泄水辅助系统[P]. 中国专利: ZL 2013 1 0028867.3.[15] 陈达,娄保东,刘子涵等. 基于蜗轮式水流量传感器闸门止水设施检测装置[P]. 中国专利: ZL 2013 1 0071338.1. [1] 水泥基材料弹塑性损伤计算模型软件(登记号: 2013SR016450).[2] 受化学侵蚀水泥基材料本构模型模拟系统(登记号: 2013SR124414).[3] 高桩码头横向排架内力计算软件(登记号: 2013SR124418).[4] 弹性地基梁内力计算软件(登记号: 2013SR124350).

河岸护堤工程论文的参考文献

1. 山溪性河道治理(1)滩地的保留和利用滩地是山溪性河道的特有产物。一般河道滩地较开阔,洪水期水流漫滩,利于行洪滞洪,应保留其功能,并充分开发利用。流经城区的河道,在维持滩地行洪功能的同时,利用滩地设置绿化地、公园、交通辅道和运动场所,开发其休闲、亲水功能,成为市民娱乐、健身、游玩的好地方。整治中,顺应河势,因河制宜,保留河滩和弯道,恢复河道的天然形态,减少河床的坡降,降低洪水位,减少洪峰压力,同时可降低防洪堤的高度。另外,弯曲的水流更有利于生物多样性,为各种牛物创造了适宜的生存环境。(2)复式断面的设计山溪性河道一般河滩开阔,河道断面设计可采用复式断面形式。枯水期流量小,水流归槽主河道;洪水期流量大,允许洪水漫滩,过水断面大,洪水位低,一般不需修建高大的防洪堤。枯水期根据河滩的宽度和地形、地势,结合当地实际充分开发河滩的功能:如滩地较宽阔,一般可开发高尔夫球场、足球场等大型或综合运动场;河滩相对较窄的可修建小型野外活动场所、河滨公园或辅助道路等。河滩的合理开发利用,既能充分发挥河滩的功能,又不因围滩而抬高洪水位,加重两岸的防洪压力。(3)防冲不防淹的矮胖型堤坝设计山溪性河流具有河床坡降陡、洪水暴涨暴落的特点,高水位历时短,流量集中,流速大,对沿河堤坝、农田冲刷严重:通过规划,采用防冲不防淹的矮胖堤型设 计,保护区下游堤段开口.还河流以空间,给洪水以出路,允许低频率洪水漫坝过水,确保堤坝冲而不垮,农田冲而不毁。以防洪为主要功能的农村河道,堤防基础冲刷严重,可采用松木桩基础,投资省、整体性好、抗冲能力强,以提高堤防的整体性和稳定性。(4)采用生物固堤,减少堤防硬化对于乡村田间河道,除个别冲刷严重河岸需筑堤护坡外,应尽量维持原有的自然面貌,保持天然状态下的岸滩、江心洲、岸线等自然形态,维持河道两岸的行洪滩地,保留原有的湿地生态环境,减少由于工程对自然面貌和生态环境的破坏。在堤防建设中,可采用大块鹅卵石堆砌、干砌块石等护岸方式,使河岸趋于自然形态。个别受冲河岸堤防内侧可采用种植水杉等根系为直根的树种或草坪护坡等植物护堤措施。更多关于工程/服务/采购类的标书代写制作,提升中标率,您可以点击底部官网客服免费咨询:

河口海岸的生态修复延伸到水环境综合整治中。生态护岸以保护和创造生物良好的生存环境和自然景观为前提。在再生生物群落的同时,建设具有设定抗洪强度的河流护堤工程,能够提高水系功能和改善水的质量,把受人类严重干扰和破坏的河道修复成为水体与土壤、水体与生物相互涵养,适合生物生长的近自然状态的河道。因而,生态护岸技术在水环境综合整治中逐步得到了应用和发展。

生态护岸是利用石头、木材、多孔环保混凝土和自然材质制成的柔性结构等构建,对河岸进行加固,防止河道淤积、侵蚀和下切,同时多孔护岸材料,为植物的生长提供了有利条件,为野生动物提供栖息地,保障自然环境和人居环境的和谐统一。透水的护岸也保证了地表径流与地下水之间的物质、能量的交换。其生态护坡手段如下:

1.河岸类型对护坡形式的选择

河水流动过程中形成明显的冲刷面和回水湾冲刷型、回水型和普通型河岸。处理时依河优势,充分考虑其水动力学特征,对于冲刷型河岸,河岸要承受河水的强烈冲刷作用,特别是在洪水季节,冲刷面是河岸侵蚀和水土流失的主要区域,对其进行生态护坡的首要措施是稳固岸堤。因此,对冲刷面,必须采用隔离封闭的护坡形式,最简单的方法是砌石,考虑到整体协调美的生态要求,可以由低向高逐渐过渡堤岸形式,由外向内降低抗冲刷材料强度。

对于回水型河岸,河水流动相对缓慢,河岸主要起缓冲作用,河水流线呈螺旋型,在回水湾,污染漂浮物容易滞留。对其进行生态护坡时,重点考虑生态美学特征,强调河岸的形式变化,特别是复合生态系统培植、发育和完善,同时,可以构建局部生态景观。

对于普通型河岸,其河水动力特征介于上述两种类型之间,但是,依河道宽度的变化。普通河岸也呈现微弱的冲刷面和回水面,在设计处理时,应注意其功能特征,适当取舍,既要保证岸堤的稳固性也应注重岸堤的生态性能。

另外,河岸冲刷面一侧的河水以湍流为主,稀释和自净能力较强,抗污染负荷能力也强,回水面和普通型河岸一侧河水以层流为主,自净能力较弱,环境容量较低,容易形成典型的迟滞型污染。

2.生态护坡建设方法

(1)介质筛生态护坡

在对河堤进行护坡处理时,由内及外,向河布设粒径逐渐放大的天然石块护坡介质,临河面由粗石颗粒组成,孔隙率低,但是孔径大:内侧由细石颗粒组成,孔隙率高,但是孔径小。这样,由河向岸就形成介质筛的形式,一方面,这种结构能够有效地保护坡堤,减轻河岸冲刷、防止水土流失;另一方面,这种结构为水生多生态系统的发育创造了条件,远离河岸的微型空间内便于低级生物的繁殖,而临河的大空间内便于高级生物的生存。介质筛护坡是自然河床形式的延伸,与其他人工护坡形式相比,它更趋向于自然,节约投资和建设费用。

依据介质筛分的基本原理,确定介质筛护坡的标准形式如图10-34所示。可以看出,介质颗粒水平角小于45°,在介质筛底层外设置松木桩,在木桩外堆放防冲刷石块;在介质筛与松木桩间以及介质筛空隙间种植挺水植物。对岸坡植被景观营造,以乔木为骨架,乔灌草结合,与周围景观视廊相协调。

图10-34 介质筛护坡的标准形式

这种形式的护坡适用于水利条件较好的河段,其稳定性主要依赖于最外层卵石的大小和护角的处理。

(2)仿湿地生态护坡手段

湿地生态系统的强大功能已被广泛认同,其核心在于多生物生存条件的集成和稳定。在生态护坡处理中,可以借用湿地建设的成功经验,营造局部仿湿地系统。在回水湾和河面较宽的河段,岸堤受冲刷的压力减弱,岸堤的稳固性较强。对这类岸堤进行护坡处理时,以植被稳定技术优先,通过植物发达的根系固化土壤和堤岸。由于细介质中孔隙率大,微生物丰富,实质上已形成了沿河带状小型仿湿地生态护坡,就是在这类岸堤上完善其湿地生态系统,建立高级生命栖息的环境空间,促进生态系统的新陈代谢,同时,杜绝人类活动对生态系统的干扰。

(3)根稳定生态护坡手段

树木与草坪生态护坡存在一定差异,树木对内部土壤具有较好的稳定作用,草坪对表土具有较好的固化作用。因此,现代生态护坡往往兼顾两种模式,采用树木与草坪相结合的护坡形式。对树木根系进行稳定和固化是生态护坡的主要工程技术问题。可对其进行特别处理,即根系稳定生态护坡手段,它是通过稳定单株树木的根系来实现整体堤岸稳定的技术。根据河水的流向,可以划分出树木根系的迎水面和背水面,对迎水面一侧,采用混凝土浇注的硬处理;对背水面一侧,采用网状预留孔处理。这样处理既避免了树木根部被冲刷侵蚀,又为根系提供了物能交换的通道,从而强化对树木根系的保护,进而对河流堤岸进行保护。

3.生态护坡恢复设计

根据夹河水利规划,在维持夹河大堤现状的情况下,对陌堂橡胶坝至入海口的夹河河道两侧滨水堤岸进行生态护坡建设。依据夹河现有的岸堤情况和水利条件,采用宽体斜坡护坡技术、根稳定生态护坡技术、地理板框介质筛护坡技术和半干砌石护坡技术等对其进行改造和建设。对已做石砌护岸的河段根据具体的水利及区位等因素采取退岸方式,将其改造成1:3.0的斜坡护岸,并采用半干砌石、地理板框等技术进行岸坡稳定。对自然岸堤进行平整,保护天然植被,特别是乔木,营造宽体斜坡,扩大泄洪空间。同时,对河槽与堤坝之间的滩地进行植物修复等水土保持措施。

(1)半干砌石介质筛护岸建设

在夹河上游段的部分混凝土硬化河岸改造、构建半干砌石介质筛护岸,断面如图10-35所示。该段护岸全长约15.0km。

图10-35 半干砌石介质筛护岸断面图

为防止坡角侵蚀,沿河岸打3~4排木桩,木桩间距约5cm,在保证良好的透水性的前提下,有效地防止河水冲刷坡角;为延缓木桩腐烂,考虑将木桩完全打入水下,即要求木桩桩顶高程低于常水位。在木桩内侧浆砌高度大约50cm的卵石,卵石顶高程高于常水位约30cm,以防止涌浪对生态护岸的冲刷。考虑到系统对氮的去除,可选用沸石内嵌与卵石中,提高生态系统对氮的去除。

现场浇筑混凝土模块,在混凝土半干状态下,将大卵石置于其上,沿坡角向坡顶密实镶嵌堆放,待混凝土完全晾干后,天然石与混凝土固化为一体。在未浇筑混凝土的坡面上,石块受到其他固化石的挤压作用,也稳定在岸坡上。混凝土砌块平面尺寸约宽30cm,长50cm,其深度须满足护岸稳定要求,且间距不小于1m。卵石粒径约20~30cm。

在半干砌石上覆土30cm,移植附近相邻区域的表土,以保持覆土有机质含量,在覆土上培植草本和灌木。在条件允许的情况下,尽量保证岸坡坡度小于1:3.0。为营造生物生存栖息空间,在木桩河水侧抛石。为维持由江向岸的透视景观,乔木不应太密,在保护现有乔木的基础上,落叶与常绿搭配,临河处尽量选用垂柳等弯曲乔木。

半干砌石介质筛护岸要比干砌石护岸稳定,且具有多空隙,能够保证河水与空隙水及地下水之间的交换,空隙间填土又为植物生长提供了扎根基础。

(2)地理板框介质筛护岸建设

如图10-36所示,对夹河上游段其他混凝土硬化河岸改造、构建地理板框介质筛护岸,这种形式结构稳定性强、耐洪水冲击。断面如图10-36所示。该段护岸全长约15km。

地理板框介质筛护岸的坡角处理同上面的半干砌石介质筛护岸技术;沿修正后的缓坡倾斜面布设混凝土板框,为维持板框内松散堆积的碎石的稳定性,板框规格为1.0m×1.0m,板框采用混凝土整体现浇制作;在框格中,依介质筛原理填充不同粒径介质。框架厚度40cm,框中底层填粒径5mm,厚10cm的粗砂,其上再填粒径2cm厚10cm的砾石,砾石上面铺一层粒径6~8cm的碎石,形成地理板框介质筛;最后在板框上敷表层土30cm厚,在保护现有乔木基础上,对岸坡进行再绿化,栽植落叶乔木,覆土上间植灌木和草本植物;为营造生物生存栖息空间,在木桩河水侧抛石,并栽植柳树和芦苇等亲水植物。

图10-36 地理板框介质筛护岸断面图

(3)宽体斜坡护岸建设

如图10-37所示,在夹河下游部分软质受损河岸区域内,岸坡上植被发育较好,植物根系有效地维持了岸坡的稳定,但是略显单薄,岸上植被则遭到不同程度的破坏。因此,该段考虑主要以植被恢复为主,有效利用植被根系的固土功能和控制面源污染的功能。该段全长约15.66km,宽度设计在20~50m之间,护岸断面形式如图10-37所示。

图10-37 宽体斜坡护岸断面图

在夹河护岸方案中,堤岸坡角处采用了木桩+植物营养体束的护岸技术,如图10-38所示。具体做法为,在岸坡坡脚嵌入直径15cm、长1.5m的原木木桩,将萌芽力强的柳树幼枝或芦苇、菖蒲等捆成一束,用木桩将其固定在河岸坡脚。在柳树或芦苇、菖蒲根系未萌发之前,主要靠植物苗木束起到临时保护河岸的辅助作用;在植物根系萌发之后,植物营养体和根系永久的护岸,达到恢复河流生态系统多样性、提高水体净化功能的最终目标。

图10-38 木桩+块石的护岸技术设计

岸堤的小倾角将减缓河水对岸堤的冲刷作用,缓解洪峰快速迁移对下游造成的压力。坡面设计要有三维坡度变化,在水际部位设计为倒圆角坡度;在宽体斜坡护岸上采用植被稳定方法,种植柳树、水杨,白杨、榛树以及芦苇、香蒲等耐湿喜水性植物。对岸堤进行稳定;在坡面上间种景观植物,追求植物景观的多样性,在坡角下构筑水生植物,稳定护堤,保持坡角、坡面、坡顶植被的发育和稳定;保护现有沉水、浮叶、挺水、湿生植物和灌、乔木植被系统,营造纵向生态链。通过沿岸抛石,构筑岸边水生两栖类动物栖息繁衍的场所及环境,为小型动物提供避难场所。

生态护岸除了保持水土、保护河堤以及污染治理等功能外,其最主要的功能将是作为景观林以增加河道走廊的物种多样性和生态稳定性以及提高河道走廊的景观效果。所以在生态护岸的建设过程中,生态护岸的景观功能被提升到了一个重要的位置。

植物物种选取将在兼顾植物的保水护土、污染治理能力的基础上,主要考虑其景观功能。植物选取和种植时应注意高矮错列,叶色和花色相搭配,乔、灌、草分层配置,以强化防护林带的景观效果。

防护林植物的选择坚持本地物种优先的原则,同时兼顾植物的景观价值、经济价值和抗性能力。

在河滩地势较低处种植香根草、荆三棱等多年生草本植物,在河滩地势较高处栽种槐树、柳树、杨树等乔木和杞柳、紫穗槐等经济型灌木,并配置石榴、月季、玫瑰等观赏性树种。以此形成河道走廊防护林带,以增强景观效果,稳固河堤,防止水土流失。防护河堤两侧的面源污染收集和配布水沟渠,分隔河堤和修复工程,以提高河道走廊生态带的层次感,加强河道走廊的生态稳定性。

4.生态护坡修复注意问题

在建设生态沟渠及生态护岸时,应以提供生物生长栖息的生物材料为主。通过使用生物材料对受损护岸进行生态修复,这类生态修复方法一般是采用由固体、液体和气体三相物质组成的具有一定强度的多孔人工材料作为载体,利用多孔材料空隙的透气、透水等性能,并渗透植物生长所需的营养,从而恢复河岸的植被,为生物提供良好的栖息场所。利用生物材料进行修复,如图10-39所示。

图10-39 生态混凝土护岸方法

(据谢三桃、朱青,2009)

在河流护岸进行生态修复上,不仅要满足防洪排涝和生态系统健康的需求,同时也要达到景观美质和亲水和谐的功效。基于这个生态修复的要求,可以采用景观型多级阶梯式人工湿地护岸和景观净污型混凝土组合砌块护岸技术等。这类修复方法一般是以无砂混凝土桩板或无砂混凝土槽为主要构件,在坡岸上逐级设置而成的护岸形式。通过在桩板与坡岸之夹格或无砂混凝土内填充土壤、砂石、净水填料等物质,并从低到高依次种植挺水植物和灌木,从而形成岸边多级人工湿地系统,美化了河道岸坡,呈现出层层阶梯式绿色景观,同时沿护岸线可设置的亲水平台,以便人们随时的能够亲水,如图10-40所示。

图10-40 景观型多级阶梯式人工湿地护岸

(据谢三桃、朱青,2009)

陈海波等在对生态护坡在河道整治中的应用时提出,生态护坡的选择和设计应遵循水力稳定原则、生态和谐原则和因地制宜原则。顾秋平等提出,生态护坡技术应该坚持以下原则:①生态边坡必须能够营造一个适合陆生植物、水陆两生植物、水生动植物生长的生命环境;②生态护坡应满足渠道功能和堤防的稳定要求,并降低工程造价;③要尽量减少刚性结构,增强护坡在视觉中的“软效果”,美化工程环境;④进行水文分析,确定水位变幅范围,结合植物调查结果,选择合适的植物;⑤尽量采用自然的材料,避免二次环境污染;⑥布置时考虑人们的亲水要求。

在生态护坡的设计和类型选择中还需要注意以下几点:①首先要了解河道护坡的功能定位,如果待整治河道为主干行洪河道,那么就要优先考虑防洪排涝和航运对护坡稳定的需求,兼顾生态功能。在选择材料和类型时可以在迎水面边坡以传统的干砌块石为主,推广使用三维土工植被网、植被型生态混凝土、土工材料复合种植等生态护坡新技术,严格限制浆砌石或混凝土护坡。同时,还要兼顾考虑待整治河道的位置及岸边空间,如城镇河道,在考虑其生态景观功能的基础上,还要考虑其所处空间位置的有限性,如果空间有限,那么占地面积大的生态型护坡就不适合待整治河道。②了解河流底泥和岸坡的土壤状况,了解其亲水性,以便有针对性地选择护坡的类型、植被的种类以及护坡的材料。③了解河道的水质状况以及污染物排入其中的方式。对于水质要求较高、面源污染严重的河道,在设计时可以构建多级阶梯式、潜流型或表面流型人工湿地护岸系统。④河道的水文情况,尤其是水体的流速。对于流速缓慢的小型河道,可以直接利用草、芦苇和柳树等天然植物材料进行岸坡防护,这些植物都是亲水的,在潮湿环境中能茁壮成长,可以在保护岸坡的同时,创造出丰富的岸边自然生态环境。而对于水流较急、岸坡侵蚀较大的河段,单纯利用草皮、柳树和芦苇等活体材料进行护岸,容易遭到破坏,应结合土工材料、石料、木桩等坚固材料,加强护岸的稳定性和抗侵蚀性,可以选择三维网垫、混凝土框格、混凝土砌块的植草护坡等复合生态护坡。

总之,生态护坡的设计和选择应考虑河道护坡的功能需要以及各类型护坡的具体应用条件,使生态护坡和河流生态系统融为一体,形成一个有机的、开放的系统。

虽然生态护坡的应用已在国内外得到了广泛应用,但其只考虑了生态护坡对植物的需要,而忽略了动物和微生物,忽略了生态护坡作为一个完整生态系统的动态性,忽略了真正意义上的生态护坡应该是在保证边坡稳定的基础上,以营造河道边坡系统的生物多样性为主要目标。因此,现有的生态护坡技术,虽带有一定的生态色彩,却是不完善的生态护坡技术,而是生态型护坡。要想实现真正意义上的满足边坡系统对生物多样性的要求,建立能够使动物、植物、微生物共存的生态护坡,生态护坡的研究须从以下三个方面着手:

1)护坡材料。为了实现真正满足生态学要求的生态护坡,需要将护坡工程对河道的水质、水文、生态系统的影响降至最小,这就需要逐渐改进护坡所采用的材料,使生态护坡在修复水体污染、提高水体自净能力、营造生物多样性等方面发挥其生态学功能。

2)生态护坡的设计和类型。生态护坡的设计,包括护坡材料、护坡植物、坡比以及护坡结构形式的选择等。要通过试验和实践探索,研究在不同地质条件下,不同护坡材料、护坡植物、坡比以及护坡结构形式等的组合对水流流态和流速等河道水力特性的影响,对坡面稳定性的影响,对护坡生态系统恢复和重建的影响,探索出对河流生态系统影响最小的最佳组合。

3)施工方法。即使有了完美的生态护坡设计和方案,如果施工过程不能完美呈现其各要素间的结合,也会影响生态护坡的生态效果。因此,应逐渐完善生态护坡的施工方法和技巧,将生态护坡的各要素有机结合,使其生态功能充分发挥出来[31]。

烟台市在充分保护好原有的黑松植物群落海防林的基础上,在临海一侧主要种植黑松、白蜡、柽柳、紫穗槐等抗海风、耐盐碱、耐瘠土、固沙性好的树种。在相对风沙较弱的区域栽植景观效果好的银杏、合欢、栾树、楸树等乔木和黄栌、红枫、紫叶李、连翘等各种小乔木、花灌木。并合理调配乔、灌、花、草的比例,突出乔、灌木的绿化地位和绿化效果,突出季相色彩变化,注重各树种色彩、冠性等生物学特性的互补作用,栽植的植物种类达到150多种,植物多样性得到了很好的体现,基本达到了三季有花、四季常青的景观效果。

海盗论文参考文献

谈如何解决南海问题中国对南沙群岛及其附近海域拥有无可争辩的主权。中国最早发现、命名南沙群岛,最早并持续对南沙群岛行使主权管辖。对此我们有充分的 历史 和法理依据,国际社会也长期予以承认。南海问题的焦点就是最南端的南沙群岛。目前,周边许多国家不仅对岛群提出了主权要求,而且还占领了大部分岛礁,对其附近海域进行疯狂的资源掠夺。中国的海洋领土和海洋权益受到了前所未有的威胁和挑战。本无争议的属于中国领土的南沙群岛为何会形成主权争议导致如此复杂的南的问题呢?原因有三:其一,其本身具有重要的战略地位和丰富的自然资源。南海位居太平洋和印度洋、亚洲和澳洲来往的“十字路口”,自古就是著名的海上“丝绸之路”、“陶瓷之路”。南海北部的台湾海峡和西南端的马六甲海峡十极具有战略价值的海上要道,国际上一直有观点认为,谁控制了南海,谁就控制了东南亚,从而控制了西北太平洋和澳洲大陆。就南沙群岛来说,通过它的航道是一条“宝路”。它位于整个东南亚地区的腹地,周边国家都力图以南沙群岛为依托来扩大战略纵深。此外,南沙群岛海域还有许多“宝物”。专家保守估计,南沙油气储量超过200亿吨,占南海油气资源的一半以上,有“第二波斯湾”之称。南海石油不仅含硫量低,而且基本位于200—1000米之间的易开采层。今年,科学家又在南海发现大量的俗称“可燃冰”的天然气水合物,并有望在2015年进行试开采。介入南沙争端的几个国家对油气依赖度都很大,因此,几个国家纷纷对南海资源进行掠夺性开采。其二,与国际法存在的缺陷有关。1982年制定的《联合国海洋公约》在一定程度的公平意义上确立了海洋秩序,但它引入“专属经济区”的新概念时,却对专属经济区和大陆架没有给予明确的界定。它允许专属经济区和大陆架存在多条分界线,其结果是,由于各方对专属经济区和大陆架的界定不同,就为冲突埋下了隐患。《公约》还规定,一个岛屿(涨潮时露在海面的岛屿)可以为一国提供200海里的专属经济区。这样,有关国家就有了“理由”并不属于他的岛屿。其三,中国长期以来未能对南沙群岛实施有效管理,这是最为重要的原因。二战后,中国虽然收回了南沙群岛的主丨权,但只在其中的太平岛上驻军。后来,逐个发生内战,国丨民党败退台湾,造成了大陆和台湾省无力全面管辖治理群岛的尴尬局面。试想,如果中国统一强大,他国又如何染指南沙?中国政府一贯主张以和平方式谈判解决国际争端。这一立场同样适用于南沙群岛。中国愿同有关国家根据公认的国际法和现代海洋法,通过和平谈判妥善解决有关南海争议。中国政府还提出"搁置争议、共同开发"的主张,愿意在争议解决前,同有关国家暂时搁置争议,开展合作。中国政府不仅是这样主张的,也是这样做的。近些年来,中国与有关国家就南海问题多次进行磋商,交换意见,达成了广泛共识。中国主张有关各方在南沙问题上采取克制、冷静和建设性的态度。近些年来,越南、菲律宾等出兵强占南海一些无人岛礁,摧毁中国在南沙无人岛礁所设主权标志,抓扣或以武力驱赶我在南海作业的渔民,对此,中方始终坚持通过外交渠道,以和平方式与有关国家商讨解决有关问题。这充分体现了中国维护地区稳定和双边友好关系大局的诚意。中国一直致力于通过合作渠道解决南海问题,对于我国与周边一些国家围绕南沙问题的争端,我国政府从维护地区稳定的愿望出发,奉行“主权归我,搁置争议,共同开发”的政策,主张通过双边途径以和平协商的方式寻求问题的解决。在这个政策的指导下,结合现存的南海各国争端以及中国目前的实际情况,我认为,在上述政策的指导下,南海争端的解决可以围绕一外交,军事及南海的开发等方面展开,促成一些实质性的进展。一、外交政策在南海争端中,美国绝对是一个不可忽视的区外角色。中国欲解决南海问题,首先必须排除或者尽量减少美国在此区域的干预和对我国在南海行动的阻挠。在地缘经济、政治战略的影响下,出于对海上贸易通道、南海油气资源等的考虑,美国积极干预南海问题。美国通过与菲律宾、马来西亚等国的军事合作,加强在此区域的军事存在,争取在此地的安全主导权,以南海问题为契机打压中国的崛起。进入21世纪以来,美国和东南亚国家合作展开的军事演习更显频繁,“肩并肩”、“金色眼镜蛇”、“卡特尔”等的展开,使中国南海的周边环境急剧恶化。中国的崛起必将影响美国在亚太地区的利益,排挤美国在东南亚的势力,因而美国与东南亚的军事合作,其战略意图是十分明显的,即构成东南亚-台湾-朝鲜半岛三位一体的“环形岛屿链”,从而达到压缩中国向太平洋发展的战略空间,遏制中国的崛起的目的。而南海相关国家也正好借美国之力打压中国,双方于是一拍即合。但是中国实力的增强和在国际上政治大国地位的确立是无法遏制的,美国急需中国在诸多重大国际事务中对其予以支持。因此,我认为,中国对于美国的外交政策应当由如下构成:1.尽可能发展与东盟各国的友好外交关系,如召开 “东盟外长会议”、“东盟首脑会议”,发展“东盟10+3”等经济合作,排挤美国在此区域的势力;2.在朝核问题、伊朗核问题、反恐等重大外交事件上对美国予以合理的支持,以要求其在南海问题上对我国的支持。对于日本,则首要应在外交上承诺保证其南海贸易航线的安全,以此力争其对南海问题上持中立态度。明治时期日本外相伊藤博文曾经说过:“在实力相当时,外交就是力量;在实力悬殊时,力量就是外交。”国家利益和国家力量决定外交政策——从这一点说,我们发展海洋军事力量,建造大型水上作战舰艇、建造航母的确已是燃眉之急。军事上的支持对于此类事关国家主权、领土完整的外交谈判的胜利是不可或缺的。我国在南海问题相关谈判中的最主要目标是确立中国对南海岛屿的主权。我们必须加大外交斡旋,采取各个击破的方式,以支持其对南海资源的开发为诱饵,逐一展开对南海相关各国的外交攻势,力求通过经济和军事上的压力,迫使其对南海(尤其是南沙诸岛)主权归我的外交要求达成妥协。之所以必须采取各个击破的方式,原因在于如果东盟相关国家出于其共同利益的考量,达成外交一致,这对于中国在外交谈判桌上的形势将极为不利,一个国家对抗一个国家利益集团,其信息之不对称不言而喻。毕竟对于东南亚相关国家来说,少一个分蛋糕的庞然大物显然更加符合其国家利益。谈判期间可派遣渔民和渔政船在有争议的海域展开大规模捕猎、巡逻行动,力求制造事端,如造成对我军民伤亡,则可借此加大对相关国家的外交压力,并博得国际舆论之同情,减少国际舆论对华政治压力。同时,在历史和法理两个维度上向世界宣布中国对南海拥有无可争辩的主权,取得国际舆论对华支持。待主权问题解决后,亦可如上制造事端,借机收回部分开发权,或者真正实现“共同开发”的既定政策,其底线是中国必须在南海拥有大部分利益。二、.军事政策首先,应加快建设航母、新型核潜艇和大型海上作战舰艇,加强远洋作战能力。综观二战以来海战经验,以制空权夺取制海权是历史发展之必然。以中国目前的海空军实力,尚不具备远洋作战的能力(严格来说,打击海盗并不算是远洋作战),完全无法与美国抗衡。一旦美国介入南海事端,则中国将处于极端劣势的地位。中国海军之所长仅在近海作战(有沿海空军、陆军和二炮部队的支援),而远洋作战,非有航母不可。中国一日无航母,则一日不可轻易与日美交恶。其次,中国若对东南亚相关国家中的某一国发动战争,考虑到唇亡齿寒,相关国家极有可能相互联合,共同抗击中国海军在南海的军事行动。而美国、印度等国出于对华遏制政策的考虑,日本出于对海上生命线安全的考虑,极有可能出兵干预,届时中国将处于极端恶劣的军事环境,这对于中国的经济建设、海军发展将是一场灾难。战争只因当是政治的延续,单纯以军事手段解决南海问题可以说是下策。第三,与南海各相关国家展开广泛的非传统安全的合作,促进军事互信,通过军事合作,打击该海区的海盗,展示中国海军实力,对南海各相关国家产生威慑作用。当前中国所能采取的仅仅是一些“准军事”手段,比如,海洋渔政船巡航等,这样能在目前能力范围内既不引起外交事件也能有效维护我国主权,并且比较经济的手段。三、中国南海的开发专家认为,南海之争其实就是资源之争,中国加快南海油气开发已经刻不容缓。从国家经济、能源安全考虑,南海是中国未来能源的潜在基地,目前南海尚未得到很好的开发利用,具有巨大的开发潜力。南海油气可以作为稳定的国内油气供给,成为战略油气储备的一个重要部分。我认为我国对南海资源的开发可以国内外同时进行,来个两面夹击。1、国内调动中央和地方两个积极性中央和地方“条块分割”的油气开发体制障碍,是目前南海油气开发进展不力的重要原因。按国家有关 规定,国家对外合作开采海洋石油资源的业务,统一由中国海洋石油总公司负责。目前,中国海洋石油的开发涉及渤海、东海、南海三大海区,由于战线过长、人员不足、财力缺乏,近年来中国海洋石油公司在南海的进展颇为迟缓。面对这种情况,海南省却有劲使不上——尽管海洋油气资源是海南省最富有开发前景的海洋资源,但海南省对其开发无权过问,更不能组织开采和综合利用,这极大束缚了海南在开发南海中所发挥的重要作用。鉴于开发南海资源的空前迫切性,当前确有必要调动中央与地方“两个积极性”,在做好统一大规模的前提下,大力鼓励有实力的地方和企业“抢先下海采油”。为此,中央似可考虑用适当方式,赋予海南省对其所管辖海区行使石油天然气勘探与开采的管理权。中央可将南海油气开发管理权部分下放给海南省,继续发挥海洋油气开发由国家统一管理的主渠道作用,但允许地方政丨府自主开发中小型盆地构造的油气资源。在油气资源的对外合作上,允许地方政丨府招商引资,旨在营造一种“形式多样、多头并进”的南海油气开发的新局面。惟有这样,才能打赢与周边国家争时间、抢速度的“开发战”。从地理位置和经济发展水平来看,海南省可为开发南海发挥如下作用,海南大学詹长智教授做了系统分析:“一是作为开发南海的物资供应地,为南海开发提供强有力的后勤保障;二是作为南海资源的综合利用和加工基地,将南海各种资源在海南岛上进行深层次、高附加值的加工;三是作为南海开发产品的推广运销基地,使南海的产品行销全国;四是经济特区的政治优势,运用各种渠道筹集资金,引进技术人才,从而成为南海开发的资金筹措基地、技术研发基地和人才储备基地。”如果中央确定海南为南海资源开发的主要基地,等于激活了海南经济。长期以来,海南经济低速不振,主要原因在于动力不足、路向不明,如果在海南建设南海资源开发基地,并形成一个产业关联度大,而且有规模效益,科技含量和产品附加值高,市场前景广阔的由海洋运输业,海洋渔业,海水养殖业,海盐业,海洋旅游业,海洋生化业,海洋油气业等构成的海洋产业链,海南经济就可以获得一直苦苦找寻的新支撑点和新激发力,海南经济就可踏上高速增长的快车道。2、对邻国实施“主权归我,搁置争议,共同开发”的原则到上世纪90年代末期,周边国家已经在南沙海域钻井1000多口,发现含油气构造200多个和油气田180个,1999年产石油4043吨、天然气310亿立方米,分别是1999年中国整个近海油产量和天然气产量的2.5倍和7倍。”但马来西亚、越南、文莱和菲律宾等国在南沙有争议的地方开采石油都是本国单方面开采或出租招标,争取国际资本,让外国公司勘探开发,而没有两个争议国之间共同开发的实例。这样在有争议的海域内单方面的疯狂的开发只会让南海有争议的各方关系更加紧张,给了西方大国插手南海的机会,必将让南海问题复杂化、扩大化,影响争议各国乃至整个东南亚的和平与稳定。2003年11月11日,中国海洋石油总公司与菲律宾在北京签订价值700万美员的共同勘探南海石油协议,双方将组成联合工作委员会,共同勘探开发南海油气资源。”这预示着“主权归我、搁置争议、共同开发”之路有了一个良好开端,这也是2002年底中国与东盟国家签署了《南海各方行动宣言》后,南海问题的解决朝良好的方向迈出的一大步。尽管这协议 只是共同勘探南海地区石油的协议,并非真正的开发,但随着争议双方的合作加深,“搁置主权、共同开发”的政策完全有可能实现。中国应重视南海石油开发对中国国家安全和经济安全的巨大影响,本着“主权归我、搁置争议、共同开发”的原则,积极开展能源外交,建立真正有效的能源利用机制。加强与东南亚相关国家在南中国海石油开发上的合作,充分利用上海合作组织,加强和中亚国家以及俄罗斯的能源合作,建立石油安全战略联盟,加快南海油气资源的合作与共同开发,解决中国能源短缺问题,维护中国在南海的权益和主张。希望可以帮到你~~~~

1547年9月26日,西班牙最伟大的小说家塞万提斯诞生于马德里附近的一个小城镇阿尔加拉·台·艾那瑞斯。 ■最走时运的青年时代 塞万提斯的全名叫米盖尔·台·塞万提斯·萨阿维德拉,他的父亲虽然是一个贫穷的游方郎中,但医术却很精湛。这位常年走南闯北的医生阅历非常丰富,深深体验到知识对一个人的重要,因此在给一些有藏书的富人看病时,都要借许多书带回家给儿子看。在少年时代就十分聪慧的塞万提斯读书之快,常让他的父亲大感惊讶,为了能让儿子读到更多的书,他再去给那些有书人家看病时就把儿子带上,他在屋里给人家看病,让儿子在门外看人家的书。 塞万提斯十三四岁时,就以读书最多而闻名于他们那个小城镇。大量的读书使塞万提斯有了创作的冲动和灵感,他慢慢开始学习写作诗歌。不久他写的诗歌就在他们那个小城镇里到处流传,以至于他的父亲独自一人去给人家看病时,人家就会问他:“啊,我们的诗人呢?” 1566年,塞万提斯一家来到马德里定居。没有多长时间,塞万提斯就以自己横溢的文学才华在马德里崭露诗名。当时在马德里享有盛名的人文主义学者胡安·洛贝斯·台·沃约斯读到塞万提斯的诗以后,亲自登门拜访,并把这位年仅19岁的青年招进自己开办的学校里学习。在这所学校里,塞万提斯的知识得到了最大的充实,并在沃约斯人文主义思想的影响下,写出了许多优美的诗篇,被传诵一时。 突然有一天,走出家门的塞万提斯看到一辆豪华的马车停在门前,生性诙谐的他随口开了一句玩笑:“是请我去参加宫廷的宴会吗?”不料马车夫却恭恭敬敬地说:“不,先生,是尊贵的大主教请你到他那儿去!”原来,西班牙大主教非常欣赏塞万提斯的诗篇。从此以后,塞万提斯经常到大主教那里走动,得到大主教的特别赏识。 1569年冬天,塞万提斯作为西班牙大主教的一名侍从,随从大主教来到意大利罗马。在陪同大主教游历意大利许多文化名城时,塞万提斯写下了很多赞美意大利的诗篇。罗马大主教胡里奥·夸维瓦看到这些诗篇之后,对塞万提斯大加称赞,于是西班牙大主教就把塞万提斯推荐给他当一名侍从。在罗马,塞万提斯因大主教夸维瓦的赏识,而遭到其他侍从的嫉妒和诬陷。不久,在夸维瓦的斡旋下,塞万提斯于1570年加入了西班牙驻意大利的军队,当了一名普通士兵。在当时,这对塞万提斯来说确是一件好事,因为当时西班牙人普遍认为,在意大利参加为王室效忠的军队,是一条通向荣华富贵的道路。 ■时运乖蹇,从战士到囚徒 16世纪上半叶,西班牙正处于鼎盛时期。1571年,著名的雷邦多海战爆发时,西班牙在欧洲仍是首屈一指的军事强国。1571年5月,威尼斯和罗马结成同盟,开始对向欧洲大举侵犯的伊斯兰教国家展开了历时三年的战争。当时西班牙负责提供东征的一半费用,并帮助威尼斯开辟在东部被土耳其海军封锁的航道。西班牙国王的弟弟堂胡安被任命为联军总司令,统辖着由西班牙和威尼斯组成的联合舰队,于1571年10月7日向驻扎在雷邦多海湾的土耳其舰队发起进攻。 当时塞万提斯就在“侯爵夫人”号战舰上,他正发着高烧。等交战的炮声打响以后,塞万提斯一下子冲出船舱,跑到舰长面前要求参加战斗。舰长和同伴都让他回船舱里休息,但他态度坚决地表示,他宁愿为国王战死也不愿当怕死鬼躲进船舱。舰长只好给了他12名枪手和一条大皮艇,让他随时准备向正靠近他们的敌舰冲过去。终于,塞万提斯和12名枪手冲上了敌舰,在面对面的拼杀中,塞万提斯的胸部和左手都受了伤,但他仍然继续战斗,直到联合舰队取得胜利了,他还浑身是血地挥舞着武器在敌人的舰船奔跑。这场海战使塞万提斯的左手残废了,在联合舰队里,人们把他称为“雷邦多”的独臂英雄。 1575年,28岁的塞万提斯请假回国探亲,堂胡安分别给国王和侯爵德·塞萨写了推荐他的亲笔信。塞万提斯带着两封信,于9月20日乘“太阳号”帆船返回祖国。当他们经过法国的马赛海岸时,突然遭到柏柏尔族人的三只海盗船的袭击。虽然“太阳号”船员们奋力搏斗,但最终船长被杀,船上所有的人都被海盗掳到阿尔及尔。塞万提斯身上的那两封本可以使他前途无量的推荐信,使他受尽了折磨。海盗们认定了他是贵族,向他索要巨额赎金,并且为防止这个“有钱人”逃跑,而给他戴上了脚镣和手铐。因为塞万提斯家无法筹措到巨额赎金,塞万提斯在阿尔及尔被囚禁了5年,直到1580年,他才被教士赎得自由。 然而,获得自由的塞万提斯回到马德里之后,很快就陷入了生活艰辛的困境里。因为5年前的辉煌战功早已被人遗忘,那两封推荐信给他的憧憬也早已化为泡影。他的家庭也因为了赎他而债务累累,他自己也因左手残废而找不到一份能养活自己的工作,他只好又捡起扔下多年的笔开始写起小说来。 ■塞万提斯就是堂吉诃德 时运乖蹇的塞万提斯一直在贫苦中挣扎,而且还由于种种原因数度入狱,但每次都能很快证明他是清白的。在参考资料《知识就是力量》

航海论文参考文献

航海是人类在海上航行,跨越海洋,由一方陆地去到另一方陆地的活动。 下面是我为大家整理的航海技术论文 范文 ,希望你们喜欢。

现代航海信息技术的发展及应用

摘 要:信息技术已经逐渐应用到人们生活和工作中的各个领域,信息化时代来临,信息技术也对航海技术有着重要的影响,本文简要分析了现代航海信息技术的发展,并对现代航海信息技术的应用做了主要探讨,旨在为航海事业的发展做出贡献。

关键词:现代航海;信息技术;发展与应用

前言:在信息化、数字化技术不断发展的今天,航海 方法 和技术也发生了巨大的变革, 网络技术 以及无线通讯技术的应用促使了“海上数字交通”航海信息技术的格局的形成,在此背景下,现代航海信息技术的发展及应用研究是十分必要的。

一、现代航海技术的发展

(一)电子海图显示和信息系统

电子海图显示是一项重要的技术革命,其能够将海洋的地理要素进行处理和传输后形成的海图以数字的形式在计算机荧屏上动态显示出来,电子海图显示是计算机技术、地理信息系、多媒体技术的集合,能够将海洋的信息通过文字、图像、动画、声音等多种形式表现出来,电子海图显示信息容量大,存储方便且便于携带,一般来说,一张光盘能够储存上百幅海图,同时能够在几秒中之内实现数据的存储和修改,用户能够随时上网查阅并下载海图,这对于实现船舶的自动导航和自动控制有着积极的意义。

(二)卫星技术的使用

卫星技术主要是利用发射用于海洋换几个观测的遥感卫星来提供海洋环境中海面温度、海浪方向、海冰分布、涡旋及海洋污染等各个方面的参数,这就使得船舶在航行的过程中能够及时获得大量的高分辨率的海洋环境信息,充分保证了船舶航行安全[1]。

(三)自动识别系统

自动识别系统使船舶具备了自动识别的功能,同时对导航、控制、状态 报告 等方面也有着重要的意义。例如在秦皇岛海域船舶交管系统中引入自动识别系统,就能够将船舶位置、船舶尺寸、实际吃水、到岗时间等各种信息传回到船舶交管中心,实现了对海上目标的精准定位和跟踪,并能够为船舶提供一系列的助航信息,能够帮助船舶驾驶员准确的获得避碰所需信息,并采取合理的避让行动。

(四)海上航行记录仪

通过计算机技术制造的海上航行记录仪将VDR、ARPA、ECDIS以及监视器等航海仪器互相连接,能够实时记录各种航海仪器之间传递的信息。实现了对航行中各种数据的记录工作。

二、现代航海技术的应用

(一)智能航海系统的应用

智能航海系统中结合计算机图形处理技术、数值天气预报等高科技手段,智能系统中的电子海图涵盖了全球的各种水文资料以及航道资料,同时对于海面中的助航物、障碍物以及港口设施、海岸线等必要的地形地貌都有着详细的记录。航海人员能够在智能航海系统的平台上制定相关的航海计划。系统可以通过电子邮件的方式接收实时的海洋信息,智能航海系统能在短时间内修正海图,使用人员能够了解到全球范围内的海况、高空气压场、潮汐、海流等等与航行相关的信息,同时系统能够对未来7-10天的相关海洋信息预报。

智能航海系统能够准确的显示船舶的具体位置和相关动态,对于船舶状态、货载、航线等资料也能够实时掌握。在智能航海系统中,可以利用GPS来精确定位,一旦船舶偏离航线进入危险区域时,智能航海系统能够及时发出警报,使航海人员进行迅速的调整。电子海图能够将船舶的航行状态显示到计算机荧屏之上,智能航海系统的黑仙子会记录相关的状态参数。电子海图技术带动了航海技术的发展,实现了航海的智能化。

(二)航海信息系统的应用

(1)海图更正

电子海图中的各项数据存放在空间数据库中,基于互联网技术可以建立电子海图Web平台,能够将海图中的数据发布到Web站点中,用户可以通过浏览器来获取海图信息,航运网站可以获得相关海洋通告信息,并以人工或自动的方式修正海图中的各项数据,之后在通过Web发布以供航海船舶使用。

(2)设计航线

航线设计对船舶航行安全有着重要的意义,通过互联网可以十分方面的浏览、系在相关航线设计的信息,例如海图信息、推荐航线、碍航物、潮汐表等等,在电子海图系统平台可以十分方便的对航线进行设计,同时其可以通过相关海图信息对预定航线进行预检,有效的保证了航线的安全。

(3)入港指南

航运网站的数据库中有关于进出港的各种信息,例如港口航道、水深等等,其可以通过Web向出港的船舶提供信息服务,这就能够让进出口的船舶轻松的获取最新入港指南,实现了船舶进出港的导航功能。

(4)电子商务

电子商务指的是在网络的平台上,通过Internet传输获取信息,这样相关航运企业就可以实现内部的电子商务功能,从而使航运网站变成一个交易的平台。

(三)“数字海洋”的应用

数字海洋的应用主要体现在以下几个方面:①自动导航模块:通过传感技术获取船舶航行的各种参数,通过设定航线与预警门限的比较实现自动导航功能;②避碰模块:在航行中,避碰一直是人们研究的难点和 热点 ,尤其在多船会遇下,更应有效避碰,船舶自动识别系统的应用能够为有效避碰提出新的方案;③突发事件处理模块:利用ARPA、AIS等可以对海上的船舶以及港口、航道等进行监控,通过预警区域的设置能够帮助指挥人员有效的处理突发事件[2];④信息交换模块:信息交换模块也就是通信模块,现代海航可以利用卫星、GSM等各种方式实现信息的交流和通信,这对指导船舶的安全航行有着重要的作用。

结论:综上所述,人们逐渐进入信息时代,信息技术的应用逐渐改变了人们的生活方式,其对航海也带来了巨大的变革,现代航海信息技术的发展和应用对保证航海安全,推进航海发展有着重要的意义,航运界应当积极的抓住机遇,不断改善现代航海信息技术,使现代航海进入一个崭新的时代。

参考文献

[1]方照琪,沈方方.信息技术对现代航海系统的影响及发展趋势[J].浙江交通职业技术学院学报,2005,03:17-20.

[2]吕振肃,刘忠学,王连胜,罗建军,王良成.现代通信与信息技术在海事通信中的应用展望[J].电讯技术,2011,04:126-130.

点击下页还有更多>>>航海技术论文范文

上中国知识资源总库

海洋论文参考文献

杨胜雄,符溪,文鹏飞

杨胜雄(1964-),男,教授级高工,主要从事海洋地质地球物理、海洋矿产资源勘查研究。

注:本文曾发表于《海洋学报》,2004,26:75-81,本次出版有修改。

广州海洋地质调查局,广州510760

摘要:地震勘探的BSR识别技术是发现海洋天然气水合物最经济、快捷、方便、有效的方法。在地震处理识别上,精确的子波处理是水合物地震资料处理中最关键的一个环节,采用最小平方误差准则,即利用实际输出与期望输出的误差平方和为最小的条件,来确定反滤波因子,因此又称为最小平方子波整形。在地震处理程序中引入3种期望输出,即俞氏子波、雷克子波、Buttworth子波,对子波零相位化有较好的效果。根据上面的原理,开发了一套最小平方反滤波地震处理软件,对天然气水合物地震勘探资料进行试处理的结果表明,该软件在提高分辨率的同时,保持了较高的信噪比。

关键词:反褶积;最小平方反滤波;俞氏子波;雷克子波;Buttworth子波;天然气水合物

The Priciple of Least-Squares-Inverse Filtering and Its Application in Gas Hydrate

Yang Shengxiong,Fu Xi,Wen Pengfei

Guangzhou Marine Geological Survey,Guangzhou 510760,China

Abstract:The identification of the BSR is one of the best method for the prospecting of gas hydrate.In order to improve the temporal resolution of seismic section,the assignment of deconvolution is to suppression the ground filter in exploration.We adopt the least-squares error— the sum of all anticipant output error is the least condition,which decide the inverse factor.In the program we introduce three kinds of anticipant output— Yu-shi wavelet,Ricker wavelet,Buttworth wavelet.These wavelets help to improve the effect of zero-phase.According to the above principle,we develop a Least-squares inverse filtering program.The processing result indicates this method improves resolution and keep a higher signal-to-noise in the process of gaseous hydrocarbon.

Key words:deconvolution; Least-squares inverse filtering; Yu wavelet; Ricker wavelet; Buttworth wavelet; gas hydrate

0 引言

天然气水合物为冰状固体,俗称“可燃冰”,是一定的气体(甲烷、乙烷等)充填于水分子(呈三维笼状结构)在低温(< 10℃)、高压(>10 MPa)条件下产物,主要赋存于具有低温、高压环境的世界海洋大陆边缘和高纬度冻土里。在大陆边缘地区,碳氢气体随流体向上运移到水合物稳定带中,储存于深海底的沉积物空隙内。根据国外有关资料,海洋天然气水合物(天然气成分主要为甲烷,故也称甲烷水合物、甲烷气体水合物)通常埋藏于水深大于300 m的海底以下0~1 100 m处,矿层厚数十厘米至上百米,分布面积数万到数十万km2,单个海域甲烷气体资源量可达数万至几百万亿m3,即相当于我国天然气的总储量,甚或更多。世界各大洋中已发现的水合物总资源碳热量约为(1.8~2.6)×1016m3[1],大约相当于全世界已知煤、石油和天然气总储量的2倍。其总量之大足以取代日益枯竭的传统油气能源。

海底天然气水合物首先在钻探沉积物中发现,但大范围的探测需要靠声学物探方法,其中最主要的间接勘测技术是采用地震勘探方法寻找似海底反射层(即BSR,bottom simulating reflection)。据统计,全世界海洋中已发现水合物地方有84处[2],其中利用地震探测的BSR推测的有48处,由BSR推测并取样的有10处,由BSR与测井探测的有8处,通过取样发现的有9处,利用其他方法(速度异常、化探异常、特征地貌等)推测的有9处。由此可见,通过地震方法识别发现的水合物赋存地区占绝大多数,尤其利用地震勘探的BSR识别技术是发现水合物最经济、快捷、方便、有效的方法[3-7]。BSR具有“与海底近平行、与海底反射反相位、高波阻抗、强振幅、速度异常可达3.3 km/s约为沉积物2倍、其下波速减小”等特征。根据波形详细分析,可将BSR进一步细分三类:即强BSR (S-BSR)、弱BSR(W-BSR)和推测BSR(I-BSR)[5]。在地震处理识别上,精确的子波处理是水合物地震资料处理中最关键的一个环节[8-9],其功能在于压缩地震子波、提高地震资料的纵向分辨率,子波处理的好坏直接影响到对水合物的有效识别,主要目标是使波形零相位化,形成对称形状的子波,便于识别剖面上BSR反射的极性反转现象。由于BSR的特殊性,传统的子波反褶积方法进行子波处理存在信噪比和分辨率太低而难以识别的困难,利用最小平方反滤波方法可进一步改善这些缺点。

最小平方反滤波是最小平方滤波(或称维纳滤波、最佳滤波)在反滤波领域中的应用。最小平方滤波的基本思想在于设计一个滤波算子,用它把已知的输入信号转换为与给定的期望输出信号在最小平方误差的意义下是最佳接近的输出。设输入信号为x(t),它与待求的滤波因子h(t)相褶积得到实际输出y(t),即y(t)=x(t)·h(t)。由于种种原因,实际输出y(t)不可能与预先给定的期望输出 完全一样,只能要求二者最佳地接近。判断是否最佳接近的标准很多,最小平方误差准则是其中之一,即当二者的误差平方和为最小时,则意味着二者有最佳地接近。在这个意义下求出滤波因子h(t)所进行的滤波即为最小平方滤波。

若设计另一滤波器输入信号x(t)是某滤波器的输出,而期望输出 是该滤波器的输入,则按此思想求得的滤波因子a(t)即称为最小平方反滤波因子,用它进行的滤波是最小平方反滤波[10]。

1 数学原理

地震勘探反滤波“反”的是大地滤波[11]。大地滤波器的脉冲响应是地震子波,它必为物理可实现的。将地震子波作为反滤波的输入,则期望输出应是δ脉冲。为了不失一般性,可先假设期望输出是窄脉冲d(t)。另外,反滤波因子一般是无限长的,但计算机中运算只能取有限项。假设待求的反滤波因子a(t)的起始时刻为-m0,延续长度为m+1。即:

a(t)=(a(-m0),a(-m0+1),a(-m0+2),…, a(-m0+m))。

当已知输入——地震子波b(t)=(b(0),b(1),…,b(n))时,实际输出为

南海天然气水合物富集规律与开采基础研究专集

实际输出与期望输出的误差平方和为

南海天然气水合物富集规律与开采基础研究专集

要使Q为最小,数学上就是求Q的极值问题,即满足

南海天然气水合物富集规律与开采基础研究专集

的滤波因子a(t)。

南海天然气水合物富集规律与开采基础研究专集

因为:

南海天然气水合物富集规律与开采基础研究专集

为地震子波的自相关函数,而

南海天然气水合物富集规律与开采基础研究专集

为地震子波与期望输出的互相关函数,故式(1)可写为

南海天然气水合物富集规律与开采基础研究专集

这是一个方程组,写成矩阵形式为

南海天然气水合物富集规律与开采基础研究专集

式中利用了相关函数的对称性。该方程中,系数矩阵为一特殊的正定矩阵(托布里兹矩阵),它不但以主对角线为对称,也以次对角线对称,而且主对角线及与主对角线平行的直线上的元素均相同。

方程(2)或(3)称为最小平方反滤波的基本方程、正规方程或法方程,可以用专门的莱文森递推法求解。

利用上述基本方程求出的滤波因子有时称为脉冲整形滤波因子,因为在应用中它可以将输入子波变换为任意形状的期望输出,相当于对子波整形。

2 程序描述

根据不同的要求,在程序中采用的期望输出的子波可有3种型式:

2.1 俞氏子波

俞氏子波即宽带雷克子波,其时间域表达式为

南海天然气水合物富集规律与开采基础研究专集

其中参数p和q是低边和高边的频率界限。

2.2 雷克子波

雷克子波的波形为

南海天然气水合物富集规律与开采基础研究专集

其中fm是峰值频率。

2.3 Butterworth子波

Butterworth子波是带通子波,其频率域表达式为

南海天然气水合物富集规律与开采基础研究专集

南海天然气水合物富集规律与开采基础研究专集

3 实现过程

首先根据公式(4)、 ( 5)、 ( 6)计算出期望子波d(t),然后计算输入子波的自相关函数:

南海天然气水合物富集规律与开采基础研究专集

及输入子波与期望子波的互相关函数:

南海天然气水合物富集规律与开采基础研究专集

最后将上两式代入(3)式,求解出a(t)即得反滤波因子。

4 实际资料试算

1999年,广州海洋地质调查局在西沙海槽区开展了甲烷水合物的前期试验性调查,发现多段具有极性反转、上部反射空白带、近似平行海底、地震速度局部增高等标志的似海底发射界面(BSR),累计达100多km[12]。利用最小平方反滤波方法进行子波处理,如图1所示,子波处理具体参数为算子长度400 ms,白噪比例3%。

图2为用传统子波反褶积方法处理的剖面。图3为用最小平方反滤波处理的剖面。从图中可以看出用最小平方反滤波处理的剖面,获得较高的信噪比和清晰的分辨率,由此可见,最小平方反滤波处理天然气水合物地震资料是有效的。

5 结语

通过地震方法识别发现的水合物赋存地区占绝大多数,尤其利用地震勘探的BSR识别技术是发现水合物最经济、快捷、方便、有效的方法。子波处理是天然气水合物地震资料处理中最关键的一个环节,其功能在于压缩地震子波、提高地震资料的纵向分辨率,子波处理的好坏直接影响到对水合物的有效识别。

传统的子波反褶积方法进行子波处理存在信噪比和分辨率太低而难以识别的困难,利用最小平方反滤波方法可进一步改善这些缺点。设计应用的最小平方反滤波可以使波形零相位化,形成对称形状的子波,便于识别剖面上的BSR反射的极性反转现象,从而提高处理结果的信噪比和分辨率。

图1 子波处理效果图

左图为原系统反褶积后的炮集,右图为最小平方反滤波处理后的炮集,新模块子波处理后波形明显零相位化有利于波形对比

图2 用传统子波反褶积方法处理的剖面

图3 用最小平方反滤波方法处理的剖面

在最小平方反滤波的基础上,对反褶积中的一些主要问题做了探讨,并把俞氏子波、雷克子波、Buttworth子波作为反褶积的期望输出,得到了理想的效果。

参考文献

[1]Kvenvolden K A,Gas Hydrate-Geological Perspective and Global Change,Rev[J].Geophys,1993.31:173-187.

[2]杨胜雄,张光学,张明.海洋天然气水合物综合勘测技术[C]//海洋高新技术发展研讨会论文集.北京:海洋出版社,2000:507-512.

[3]MacKay M E,Jarrard R D,Westbrook G K,et al.Shipboard Scientific Party of Ocean Drilling Program Leg 164,Origin of Botom-Simulating Reflectors:Geophysical Evidencefrom the Cascadia accretinary prism[J].Geology,1994,22:459-462.

[4]Singh S C,Minshull T A,Spence G D.Velocity Structure of a Gas Hydrate Reflector[J].Science,1993,260:204-207.

[5]Lee M W,Hutchinson D R,Agena W F,et al.Seismic Character of Gas Hydrates on the Southeastem U.S.Continental Margin,Mar[J].Geophys,Res,1994,16:163-184.

[6]Carcione J M,Tinivella U.Bottom-Simulating Reflectors:Seismic Velocities and AVO Effects[J].Geophysics,2000,65(1):54-67.

[7]Hunter J M,Miller R D,Doll W E,et al.Feasibility of High Resolution P-and S-Wave Seismic Reflection to Detect Methane Hydrate.Soc.Expl.Geophys.1999.

[8]俞寿朋.高分辨率地震勘探[M].北京:石油工业出版社, 1993:125.

[9]熊翥.地震数据数字处理应用技术[M].北京:石油工业出版社,1993:187.

[10]牟永光.地震勘探资料数字处理方法[M].北京:石油工业出版社,1981:85.

[11]程乾生.信号数字处理的数学原理:第二版[M].北京:石油工业出版社,1993:221.

[12]张光学,陈邦彦,杨胜雄,等.海洋天然气水合物地震学研究[C]//天然气水合物调查动态、勘探方法和成果研讨会论文集.广州海洋地质调查局:2001.

把周边国家都变成中国,中国世界,世界中国!

中国期刊全文数据库 前10条 1 杜德斌;冯春萍;;中国的世界地理研究进展与展望[J];地理科学进展;2011年12期 2 鞠海龙;张三保;;中日东海合作的现实路径与前景探析[J];国际论坛;2006年03期 3 张三保;;中日东海争端与出路[J];国际资料信息;2007年10期 4 张磊;;“春晓油田”事件的国际法解读[J];贵州师范大学学报(社会科学版);2006年01期 5 吴建华;常进;邓瑾;;试析“后小泉时代”中日政治关系前景及中国的对日战略[J];贵州师范大学学报(社会科学版);2007年01期 6 颜志强;;中国海外能源安全战略探析[J];重庆社会主义学院学报;2012年05期 7 李春;;从国际海洋法实践看中日东海划界争议[J];海洋开发与管理;2008年04期 8 张磊;;中日“春晓油田”事件的国际法解读[J];浙江海洋学院学报(人文科学版);2005年04期 9 于李娜;邱磊;曹征;;中日东海划界的发展趋势及影响因素[J];学理论;2011年32期 10 李杰;;从国际法角度看中日东海问题[J];湖南人文科技学院学报;2006年05期 中国重要会议论文全文数据库 前1条 1 王泽林;;日本《海洋构筑物安全水域设定法》评析[A];《中国海洋法学评论》2008年卷第2期[C];2008年 中国博士学位论文全文数据库 前4条 1 夏兰芳;自然图形的度量格网研究[D];武汉大学;2009年 2 祖彦;21世纪初中国东北亚国家安全利益研究[D];吉林大学;2011年 3 冯维江;安全、不完全契约与国际规则[D];中国社会科学院研究生院;2008年 4 朱晓鸣;新时期中国海上危机管理研究[D];华东师范大学;2008年 中国硕士学位论文全文数据库 前10条 1 沈芹;日本《海洋基本法》及其对我国的影响及对策建议[D];中国海洋大学;2010年 2 赵永;“小泉现象”剖析[D];中国海洋大学;2010年 3 吴秋玲;解决中日东海大陆架划界争议之原则探析[D];吉林大学;2011年 4 汤西野;关于中日东海油气田的争端[D];浙江大学;2011年 5 简超宗;中日东海争端与中国国家利益的维护[D];暨南大学;2011年 6 赵蕾;中国制定《海洋基本法》的必要性和可行性研究[D];中国海洋大学;2011年 7 侯苏洁;中日海权争端及其对策研究[D];中国海洋大学;2011年 8 崔巍;日本能源外交战略与东北亚能源合作[D];山东大学;2011年 9 何鹏;中日东海大陆架划界的国际法分析[D];复旦大学;2011年 10 陈苏;论岛屿在海洋划界中的地位和作用[D];中国政法大学;2006年

相关百科

热门百科

首页
发表服务